Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Circ Res ; 133(2): 120-137, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313722

RESUMO

BACKGROUND: Beta-2 adrenergic receptors (ß2ARs) but not beta-2 adrenergic receptors (ß1ARs) form a functional complex with L-type Ca2+ channels (LTCCs) on the cardiomyocyte membrane. However, how microdomain localization in the plasma membrane affects the function of these complexes is unknown. We aim to study the coupling between LTCC and ß adrenergic receptors in different cardiomyocyte microdomains, the distinct involvement of PKA and CAMKII (Ca2+/calmodulin-dependent protein kinase II) and explore how this functional complex is disrupted in heart failure. METHODS: Global signaling between LTCCs and ß adrenergic receptors was assessed with whole-cell current recordings and western blot analysis. Super-resolution scanning patch-clamp was used to explore the local coupling between single LTCCs and ß1AR or ß2AR in different membrane microdomains in control and failing cardiomyocytes. RESULTS: LTCC open probability (Po) showed an increase from 0.054±0.003 to 0.092±0.008 when ß2AR was locally stimulated in the proximity of the channel (<350 nm) in the transverse tubule microdomain. In failing cardiomyocytes, from both rodents and humans, this transverse tubule coupling between LTCC and ß2AR was lost. Interestingly, local stimulation of ß1AR did not elicit any change in the Po of LTCCs, indicating a lack of proximal functional interaction between the two, but we confirmed a general activation of LTCC via ß1AR. By using blockers of PKA and CaMKII and a Caveolin-3-knockout mouse model, we conclude that the ß2AR-LTCC regulation requires the presence of caveolin-3 and the activation of the CaMKII pathway. By contrast, at a cellular "global" level PKA plays a major role downstream ß1AR and results in an increase in LTCC current. CONCLUSIONS: Regulation of the LTCC activity by proximity coupling mechanisms occurs only via ß2AR, but not ß1AR. This may explain how ß2ARs tune the response of LTCCs to adrenergic stimulation in healthy conditions. This coupling is lost in heart failure; restoring it could improve the adrenergic response of failing cardiomyocytes.


Assuntos
Caveolina 3 , Insuficiência Cardíaca , Camundongos , Animais , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos , Canais de Cálcio Tipo L/metabolismo
2.
Cell Mol Neurobiol ; 43(1): 357-366, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35128618

RESUMO

The CACNA1C gene encodes the pore-forming alpha-1c subunit of L-type voltage-gated calcium channels. The calcium influx through these channels regulates the transcription of the brain-derived neurotrophic factor (BDNF). Polymorphisms in this gene have been consistently associated with psychiatric disorders, and alterations in BDNF levels are a possible biological mechanism to explain such associations. Here, we sought to investigate the effect of the CACNA1C rs1006737 and rs4765913 polymorphisms and their haplotypes on serum BDNF concentration. We further aim to investigate the regulatory function of these SNPs and the ones linked to them. The study enrolled 641 young adults (362 women and 279 men) in a cross-sectional population-based survey. Linear regression was used to test the effects of polymorphisms and haplotypes on BDNF levels adjusted for potential confounders. Moreover, regulatory putative functional roles were assessed using in silico approach. BDNF levels were not associated with CACNA1C polymorphisms/haplotype in the total sample. When the sample was stratified by sex, checking the effect of polymorphisms on men and women separately, the A-allele of rs4765913 was associated with lower BDNF levels in women compared with the TT genotype (p = 0.010). The AA (rs1006737-rs4765913) haplotype was associated with BDNF levels in opposite directions regarding sex, with lower levels of BDNF in women (p = 0.040) compared to those without this haplotype, while with higher levels in men (p = 0.027). These findings were supported by the presence of regulatory marks only on the male fetal brain. Our results suggest that the BDNF levels regulation may be a potential mechanism underpinning the association between CACNA1C and psychiatric disorders, with a differential role in women and men.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Predisposição Genética para Doença , Adulto Jovem , Humanos , Masculino , Feminino , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos Transversais , Canais de Cálcio Tipo L/genética , Polimorfismo de Nucleotídeo Único/genética
3.
J Integr Med ; 21(1): 99-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481247

RESUMO

OBJECTIVE: To investigate the effect of ferulic acid, a natural compound, on pancreatic beta cell viability, Ca2+ channels, and insulin secretion. METHODS: We studied the effects of ferulic acid on rat insulinoma cell line viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. The whole-cell patch-clamp technique and enzyme-linked immunosorbent assay were also used to examine the action of ferulic acid on Ca2+ channels and insulin secretion, respectively. RESULTS: Ferulic acid did not affect cell viability during exposures up to 72 h. The electrophysiological study demonstrated that ferulic acid rapidly and concentration-dependently increased L-type Ca2+ channel current, shifting its activation curve in the hyperpolarizing direction with a decreased slope factor, while the voltage dependence of inactivation was not affected. On the other hand, ferulic acid have no effect on T-type Ca2+ channels. Furthermore, ferulic acid significantly increased insulin secretion, an effect inhibited by nifedipine and Ca2+-free extracellular fluid, confirming that ferulic acid-induced insulin secretion in these cells was mediated by augmenting Ca2+ influx through L-type Ca2+ channel. Our data also suggest that this may be a direct, nongenomic action. CONCLUSION: This is the first electrophysiological demonstration that acute ferulic acid treatment could increase L-type Ca2+ channel current in pancreatic ß cells by enhancing its voltage dependence of activation, leading to insulin secretion.


Assuntos
Células Secretoras de Insulina , Insulina , Ratos , Animais , Secreção de Insulina , Insulina/farmacologia , Células Secretoras de Insulina/metabolismo , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/metabolismo , Cálcio/metabolismo
4.
Eur Arch Psychiatry Clin Neurosci ; 273(1): 41-50, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36181558

RESUMO

The influence of temperament traits on bipolar disorder (BD) has been investigated. Both temperament traits and BD are partially genetically determined and seem to be influenced by variations in the CACNA1C gene. These variations presented a significant interactive effect with biological sex, although studies that evaluate this relationship are scarce. Here, we assessed the mediation effect of temperament traits on the relationship between two polymorphisms in the CACNA1C gene (rs1006737 and rs4765913) and BD according to sex. This is a cross-sectional study consisting of 878 Caucasian individuals (508 women and 370 men), aged 18-35, enrolled in a population-based study in the city of Pelotas, Southern Brazil. BD diagnosis was evaluated using the clinical interview MINI 5.0, and temperament traits were assessed via the application of the Affective and Emotional Composite Temperament Scale (AFECTS). Mediation models were tested using the modeling tool PROCESS (version 3.3) for SPSS. Bootstrapping-enhanced mediation analyses in women indicated that traits anger (39%) and caution (27%) mediated the association between the rs4765913 SNP and BD, while traits volition (29%), anger (35%), and caution (29%) mediated the association between the AA haplotype (rs1006737-rs4765913) and the BD. No effect was encountered for cisgender men. Our model revealed that paths from CACNA1C SNPs to BD are mediated by specific temperament traits in women, reinforcing the definition of temperament traits as endophenotypes.


Assuntos
Transtorno Bipolar , Feminino , Humanos , Masculino , Transtorno Bipolar/psicologia , Canais de Cálcio Tipo L/genética , Estudos Transversais , Emoções , Polimorfismo de Nucleotídeo Único , Temperamento , Adolescente , Adulto Jovem , Adulto
5.
Journal of Integrative Medicine ; (12): 99-105, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-971647

RESUMO

OBJECTIVE@#To investigate the effect of ferulic acid, a natural compound, on pancreatic beta cell viability, Ca2+ channels, and insulin secretion.@*METHODS@#We studied the effects of ferulic acid on rat insulinoma cell line viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. The whole-cell patch-clamp technique and enzyme-linked immunosorbent assay were also used to examine the action of ferulic acid on Ca2+ channels and insulin secretion, respectively.@*RESULTS@#Ferulic acid did not affect cell viability during exposures up to 72 h. The electrophysiological study demonstrated that ferulic acid rapidly and concentration-dependently increased L-type Ca2+ channel current, shifting its activation curve in the hyperpolarizing direction with a decreased slope factor, while the voltage dependence of inactivation was not affected. On the other hand, ferulic acid have no effect on T-type Ca2+ channels. Furthermore, ferulic acid significantly increased insulin secretion, an effect inhibited by nifedipine and Ca2+-free extracellular fluid, confirming that ferulic acid-induced insulin secretion in these cells was mediated by augmenting Ca2+ influx through L-type Ca2+ channel. Our data also suggest that this may be a direct, nongenomic action.@*CONCLUSION@#This is the first electrophysiological demonstration that acute ferulic acid treatment could increase L-type Ca2+ channel current in pancreatic β cells by enhancing its voltage dependence of activation, leading to insulin secretion.


Assuntos
Ratos , Animais , Secreção de Insulina , Insulina/farmacologia , Células Secretoras de Insulina/metabolismo , Ácidos Cumáricos/metabolismo , Cálcio/metabolismo
6.
Iran J Med Sci ; 47(4): 367-378, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35919076

RESUMO

Background: Cirrhotic cardiomyopathy is a well-recognized cardiac dysfunction in cirrhotic patients. Studies have confirmed the protective effects of silymarin in different types of cardiac injury. This study aimed to examine the effectiveness and molecular mechanism of silymarin against myocardial dysfunction and hypertrophy in a rat model of cirrhosis. Methods: The experiment was performed at Alborz University of Medical Sciences (Karaj, Iran) during 2020-2021. Thirty-two male Wistar rats were randomly divided into four groups of Sham-operated (control group for surgical procedures), Bile Duct Ligated (BDL), and two Silymarin extract (SE)-treated groups of 300 and 600 mg/Kg/day. After 28 days, serum levels of AST, ALT, GGT, and ALP, liver histopathological status, as well as cardiac mechanical function, were assessed. Cardiac ß1-adrenergic receptors (ß1-AR), L-type voltage-dependent calcium channels (L-VDCC), and GATA4 mRNA expression were also determined using real-time RT-PCR. Data analysis was performed using the one-way ANOVA followed by Duncan's multiple range test. Histological data has been analyzed with Kruskal-Wallis nonparametric test. The analysis was performed at P≤0.05. Results: BDL was associated with a significant elevation in serum AST, ALT, GGT, and ALP, development of necrosis and fibrosis of the liver texture, increased Heart Weight and Heart Weight to Body Weight ratio, enhanced cardiac mechanical function as well as a significant up-regulation of ventricular ß1-AR and L-VDCC. Administration of SE600, but not SE300, significantly reduced the serum levels of the enzymes and alleviated signs of liver necrosis and fibrosis. Cirrhotic-induced cardiac dysfunction was also restored by SE600, but not by the lower dose. In addition, cardiac expression of the ß1-AR and L-VDCC was down-regulated toward normal values by either higher or lower doses of the SE. Conclusion: Silymarin treatment in higher dose attenuated cirrhosis-associated cardiac remodeling and reduced cardiac mechanical dysfunctions.


Assuntos
Cardiomiopatias , Silimarina , Animais , Canais de Cálcio Tipo L , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Masculino , Necrose/tratamento farmacológico , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 1/metabolismo , Silimarina/farmacologia , Silimarina/uso terapêutico
7.
J Tradit Chin Med ; 41(6): 968-973, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939394

RESUMO

OBJECTIVE: To compare the effects of Neiguan (PC6) acupuncture at different depths and retention time on arrhythmia duration, myocardial tissue morphology, mRNA expression level of L-type calcium channel α1C subunit and Ca2 + -Mg2 + -AtPase activity in tachirrhythmia model of rabbits. METHODS: The tachyarrhythmia model was made by intravenous injection of barium chloride into the ears of rabbits. A total of 56 healthy adult male New Zealand big-eared white rabbits, apply the random number table method, divided into normal control group (group A), model group (group B), shallow needling Neiguan (PC6) 10 min group (group C), shallow needling Neiguan (PC6) 20 min group (group D), shallow needling Neiguan (PC6) 30 min group (group E), deep needling Neiguan (PC6) 10 min group (group F), deep needling Neiguan (PC6) 20 min group (group G), deep needling Neiguan (PC6) 30 min group (group H), 7 animals in each group. Electrocardiograms were used to collect the duration of arrhythmia; hematoxylin-eosin staining method was performed on myocardial tissue, RT-PCR tested the expression of α1C subunit mRNA, and the activity of Ca2 + -Mg2 + -ATPase were quantified by phosphorus determination method. RESULTS: The duration of arrhythmia in each acupuncture treatment group was shortened to varying degrees. Compare to the model group, the tissue damage from barium chloride inducing was improved in the acupuncture group. Compared to the model group, except for group E, most treatment groups had varying degrees of improvement with significantly down-regulated L-type calcium channel α1C subunit mRNA expressions level and increased Ca2+ -Mg2+ -ATPase activity. CONCLUSIONS: The effect of acupuncture at Neiguan (PC6) with different depths and retention time can reduce the duration of arrhythmia induced by barium chloride relatively, improve the induced pathological changes, down regulate L-type calcium channel α1C subunit mRNA expressions level and increase Ca2 + -Mg2 + -ATPase activity. Both the shallow and deep tissues of Neiguan (PC6) may be involved in transmitting acupuncture information. There is an optimal induction period for shallow needling at Neiguan (PC6) to reach the best therapeutic effect.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Animais , Arritmias Cardíacas/terapia , Masculino , Agulhas , Extratos Vegetais , Coelhos
8.
Arterioscler Thromb Vasc Biol ; 40(10): 2440-2453, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787518

RESUMO

OBJECTIVE: Calcium channel blockers, such as dihydropyridines, are commonly used to inhibit enhanced activity of vascular CaV1.2 channels in hypertension. However, patients who are insensitive to such treatments develop calcium channel blocker-resistant hypertension. The function of CaV1.2 channel is diversified by alternative splicing, and the splicing factor PTBP (polypyrimidine tract-binding protein) 1 influences the utilization of mutually exclusive exon 8/8a of the CaV1.2 channel during neuronal development. Nevertheless, whether and how PTBP1 makes a role in the calcium channel blocker sensitivity of vascular CaV1.2 channels, and calcium channel blocker-induced vasodilation remains unknown. Approach and Results: We detected high expression of PTBP1 and, inversely, low expression of exon 8a in CaV1.2 channels (CaV1.2E8a) in rat arteries. In contrast, the opposite expression patterns were observed in brain and heart tissues. In comparison to normotensive rats, the expressions of PTBP1 and CaV1.2E8a channels were dysregulated in mesenteric arteries of hypertensive rats. Notably, PTBP1 expression was significantly downregulated, and CaV1.2E8a channels were aberrantly increased in dihydropyridine-resistant arteries compared with dihydropyridine-sensitive arteries of rats and human. In rat vascular smooth muscle cells, PTBP1 knockdown resulted in shifting of CaV1.2 exon 8 to 8a. Using patch-clamp recordings, we demonstrated a concomitant reduction of sensitivity of CaV1.2 channels to nifedipine, due to the higher expression of CaV1.2E8a isoform. In vascular myography experiments, small interfering RNA-mediated knockdown of PTBP1 attenuated nifedipine-induced vasodilation of rat mesenteric arteries. CONCLUSIONS: PTBP1 finely modulates the sensitivities of CaV1.2 channels to dihydropyridine by shifting the utilization of exon 8/8a and resulting in changes of responses in dihydropyridine-induced vasodilation.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Resistência a Medicamentos , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Hipertensão/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Nifedipino/farmacologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Processamento Alternativo , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Éxons , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Potenciais da Membrana , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Transdução de Sinais
9.
Artigo em Inglês | MEDLINE | ID: mdl-32169562

RESUMO

Studies on gene x environment interaction (GxE) have provided vital information for uncovering the origins of complex diseases. When considering the etiology of bipolar disorder (BD), the role of such interactions is unknown. Here, we tested whether trauma during childhood could modify the effect of two polymorphisms in the CACNA1C gene (rs1006737 and rs4765913) in terms of susceptibility to BD. The study enrolled 878 Caucasian young adults in a cross-sectional population-based survey. BD diagnosis was performed using a clinical interview MINI 5.0, and trauma was assessed with the childhood trauma questionnaire (CTQ). Binary logistic regression models were employed to test the main effects of polymorphisms, haplotypes, and GxE interactions using sex as a confounder. We did not observe an association between the polymorphisms and diagnosis of BD. However, we noted that childhood trauma modified the effect of the rs4765913 polymorphism (p = .018) and the AA haplotype (rs1006737 - rs4765913) (p = .018) on BD susceptibility. A allele carriers of the rs4765913 polymorphism or the AA haplotype exposed to childhood trauma are more likely to develop BD compared to the individuals without a genetic risk. Thus, this study showed that the risk of developing BD in individuals exposed to childhood trauma was influenced by the individual's genetic background, varying according to the CACNA1C genotypes.


Assuntos
Experiências Adversas da Infância/psicologia , Transtorno Bipolar/genética , Transtorno Bipolar/psicologia , Canais de Cálcio Tipo L/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Experiências Adversas da Infância/tendências , Transtorno Bipolar/epidemiologia , Brasil/epidemiologia , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Estudos Retrospectivos , Inquéritos e Questionários , Adulto Jovem
10.
Artigo em Inglês | MEDLINE | ID: mdl-31839589

RESUMO

Ca2+ cations play a key role in the initiation of spermatozoa motility in Atlantic salmon (Salmo salar). In this study we assess the importance of the voltage-gated L-type calcium channels in the spermatozoa motility of Atlantic salmon by combined in vitro and in silico approaches. The results of this study showed that as in other fish species, voltage-gated L-type calcium channels are significant in the spermatozoa motility of Salmo salar. The in vitro assays showed that total and progressive motilities decrease significantly (****p < .001) when Salmo salar spermatozoa are treated with verapamil, which has its binding site in the pore of the voltage-gated L-type calcium channel according to the in silico analysis.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Salmo salar/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Animais , Canais de Cálcio Tipo L/genética , Masculino , Salmo salar/metabolismo , Espermatozoides/metabolismo
11.
Circ Genom Precis Med ; 12(8): e002534, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31430211

RESUMO

BACKGROUND: The CACNA1C-encoded cardiac L-type calcium channel (Cav1.2) is essential for cardiocyte action potential duration (APD). We previously reported the CACNA1C-p.R518C variant associated with prolonged QT intervals, cardiomyopathy, and sudden cardiac death in several pedigrees. METHODS: To characterize a patient-derived human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) CACNA1C-p.R518C model, CACNA1C-p.R518C hiPSC-CMs were generated from a 13-year-old man (QTc, >480 ms) with a family history of sudden cardiac death. An isogenic hiPSC-CM gene-corrected control was created using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9). APD and calcium handling were assessed by live cell imaging with Arclight voltage and Fluo-4 calcium indicators, respectively. The APD and L-type calcium channel biophysical properties were further assessed by whole-cell patch clamp technique. RESULTS: The Bazett formula-corrected, Arclight-measured APD90 of CACNA1C-p.R518C hiPSC-CMs was significantly longer (622±11 ms; n=92) than the isogenic control hiPSC-CMs (453±5 ms; n=62; P<0.0001). Patch clamp assessment of CACNA1C-p.R518C hiPSC-CMs paced at 1 Hz confirmed a prolonged APD90 (689±29 ms; n=10) compared with the patient's isogenic control hiPSC-CMs (434±30 ms; n=8; P<0.05). Fluo-4-measured calcium transient decay time suggested calcium mishandling in CACNA1C-p.R518C. Patch clamp analysis revealed increased L-type calcium channel window current, slow decay time at various voltages, and increased late calcium current for CACNA1C-p.R518C hiPSC-CMs when compared with isogenic control hiPSC-CMs. CONCLUSIONS: Using patient-specific hiPSC-CM mutant and isogenic control lines, we demonstrate that the CACNA1C-p.R518C variant is the self-sufficient, monogenetic substrate for the patient's long-QT syndrome phenotype. These data further bolster the conclusion that CACNA1C is a bona fide, definite evidence long-QT syndrome susceptibility gene.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Adolescente , Motivos de Aminoácidos , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Humanos , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/patologia , Síndrome do QT Longo/fisiopatologia , Masculino , Mutação de Sentido Incorreto
12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-861829

RESUMO

Background: Obesity is associated with many functional gastrointestinal disorders, such as gastrointestinal motility disorder. Previous studies showed that adipose tissue-derived adipokine visfatin (VF), which increased in obesity, might impair myometrial contractility and cause vascular smooth muscle relaxation. Aims: To investigate the effect of VF on contractility of colonic smooth muscle in rats and its underlying mechanism. Methods: Segments of distal colon from normal Sprague-Dawley (SD) rats were dissected into strips (0.3 cm × 0.8 cm), and the effect of VF on contractility of muscle strips was measured by biological signal collection system. In in vitro study, colonic smooth muscle cells (SMCs) from neonatal SD rats were cultured and treated with VF; phosphorylation of myoglobulin light chain (MLC) and expression of calcium channel protein Cav1.2 (α1 subunit) were assessed by Western blotting. Cultured in buffer solution with or without calcium, the acetylcholine-stimulated intracellular Ca2+ level in SMCs was detected by confocal laser scanning microscopy. Results: In muscle strip contractility assay, VF (200 ng/mL) significantly inhibited the contractility of colonic smooth muscle strip from normal adult rats (P<0.05). In cultured colonic SMCs, VF (200 ng/mL) down-regulated the calcium channel protein Cav1.2 expression and reduced the intracellular Ca2+ level and MLC phosphorylation (P<0.05). Conclusions: VF may down-regulate the expression of calcium channel protein Cav1.2 on the membrane of colonic SMCs and cause colonic dysmotility by interfering with Ca2+ signaling and smooth muscle contractility.

13.
Circulation ; 138(13): 1330-1342, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29650543

RESUMO

BACKGROUND: Mutations in RBM20 (RNA-binding motif protein 20) cause a clinically aggressive form of dilated cardiomyopathy, with an increased risk of malignant ventricular arrhythmias. RBM20 is a splicing factor that targets multiple pivotal cardiac genes, such as Titin (TTN) and CAMK2D (calcium/calmodulin-dependent kinase II delta). Aberrant TTN splicing is thought to be the main determinant of RBM20-induced dilated cardiomyopathy, but is not likely to explain the increased risk of arrhythmias. Here, we investigated the extent to which RBM20 mutation carriers have an increased risk of arrhythmias and explore the underlying molecular mechanism. METHODS: We compared clinical characteristics of RBM20 and TTN mutation carriers and used our previously generated Rbm20 knockout (KO) mice to investigate downstream effects of Rbm20-dependent splicing. Cellular electrophysiology and Ca2+ measurements were performed on isolated cardiomyocytes from Rbm20 KO mice to determine the intracellular consequences of reduced Rbm20 levels. RESULTS: Sustained ventricular arrhythmias were more frequent in human RBM20 mutation carriers than in TTN mutation carriers (44% versus 5%, respectively, P=0.006). Splicing events that affected Ca2+- and ion-handling genes were enriched in Rbm20 KO mice, most notably in the genes CamkIIδ and RyR2. Aberrant splicing of CamkIIδ in Rbm20 KO mice resulted in a remarkable shift of CamkIIδ toward the δ-A isoform that is known to activate the L-type Ca2+ current ( ICa,L). In line with this, we found an increased ICa,L, intracellular Ca2+ overload and increased sarcoplasmic reticulum Ca2+ content in Rbm20 KO myocytes. In addition, not only complete loss of Rbm20, but also heterozygous loss of Rbm20 increased spontaneous sarcoplasmic reticulum Ca2+ releases, which could be attenuated by treatment with the ICa,L antagonist verapamil. CONCLUSIONS: We show that loss of Rbm20 disturbs Ca2+ handling and leads to more proarrhythmic Ca2+ releases from the sarcoplasmic reticulum. Patients that carry a pathogenic RBM20 mutation have more ventricular arrhythmias despite a similar left ventricular function, in comparison with patients with a TTN mutation. Our experimental data suggest that RBM20 mutation carriers may benefit from treatment with an ICa,L blocker to reduce their arrhythmia burden.


Assuntos
Sinalização do Cálcio/genética , Cardiomiopatia Dilatada/genética , Frequência Cardíaca/genética , Mutação , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Taquicardia Ventricular/genética , Fibrilação Ventricular/genética , Potenciais de Ação/genética , Adulto , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Células Cultivadas , Conectina/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Proteínas de Ligação a RNA/metabolismo , Ratos , Estudos Retrospectivos , Fatores de Risco , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia
14.
Circulation ; 138(14): 1431-1445, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-29650545

RESUMO

BACKGROUND: L-type CaV1.2 channels play crucial roles in the regulation of blood pressure. Galectin-1 (Gal-1) has been reported to bind to the I-II loop of CaV1.2 channels to reduce their current density. However, the mechanistic understanding for the downregulation of CaV1.2 channels by Gal-1 and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. METHODS: In vitro experiments involving coimmunoprecipitation, Western blot, patch-clamp recordings, immunohistochemistry, and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 downregulates CaV1.2 channel in transfected, human embryonic kidney 293 cells, smooth muscle cells, arteries from Lgasl1-/- mice, rat, and human patients. In vivo experiments involving the delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting CaV1.2-Gal-1 interaction on blood pressure monitored by tail-cuff or telemetry methods. RESULTS: Our study reveals that Gal-1 is a key regulator for proteasomal degradation of CaV1.2 channels. Gal-1 competed allosterically with the CaVß subunit for binding to the I-II loop of the CaV1.2 channel. This competitive disruption of CaVß binding led to CaV1.2 degradation by exposing the channels to polyubiquitination. It is notable that we demonstrated that the inverse relationship of reduced Gal-1 and increased CaV1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice because of the upregulated CaV1.2 protein level in arteries. To directly regulate blood pressure by targeting the CaV1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1 by a miniosmotic pump, and this specific disruption of CaV1.2-Gal-1 coupling increased smooth muscle CaV1.2 currents, induced larger arterial contraction, and caused hypertension in rats. In contrasting experiments, overexpression of Gal-1 in smooth muscle by a single bolus of AAV5-Gal-1 significantly reduced blood pressure in spontaneously hypertensive rats. CONCLUSIONS: We have defined molecularly that Gal-1 promotes CaV1.2 degradation by replacing CaVß and thereby exposing specific lysines for polyubiquitination and by masking I-II loop endoplasmic reticulum export signals. This mechanistic understanding provided the basis for targeting CaV1.2-Gal-1 interaction to demonstrate clearly the modulatory role that Gal-1 plays in regulating blood pressure, and offering a potential approach for therapeutic management of hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Galectina 1/metabolismo , Terapia Genética/métodos , Hipertensão/terapia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Animais , Canais de Cálcio Tipo L/genética , Estudos de Casos e Controles , Dependovirus , Modelos Animais de Doenças , Galectina 1/genética , Vetores Genéticos , Células HEK293 , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Parvovirinae/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
15.
Circ Genom Precis Med ; 11(3): e001893, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29545480

RESUMO

BACKGROUND: Limb-Girdle muscular dystrophies (LGMD) are a heritable group of genetically determined disorders with a primary involvement of the pelvic or shoulder girdle musculature with partially cardiac manifestation, such as dilated cardiomyopathy (DCM) and life-threatening tachyarrhythmia. We report here that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes from a patient with LGMD2I and DCM associated with recurrent ventricular tachycardia displayed ion channel dysfunction and abnormality of calcium homeostasis. METHODS: Dermal fibroblasts obtained from a patient with LGMD2I harboring a fukutin-related protein gene mutation (826C>A; Leu276Ile) and 3 healthy donors were reprogrammed to hiPSCs. The hiPSCs were differentiated into cardiomyocytes and used for biological and electrophysiological studies. RESULTS: Compared with hiPSC cardiomyocytes from the healthy donors, the hiPSC cardiomyocytes from the patient exhibited abnormal action potentials characterized by reduced amplitude and upstroke velocity. The peak and late Na channel currents (INa) as well as the peak L-type calcium channel currents were significantly reduced. The expression of SCN5A and CACNA1C was reduced in DCM cardiomyocytes, consistent with reduction of INa and L-type calcium channel currents. In addition, the rapidly activating delayed rectifier potassium current (IKr) was reduced, whereas the transient outward current (Ito) and slowly activating delayed rectifier potassium current (IKs) were similar in DCM and control cardiomyocytes. Finally, a significant reduction of systolic and diastolic intracellular Ca2+ concentrations was detected in DCM cardiomyocytes. CONCLUSIONS: This study demonstrates that patient-specific hiPSC cardiomyocytes can recapitulate some phenotypic properties of LGMD2I with DCM and provide a platform for studies on the cardiac events in LGMD.


Assuntos
Cardiomiopatia Dilatada/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Potenciais de Ação , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/complicações , Distrofia Muscular do Cíngulo dos Membros/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Técnicas de Patch-Clamp , Pentosiltransferases , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas/genética
16.
Circ Res ; 122(7): e49-e61, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29467196

RESUMO

RATIONALE: The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation of L-type Cav1.2 Ca2+ channel expression, which is generated by tissue-specific alternative promoters as a long cardiac or short vascular N-terminal transcripts. OBJECTIVE: To analyze the molecular mechanisms by which aldosterone, through MR, modulates Cav1.2 expression and function in a tissue-specific manner. METHODS AND RESULTS: In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner long cardiac Cav1.2 N-terminal transcripts expression at both mRNA and protein levels, correlating with enhanced concentration-, time-, and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA-binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the cardiac P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the short vascular Cav1.2 N-terminal transcripts is normally the major isoform, we found that MR signaling activates long cardiac Cav1.2 N-terminal transcripts expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone/salt rodent models, showing notably a positive correlation between blood pressure and cardiac P1-promoter activity in aorta. This new vascular long cardiac Cav1.2 N-terminal transcripts molecular signature reduced sensitivity to the Ca2+ channel blocker, nifedipine, in aldosterone-treated vessels. CONCLUSIONS: Our results reveal that MR acts as a transcription factor to translate aldosterone signal into specific cardiac P1-promoter activation that might influence the therapeutic outcome of cardiovascular diseases.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Receptores de Mineralocorticoides/metabolismo , Ativação Transcricional , Aldosterona/farmacologia , Animais , Canais de Cálcio Tipo L/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Wistar
17.
Hypertension ; 70(6): 1183-1192, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993448

RESUMO

Calcium influx from activated voltage-gated calcium channel CaV1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of CaV1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the CaV1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular CaV1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of CaV1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of CaV1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular CaV1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular CaV1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Regulação da Expressão Gênica , Hipertensão/genética , Miócitos de Músculo Liso/metabolismo , Fatores de Processamento de RNA/genética , RNA/genética , Proteínas Repressoras/genética , Vasoconstrição/fisiologia , Animais , Artérias/metabolismo , Artérias/patologia , Artérias/fisiopatologia , Pressão Sanguínea , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Técnicas de Patch-Clamp , Fatores de Processamento de RNA/biossíntese , Ratos , Proteínas Repressoras/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Cell Biochem Biophys ; 74(4): 527-535, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27722948

RESUMO

The stiffness of myocardial tissue changes significantly at birth and during neonatal development, concurrent with significant changes in contractile and electrical maturation of cardiomyocytes. Previous studies by our group have shown that cardiomyocytes generate maximum contractile force when cultured on a substrate with a stiffness approximating native cardiac tissue. However, effects of substrate stiffness on the electrophysiology and ion currents in cardiomyocytes have not been fully characterized. In this study, neonatal rat ventricular myocytes were cultured on the surface of flat polyacrylamide hydrogels with elastic moduli ranging from 1 to 25 kPa. Using whole-cell patch clamping, action potentials and L-type calcium currents were recorded. Cardiomyocytes cultured on hydrogels with a 9 kPa elastic modulus, similar to that of native myocardium, had the longest action potential duration. Additionally, the voltage at maximum calcium flux significantly decreased in cardiomyocytes on hydrogels with an elastic modulus higher than 9 kPa, and the mean inactivation voltage decreased with increasing stiffness. Interestingly, the expression of the L-type calcium channel subunit α gene and channel localization did not change with stiffness. Substrate stiffness significantly affects action potential length and calcium flux in cultured neonatal rat cardiomyocytes in a manner that may be unrelated to calcium channel expression. These results may explain functional differences in cardiomyocytes resulting from changes in the elastic modulus of the extracellular matrix, as observed during embryonic development, in ischemic regions of the heart after myocardial infarction, and during dilated cardiomyopathy.


Assuntos
Potenciais de Ação/fisiologia , Miócitos Cardíacos/fisiologia , Resinas Acrílicas/química , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Módulo de Elasticidade , Hidrogéis/química , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Especificidade por Substrato
19.
Circulation ; 134(7): 534-46, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27486162

RESUMO

BACKGROUND: L-type calcium channels (LTCCs) play important roles in regulating cardiomyocyte physiology, which is governed by appropriate LTCC trafficking to and density at the cell surface. Factors influencing the expression, half-life, subcellular trafficking, and gating of LTCCs are therefore critically involved in conditions of cardiac physiology and disease. METHODS: Yeast 2-hybrid screenings, biochemical and molecular evaluations, protein interaction assays, fluorescence microscopy, structural molecular modeling, and functional studies were used to investigate the molecular mechanisms through which the LTCC Cavß2 chaperone regulates channel density at the plasma membrane. RESULTS: On the basis of our previous results, we found a direct linear correlation between the total amount of the LTCC pore-forming Cavα1.2 and the Akt-dependent phosphorylation status of Cavß2 both in a mouse model of diabetic cardiac disease and in 6 diabetic and 7 nondiabetic cardiomyopathy patients with aortic stenosis undergoing aortic valve replacement. Mechanistically, we demonstrate that a conformational change in Cavß2 triggered by Akt phosphorylation increases LTCC density at the cardiac plasma membrane, and thus the inward calcium current, through a complex pathway involving reduction of Cavα1.2 retrograde trafficking and protein degradation through the prevention of dynamin-mediated LTCC endocytosis; promotion of Cavα1.2 anterograde trafficking by blocking Kir/Gem-dependent sequestration of Cavß2, thus facilitating the chaperoning of Cavα1.2; and promotion of Cavα1.2 transcription by the prevention of Kir/Gem-mediated shuttling of Cavß2 to the nucleus, where it limits the transcription of Cavα1.2 through recruitment of the heterochromatin protein 1γ epigenetic repressor to the Cacna1c promoter. On the basis of this mechanism, we developed a novel mimetic peptide that, through targeting of Cavß2, corrects LTCC life-cycle alterations, facilitating the proper function of cardiac cells. Delivery of mimetic peptide into a mouse model of diabetic cardiac disease associated with LTCC abnormalities restored impaired calcium balance and recovered cardiac function. CONCLUSIONS: We have uncovered novel mechanisms modulating LTCC trafficking and life cycle and provide proof of concept for the use of Cavß2 mimetic peptide as a novel therapeutic tool for the improvement of cardiac conditions correlated with alterations in LTCC levels and function.


Assuntos
Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Peptidomiméticos/administração & dosagem , Peptidomiméticos/metabolismo , Sequência de Aminoácidos , Animais , Materiais Biomiméticos/química , Canais de Cálcio Tipo L/genética , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptidomiméticos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Estudos Retrospectivos
20.
Chinese Journal of Nephrology ; (12): 759-765, 2016.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-501829

RESUMO

Objective To explore the effects of L?type calcium channel (LTCC) α1C and β3 subunits on that magnesium inhibited thoracic aortic calcification induced by β?glycerophosphate (β?GP). Methods Vascular smooth muscle cells (VSMCs) and aortic rings from rat aortic were cultured, then divided into control group, high phosphorus group (10 mmol/L β?GP), magnesium group (10 mmol/L β?GP+3 mmol/L MgSO4) and 2?APB (an inhibitor of magnesium transporter) group (10 mmol/L β?GP+3 mmol/L MgSO4+0.1 mmol/L 2?APB). Calcium deposition of VSMCs and aortic rings were respectively measured by alizarin red staining and Von Kossa staining, meanwhile the quantification of their calcium was tested by OCPC. The mRNA expressions of Runx2, LTCCα1C andβ3 in VSMCs were detected by RT?PCR, and their protein expressions were detected by Western blotting. Intracellular calcium ion of VSMCs was tested by fluorescence probe and alkaline phosphatase (ALP)activity was measured by ELISA. The Runx2 expression of aortic rings was detected by immunohistochemistry. Results After VSMCs stimulated for 7 days, calcium, ALP, mRNA and protein expressions of LTCCα1C, LTCCβ3 and Runx2, and intracellular calcium ion in high phosphorus group were higher than those in control group (all P0.05). Conclusion Magnesium may down?regulate expressions of LTCCα1C andβ3 subunit, prevent calcium influx and then inhibit osteogenic differentiation so as to reduce β?glycerophosphate?induced VSMCs calcification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...