Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Physiol ; 601(13): 2685-2710, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36114707

RESUMO

Disruption of the transverse-axial tubule system (TATS) in diseases such as heart failure and atrial fibrillation occurs in combination with changes in the expression and distribution of key Ca2+ -handling proteins. Together this ultrastructural and ionic remodelling is associated with aberrant Ca2+ cycling and electrophysiological instabilities that underlie arrhythmic activity. However, due to the concurrent changes in TATs and Ca2+ -handling protein expression and localization that occur in disease it is difficult to distinguish their individual contributions to the arrhythmogenic state. To investigate this, we applied our novel 3D human atrial myocyte model with spatially detailed Ca2+ diffusion and TATS to investigate the isolated and interactive effects of changes in expression and localization of key Ca2+ -handling proteins and variable TATS density on Ca2+ -handling abnormality driven membrane instabilities. We show that modulating the expression and distribution of the sodium-calcium exchanger, ryanodine receptors and the sarcoplasmic reticulum (SR) Ca2+ buffer calsequestrin have varying pro- and anti-arrhythmic effects depending on the balance of opposing influences on SR Ca2+ leak-load and Ca2+ -voltage relationships. Interestingly, the impact of protein remodelling on Ca2+ -driven proarrhythmic behaviour varied dramatically depending on TATS density, with intermediately tubulated cells being more severely affected compared to detubulated and densely tubulated myocytes. This work provides novel mechanistic insight into the distinct and interactive consequences of TATS and Ca2+ -handling protein remodelling that underlies dysfunctional Ca2+ cycling and electrophysiological instability in disease. KEY POINTS: In our companion paper we developed a 3D human atrial myocyte model, coupling electrophysiology and Ca2+ handling with subcellular spatial details governed by the transverse-axial tubule system (TATS). Here we utilize this model to mechanistically examine the impact of TATS loss and changes in the expression and distribution of key Ca2+ -handling proteins known to be remodelled in disease on Ca2+ homeostasis and electrophysiological stability. We demonstrate that varying the expression and localization of these proteins has variable pro- and anti-arrhythmic effects with outcomes displaying dependence on TATS density. Whereas detubulated myocytes typically appear unaffected and densely tubulated cells seem protected, the arrhythmogenic effects of Ca2+ handling protein remodelling are profound in intermediately tubulated cells. Our work shows the interaction between TATS and Ca2+ -handling protein remodelling that underlies the Ca2+ -driven proarrhythmic behaviour observed in atrial fibrillation and may help to predict the effects of antiarrhythmic strategies at varying stages of ultrastructural remodelling.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Antiarrítmicos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinalização do Cálcio
2.
Physiol Rep ; 10(14): e15273, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35880716

RESUMO

Understanding cardiomyocyte ion channel expression is crucial to understanding normal cardiac electrophysiology and underlying mechanisms of cardiac pathologies particularly arrhythmias. Hitherto, equine cardiac ion channel expression has rarely been investigated. Therefore, we aim to predict equine cardiac ion channel gene expression. Raw RNAseq data from normal horses from 9 datasets was retrieved from ArrayExpress and European Nucleotide Archive and reanalysed. The normalised (FPKM) read counts for a gene in a mix of tissue were hypothesised to be the average of the expected expression in each tissue weighted by the proportion of the tissue in the mix. The cardiac-specific expression was predicted by estimating the mean expression in each other tissues. To evaluate the performance of the model, predicted gene expression values were compared to the human cardiac gene expression. Cardiac-specific expression could be predicted for 91 ion channels including most expressed Na+ channels, K+ channels and Ca2+ -handling proteins. These revealed interesting differences from what would be expected based on human studies. These differences included predominance of NaV 1.4 rather than NaV 1.5 channel, and RYR1, SERCA1 and CASQ1 rather than RYR2, SERCA2, CASQ2 Ca2+ -handling proteins. Differences in channel expression not only implicate potentially different regulatory mechanisms but also pathological mechanisms of arrhythmogenesis.


Assuntos
Canais Iônicos , RNA , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Cavalos/genética , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Miócitos Cardíacos/metabolismo , Análise de Sequência de RNA
3.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613515

RESUMO

Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by a genetic deficiency of the membrane-associated protein dysferlin, which usually manifest post-growth in young adults. The disease is characterized by progressive skeletal muscle wasting in the limb-girdle and limbs, inflammation, accumulation of lipid droplets in slow-twitch myofibers and, in later stages, replacement of muscles by adipose tissue. Previously we reported myofiber-type specific differences in muscle contractile function of 10-month-old dysferlin-deficient BLAJ mice that could not be fully accounted for by altered myofiber-type composition. In order to further investigate these findings, we examined the impact of dysferlin deficiency on the abundance of calcium (Ca2+) handling and glucose/glycogen metabolism-related proteins in predominantly slow-twitch, oxidative soleus and fast-twitch, glycolytic extensor digitorum longus (EDL) muscles of 10-month-old wild-type (WT) C57BL/6J and dysferlin-deficient BLAJ male mice. Additionally, we compared the Ca2+ activation properties of isolated slow- and fast-twitch myofibers from 3-month-old WT and BLAJ male mice. Differences were observed for some Ca2+ handling and glucose/glycogen metabolism-related protein levels between BLAJ soleus and EDL muscles (compared with WT) that may contribute to the previously reported differences in function in these BLAJ muscles. Dysferlin deficiency did not impact glycogen content of whole muscles nor Ca2+ activation of the myofilaments, although soleus muscle from 10-month-old BLAJ mice had more glycogen than EDL muscles. These results demonstrate a further impact of dysferlin deficiency on proteins associated with excitation-contraction coupling and glycogen metabolism in skeletal muscles, potentially contributing to altered contractile function in dysferlinopathy.


Assuntos
Cálcio , Disferlina , Glicogênio , Animais , Masculino , Camundongos , Cálcio/metabolismo , Disferlina/deficiência , Glucose/metabolismo , Glicogênio/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
4.
Arq. bras. cardiol ; 118(2): 463-475, 2022. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1364328

RESUMO

Resumo Fundamento O remodelamento cardíaco patológico se caracteriza por disfunção diastólica e sistólica, levando à insuficiência cardíaca. Neste contexto, o cenário disfuncional do trânsito de cálcio miocárdico (Ca2+) tem sido pouco estudado. Um modelo experimental de estenose aórtica tem sido extensamente utilizado para aprimorar os conhecimentos sobre os principais mecanismos do remodelamento patológico cardíaco. Objetivo Entender o processo disfuncional dos principais componentes responsáveis pelo equilíbrio do cálcio miocárdico e sua influência sobre a função cardíaca na insuficiência cardíaca induzida pela estenose aórtica. Métodos Ratos Wistar de 21 dias de idade foram distribuídos em dois grupos: controle (placebo; n=28) e estenose aórtica (EaO; n=18). A função cardíaca foi analisada com o ecocardiograma, músculo papilar isolado e cardiomiócitos isolados. No ensaio do músculo papilar, SERCA2a e a atividade do canal de Ca2+ do tipo L foram avaliados. O ensaio de cardiomiócitos isolados avaliou o trânsito de cálcio. A expressão proteica da proteínas do trânsito de cálcio foi analisada com o western blot. Os resultados foram estatisticamente significativos quando p <0,05. Resultados Os músculos papilares e cardiomiócitos dos corações no grupo EaO demonstraram falhas mecânicas. Os ratos com EaO apresentaram menor tempo de pico do Ca2+, menor sensibilidade das miofibrilas do Ca2+, prejuízos nos processos de entrada e recaptura de cálcio pelo retículo sarcoplasmático, bem como disfunção no canal de cálcio do tipo L (CCTL). Além disso, os animais com EaO apresentaram maior expressão de SERCA2a, CCTL e trocador de Na+/Ca2+. Conclusão Insuficiência cardíaca sistólica e diastólica devido à estenose aórtica supravalvular acarretou comprometimento da entrada de Ca2+ celular e inibição da recaptura de cálcio pelo retículo sarcoplasmático devido à disfunção no CCTL e SERCA2a, assim como mudanças no trânsito de cálcio e na expressão das principais proteínas responsáveis pela homeostase de Ca2+ celular.


Abstract Background Maladaptive cardiac remodelling is characterized by diastolic and systolic dysfunction, culminating in heart failure. In this context, the dysfunctional scenario of cardiac calcium (Ca2+) handling has been poorly studied. An experimental model of aortic stenosis has been extensively used to improve knowledge about the key mechanisms of cardiac pathologic remodelling. Objective To understand the dysfunctional process of the major components responsible for Ca2+ balance and its influence on cardiac function in heart failure induced by aortic stenosis. Methods Male 21-day-old Wistar rats were distributed into two groups: control (sham; n= 28) and aortic stenosis (AoS; n= 18). Cardiac function was analysed by echocardiogram, isolated papillary muscle, and isolated cardiomyocytes. In the papillary muscle assay, SERCA2a and L-type Ca2+ channel activity was evaluated. The isolated cardiomyocyte assay evaluated Ca2+ handling. Ca2+ handling protein expression was analysed by western blot. Statistical significance was set at p <0.05. Results Papillary muscles and cardiomyocytes from AoS hearts displayed mechanical malfunction. AoS rats presented a slower time to the Ca2+ peak, reduced Ca2+ myofilament sensitivity, impaired sarcoplasmic reticulum Ca2+ influx and reuptake ability, and SERCA2a and L-type calcium channel (LTCC) dysfunction. Moreover, AoS animals presented increased expression of SERCA2a, LTCCs, and the Na+/Ca2+ exchanger. Conclusion Systolic and diastolic heart failure due to supravalvular aortic stenosis was paralleled by impairment of cellular Ca2+ influx and inhibition of sarcoplasmic reticulum Ca2+ reuptake due to LTCC and SERCA2a dysfunction, as well as changes in Ca2+ handling and expression of the major proteins responsible for cellular Ca2+ homeostasis.


Assuntos
Animais , Masculino , Ratos , Estenose da Valva Aórtica/patologia , Insuficiência Cardíaca/patologia , Músculos Papilares , Cálcio/metabolismo , Ratos Wistar , Miócitos Cardíacos/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Contração Miocárdica/fisiologia
5.
Braz. j. med. biol. res ; 54(4): e10138, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153533

RESUMO

Sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) and sarcolemmal Na+/Ca2+ exchanger (NCX1) structures are involved in heart cell Ca2+ homeostasis. Previous studies have shown discrepancies in their function and expression in heart failure. The goal of this study was to evaluate heart function and hypertrophied muscle Ca2+-handling protein behavior under pressure overload. Twenty male Wistar rats were divided into two groups: Aortic stenosis (AoS), induced by a clip placed at the beginning of the aorta, and Control (Sham). After 18 weeks, heart function and structure were evaluated by echocardiogram. Myocardial function was analyzed by isolated papillary muscle (IPM) at basal condition and Ca2+ protein functions were evaluated after post-pause contraction and blockage with cyclopiazonic acid in IPM. Ca2+-handling protein expression was studied by western blot (WB). Echocardiogram showed that AoS caused concentric hypertrophy with enhanced ejection fraction and diastolic dysfunction inferred by dilated left atrium and increased relative wall thickness. IPM study showed developed tension was the same in both groups. AoS showed increased stiffness revealed by enhanced resting tension, and changes in Ca2+ homeostasis shown by calcium elevation and SERCA2a blockage maneuvers. WB revealed decreased NCX1, SERCA2a, and phosphorylated phospholambam (PLB) on serine-16 in AoS. AoS had left ventricular hypertrophy and diastolic dysfunction compared to Sham; this could be related to our findings regarding calcium homeostasis behavior: deficit in NCX1, SERCA2a, and phosphorylated PLB on serine-16.


Assuntos
Animais , Masculino , Ratos , Cálcio/metabolismo , Remodelação Ventricular , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Homeostase
6.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265909

RESUMO

BACKGROUND: Cardiac-specific JDP2 overexpression provokes ventricular dysfunction and atrial dilatation in mice. We performed in vivo studies on JDP2-overexpressing mice to investigate the impact of JDP2 on the predisposition to spontaneous atrial fibrillation (AF). METHODS: JDP2-overexpression was started by withdrawal of a doxycycline diet in 4-week-old mice. The spontaneous onset of AF was documented by ECG within 4 to 5 weeks of JDP2 overexpression. Gene expression was analyzed by real-time RT-PCR and Western blots. RESULTS: In atrial tissue of JDP2 mice, besides the 3.6-fold increase of JDP2 mRNA, no changes could be detected within one week of JDP2 overexpression. Atrial dilatation and hypertrophy, combined with elongated cardiomyocytes and fibrosis, became evident after 5 weeks of JDP2 overexpression. Electrocardiogram (ECG) recordings revealed prolonged PQ-intervals and broadened P-waves and QRS-complexes, as well as AV-blocks and paroxysmal AF. Furthermore, reductions were found in the atrial mRNA and protein level of the calcium-handling proteins NCX, Cav1.2 and RyR2, as well as of connexin40 mRNA. mRNA of the hypertrophic marker gene ANP, pro-inflammatory MCP1, as well as markers of immune cell infiltration (CD68, CD20) were increased in JDP2 mice. CONCLUSION: JDP2 is an important regulator of atrial calcium and immune homeostasis and is involved in the development of atrial conduction defects and arrhythmogenic substrates preceding paroxysmal AF.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Cálcio/metabolismo , Inflamação/patologia , Proteínas Repressoras/metabolismo , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico por imagem , Sinalização do Cálcio/genética , Conexinas/metabolismo , Fibrose , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/patologia , Sistema de Condução Cardíaco/fisiopatologia , Hipertrofia , Inflamação/complicações , Camundongos Transgênicos , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteína alfa-5 de Junções Comunicantes
7.
ESC Heart Fail ; 7(2): 626-638, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31994333

RESUMO

AIMS: Myeloid differentiation protein 1 (MD1) is expressed in the mammalian heart and exerts an anti-arrhythmic effect. Atrial fibrillation (AF) is closely related to heart failure with preserved ejection fraction (HFpEF). The potential impact of MD1 on AF vulnerability in an HFpEF model is not clear. METHODS AND RESULTS: MD1 knock-out and wild-type (WT) mice were subjected to uninephrectomy and continuous saline or d-aldosterone infusion and given 1% sodium chloride drinking water for 4 weeks. Echocardiographic and haemodynamic measurements, electrophysiological studies, Masson staining, and molecular analysis were performed. Aldosterone-infused WT mice develop HFpEF with left ventricular hypertrophy, moderate hypertension, pulmonary congestion, and diastolic dysfunction. Aldosterone infusion increased the vulnerability of WT mice to AF, as shown by a prolonged interatrial conduction time, shortened effective refractory period, and higher incidence of AF. In addition, aldosterone infusion increased myocardial fibrosis and inflammation, decreased sarcoplasmic reticulum Ca2+ -ATPase 2a protein expression and the phosphorylation of phospholamban at Thr17, and increased sodium/calcium exchanger 1 protein expression and the phosphorylation of ryanodine receptor 2 in WT mice. All of the above adverse effects of aldosterone infusion were further exacerbated in MD1 knock-out mice compare with WT mice. Mechanistically, MD1 deletion increased the activation of the toll-like receptor 4/calmodulin-dependent protein kinase II signalling pathway in in vivo and in vitro experiments. CONCLUSIONS: MD1 deficiency increases the vulnerability of HFpEF mice to AF. This is mainly caused by aggravated maladaptive left atrial fibrosis and inflammation and worsened dysregulation of calcium handling, which is induced by the enhanced activation of the toll-like receptor 4/calmodulin-dependent protein kinase II signalling pathway.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Animais , Fibrilação Atrial/etiologia , Átrios do Coração , Hipertrofia Ventricular Esquerda , Camundongos , Volume Sistólico
8.
Antioxid Redox Signal ; 32(12): 873-883, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31825235

RESUMO

Significance: The physiological relevance of contacts between the sarcoplasmic reticulum (SR), a specialized domain of the endoplasmic reticulum (ER) in skeletal muscle, and mitochondria is still not clear. Recent Advances: An extensive close proximity of these two organelles is a late developmental event, which suggests that it does not have an essential function. Critical Issues: The intimate association of SR/mitochondria develops during murine postnatal differentiation and the recovery of denervated atrophic muscle, which suggests that this is a highly regulated process with a specific function. Analyses of mouse models for muscle diseases suggest that impaired ER/SR-mitochondrial contacts may be due to ER stress and lead to defective bioenergetics and insulin signaling. Future Directions: Future studies are necessary to identify the molecular determinants weakening insulin signaling upon impairment of ER/mitochondrial contacts in skeletal muscles as well as to analyze the distance between SR/ER and mitochondria in muscle diseases associated with ER stress.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Estresse do Retículo Endoplasmático , Insulina/metabolismo
9.
Braz. j. med. biol. res ; 52(6): e8085, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1001538

RESUMO

Obesity is often associated with changes in cardiac function; however, the mechanisms responsible for functional abnormalities have not yet been fully clarified. Considering the lack of information regarding high-saturated-fat diet-induced obesity, heart function, and the proteins involved in myocardial calcium (Ca2+) handling, the aim of this study was to test the hypothesis that this dietary model of obesity leads to cardiac dysfunction resulting from alterations in the regulatory proteins of intracellular Ca2+ homeostasis. Male Wistar rats were distributed into two groups: control (C, n=18; standard diet) and obese (Ob, n=19; high-saturated-fat diet), which were fed for 33 weeks. Cardiac structure and function were evaluated using echocardiographic and isolated papillary muscle analyses. Myocardial protein expressions of sarcoplasmic reticulum Ca2+-ATPase, phospholamban (PLB), PLB serine-16 phosphorylation, PLB threonine-17 phosphorylation, ryanodine receptor, calsequestrin, Na+/Ca2+ exchanger, and L-type Ca2+ channel were assessed by western blot. Obese rats presented 104% increase in the adiposity index (C: 4.5±1.4 vs Ob: 9.2±1.5%) and obesity-related comorbidities compared to control rats. The left atrium diameter (C: 5.0±0.4 vs Ob: 5.5±0.5 mm) and posterior wall shortening velocity (C: 36.7±3.4 vs Ob: 41.8±3.8 mm/s) were higher in the obese group than in the control. The papillary muscle function was similar between the groups at baseline and after inotropic and lusitropic maneuvers. Obesity did not lead to changes in myocardial Ca2+ handling proteins expression. In conclusion, the hypothesis was not confirmed, since the high-saturated-fat diet-induced obese rats did not present cardiac dysfunction or impaired intracellular Ca2+ handling proteins.


Assuntos
Animais , Masculino , Ratos , Cálcio/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Dieta Hiperlipídica/efeitos adversos , Coração/fisiopatologia , Obesidade/fisiopatologia , Pressão Sanguínea/fisiologia , Ecocardiografia , Ratos Wistar , Modelos Animais de Doenças
10.
Cardiovasc Ther ; 35(5)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28665545

RESUMO

AIM: We previously demonstrated that anoxia-mediated Ca2+ handling dysfunction could be ameliorated through inhibition of mevalonate pathway via RhoA- and Ras-related mechanisms in H9c2 cells. In this study, we further explored whether inhibition of mevalonate pathway is associated with cardiac remodeling and dysfunction in ischemic cardiomyopathy, and discussed the possible role of Ras, Rac and RhoA in cardiac dysfunction. METHODS: We investigated the role of mevalonate pathway in cardiac remodeling and cardiomyocyte Ca2+ handling proteins expression in a rat model of cardiac dysfunction due to myocardial infarction (MI). After MI, adult male Sprague-Dawley rats were treated with drugs that antagonize key components in mevalonate pathway, including 3-hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, and Rho-kinase for 10 weeks. The protein expression of ryanodine receptor 2 (RyR2), sarcoplasmic reticulum Ca2+ ATPase (SERCA) 2a, phospholamban (PLB), phospho-PLB at serine-16 (PSer16-PLB), FKBP12.6, and RhoA as well as RyR2 and FKBP12.6 mRNA levels was evaluated. RESULTS: Rosuvastatin and alendronate treatment prevented myocardial remodeling, improved cardiac function and reduced infarct size. Furthermore, rosuvastatin and alendronate promoted an increase in the protein expression of SERCA2a and PSer16-PLB/PLB ratio as well as partially restored the RyR2 and FKBP12.6 gene and protein expression. Fasudil failed to exert these beneficial effects. CONCLUSIONS: These findings indicate that mevalonate pathway inhibition by rosuvastatin and alendronate prevents cardiac remodeling and dysfunction possibly through RhoA-independent mechanisms.


Assuntos
Alendronato/farmacologia , Cardiomiopatia Dilatada/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Ácido Mevalônico/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Rosuvastatina Cálcica/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Geraniltranstransferase/antagonistas & inibidores , Geraniltranstransferase/metabolismo , Masculino , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas rho de Ligação ao GTP/antagonistas & inibidores
11.
BMC Complement Altern Med ; 17(1): 330, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637456

RESUMO

BACKGROUND: To investigate the effects and involved mechanisms of the modified Yi Qi decoction (MYQ) in cardiac ischemia-reperfusion (IR) induced injury. METHODS: Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by reperfusion, low or high dose decoction of MYQ was administrated orally for 1 week or 1 month. RESULTS: Both in 1 week and 1 month IR rat groups, cardiac function indexes were significantly impaired compared with sham group rats, accompanied with higher ratio of infarct size to risk size, decreased expressions of sodium calcium exchanger (NCX1) and sarcoplasmic reticulum Ca2+-ATPase (Serca2a), and different expressions of autophagic proteins, Beclin-1 and LC3. Treatment with MYQ (low or high dose) for 1 week showed no marked beneficial effects on cardiac function and cardiac injury (ratio of infarct size to risk size), although expressions of anti-apoptotic protein, Bcl-2, NCX1 and Serca2a were increased. Treatment with MYQ (low or high dose) for 1 month showed significantly improved effects on cardiac function and cardiac injury (ratio of infarct size to risk size), accompanied with increase of Bcl-2, NCX1 and Serca2a expressions, and decrease of Bax (a pro-apoptotic protein) and Beclin-1 expressions. CONCLUSIONS: The results show that MYQ have potential therapeutic effects on IR-induced cardiac injury, which may be through regulation of apoptotic proteins, cytosolic Ca2+ handling proteins and autophagic proteins signal pathways.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Humanos , Masculino , Isquemia Miocárdica/cirurgia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Qi , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
12.
J Cardiovasc Electrophysiol ; 26(6): 656-61, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25773045

RESUMO

BACKGROUND: Cardiac ryanodine receptor 2 (RyR2) is critical to the electrical homeostasis of cardiomyocytes. Its gene variant rs3766871 entails channel destabilization and enhanced intracellular Ca(2+) oscillation, thus promoting cardiac arrhythmias. We investigated whether the RyR2 rs3766871 variant is associated with aborted sudden cardiac death or ICD therapy for ventricular tachycardia (VT)/fibrillation (VF) in heart failure (HF) patients implanted with a cardioverter defibrillator (ICD). METHODS AND RESULTS: A total of 183 HF patients with primary or secondary prevention ICD were divided in 2 groups. A VT/VF group was composed of secondary prevention patients and primary prevention patients with appropriate ICD intervention for VT/VF. An ICD control group was composed of primary prevention patients free from any appropriate ICD intervention after 43 ± 25 months follow-up. Study subjects were genotyped with respect to the rs3766871 RyR2 gene variant. Hazard ratios (HRs) were derived from Cox proportional-hazards regression analysis. In all, 56 patients constituted the VT/VF group and 127 patients the ICD control group. Male sex (HR: 3.02; 95% CI: 0.99-9.18; P = 0.05), atrial fibrillation (AF; HR: 2.33; 95% CI: 0.89-6.10; P = 0.08), and underuse of ß-blockers (HR: 2.08; 95% CI: 0.84-5.15; P = 0.11) were associated with the VT/VF phenotype. Prevalence of the rs3766871 minor allele was 2.8% in ICD control patients and 8.0% in the VT/VF group (P = 0.02). After adjustment for age, sex, AF, and use of ß-blockers, the rs3766871 minor allele was associated with increased risk of VT/VF (HR: 3.49; 95% CI: 1.14-10.62; P = 0.02). CONCLUSIONS: Our study identifies a significant role of RyR2 rs3766871 minor allele for increased susceptibility to VT/VF in a population of ICD patients with HF.


Assuntos
Desfibriladores Implantáveis , Insuficiência Cardíaca/genética , Polimorfismo de Nucleotídeo Único , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Fibrilação Ventricular/genética , Idoso , Estudos Transversais , Morte Súbita Cardíaca/patologia , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
13.
Am J Transl Res ; 6(3): 320-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936224

RESUMO

Baroreflex dysfunction has been considered an important mortality predictor after myocardial infarction (MI). However, the impact of baroreflex deficiency prior to MI on tonic autonomic control and cardiac function, and on the profile of proteins associated with intracellular calcium handling has not yet been studied. The aim of the present study was to analyze how the impairment of baroreflex induced by sinoaortic denervation (SAD) prior to MI in rats affects the tonic autonomic control, ventricular function and cardiomyocyte calcium handling proteins. After 15 days of following or SAD surgery, rats underwent MI. Echocardiographic, hemodynamic, autonomic and molecular evaluations were performed 90 days after MI. Baroreflex impairment led to additional damage on: left ventricular remodeling, diastolic function, vagal tonus and intrinsic heart rate after MI. The loss of vagal component of the arterial baroreflex and vagal tonus were correlated with changes in the cardiac proteins involved in intracellular calcium homeostasis. Furthermore, additional increase in sodium calcium exchanger expression levels was associated with impaired diastolic function in experimental animals. Our findings strongly suggest that previous arterial baroreflex deficiency may induce additional impairment of vagal tonus, which was associated with calcium handling proteins abnormalities, probably triggering ventricular diastolic dysfunction after MI in rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...