Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Biochem Biophys Res Commun ; 720: 150105, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754163

RESUMO

BACKGROUND: Dexmedetomidine (DEX), a highly selective α2-adrenoceptor agonist, can decrease the incidence of arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the underlying mechanisms by which DEX affects cardiac electrophysiological function remain unclear. METHODS: Ryanodine receptor (RyR2) heterozygous R2474S mice were used as a model for CPVT. WT and RyR2R2474S/+ mice were treated with isoproterenol (ISO) and DEX, and electrocardiograms were continuously monitored during both in vivo and ex vivo experiments. Dual-dye optical mapping was used to explore the anti-arrhythmic mechanism of DEX. RESULTS: DEX significantly reduced the occurrence and duration of ISO-induced of VT/VF in RyR2R2474S/+ mice in vivo and ex vivo. DEX remarkably prolonged action potential duration (APD80) and calcium transient duration (CaTD80) in both RyR2R2474S/+ and WT hearts, whereas it reduced APD heterogeneity and CaT alternans in RyR2R2474S/+ hearts. DEX inhibited ectopy and reentry formation, and stabilized voltage-calcium latency. CONCLUSION: DEX exhibited an antiarrhythmic effect through stabilizing membrane voltage and intracellular Ca2+. DEX can be used as a beneficial perioperative anesthetic for patients with CPVT or other tachy-arrhythmias.


Assuntos
Arritmias Cardíacas , Cálcio , Dexmedetomidina , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Dexmedetomidina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Cálcio/metabolismo , Camundongos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Potenciais da Membrana/efeitos dos fármacos , Isoproterenol/farmacologia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/tratamento farmacológico , Antiarrítmicos/farmacologia , Masculino , Potenciais de Ação/efeitos dos fármacos , Camundongos Endogâmicos C57BL
2.
Genes (Basel) ; 15(3)2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540339

RESUMO

Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by ß-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.


Assuntos
Bloqueio Atrioventricular , Cálcio , Adulto , Animais , Humanos , Cálcio/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Nó Atrioventricular/metabolismo , Técnicas Eletrofisiológicas Cardíacas/efeitos adversos , Bloqueio Atrioventricular/complicações , Arritmias Cardíacas/genética , Doença do Sistema de Condução Cardíaco
3.
Curr Protoc ; 3(12): e964, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38131300

RESUMO

Astrocytes, the most abundant cells in the central nervous system (CNS), are essential for neuronal development, network formation, and overall CNS homeostasis. Primary astrocyte culture has been successfully used as a tool to study astrocyte biology in vitro. In the present protocol, a modified immunopanning method was utilized to obtain and purify primary astrocytes from mouse cortex and spinal cord in a relatively quick and inexpensive way. Purified primary astrocytes were then immortalized through infection of lentivirus expressing the SV40 large T antigens. In addition, we provide protocols to determine the expression levels of astrocyte-specific markers and to perform functional studies measuring the ATP-induced calcium flux in the immortalized astrocytes. Following the described protocols assures that the immortalized astrocytes that one prepares mimic the cell biology of primary astrocytes in culture. Thus, the purification and immortalization protocols for primary astrocytes presented in here provide two models for the studies of astrocyte biology and may be useful for the immortalization of other types of primary cells. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Primary astrocyte purification by a modified immunopanning method Support Protocol: Serum-free primary astrocyte culture Basic Protocol 2: Primary astrocyte immortalization Basic Protocol 3: Calcium transient detection in astrocytes.


Assuntos
Astrócitos , Cultura Primária de Células , Animais , Camundongos , Astrócitos/citologia , Cultura Primária de Células/métodos
4.
Heart Rhythm ; 20(12): 1773-1781, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678492

RESUMO

Myocardial calcium (Ca2+) signaling plays a crucial role in contractile function and membrane electrophysiology. An abnormal myocardial Ca2+ transient is linked to heart failure and ventricular arrhythmias. At the subcellular level, the synchronous release of Ca2+ sparks from sarcoplasmic Ca2+ release units determines the configuration and amplitude of the global Ca2+ transient. This narrative review evaluates the role of aberrant Ca2+ release synchrony in the pathophysiology of cardiomyopathies and ventricular arrhythmias. The potential therapeutic benefits of restoration of Ca2+ release synchrony in heart failure and ventricular arrhythmias are also discussed.


Assuntos
Cálcio , Insuficiência Cardíaca , Humanos , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas , Miocárdio/metabolismo , Sinalização do Cálcio/fisiologia , Retículo Sarcoplasmático/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
5.
Front Bioinform ; 3: 1137815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521316

RESUMO

One of the main topics of cardiovascular research is the study of calcium (Ca2+) handling, as even small changes in Ca2+ concentration can alter cell functionality (Bers, Annu Rev Physiol, 2014, 76, 107-127). Ionic calcium (Ca2+) plays the role of a second messenger in eukaryotic cells, associated with cellular functions such as cell cycle regulation, transport, motility, gene expression, and regulation. The use of fluorometric techniques in isolated cells loaded with Ca2+-sensitive fluorescent probes allows quantitative measurement of dynamic events occurring in living, functioning cells. The Cardiomyocytes Images Analyzer Python (CardIAP) application addresses the need to analyze and retrieve information from confocal microscopy images systematically, accurately, and rapidly. Here we present CardIAP, an open-source tool developed entirely in Python, freely available and useable in an interactive web application. In addition, CardIAP can be used as a standalone Python library and freely installed via PIP, making it easy to integrate into biomedical imaging pipelines. The images that can be generated in the study of the heart have the particularity of requiring both spatial and temporal analysis. CardIAP aims to open the field of cardiomyocytes and intact hearts image processing. The improvement in the extraction of information from the images will allow optimizing the usage of resources and animals. With CardIAP, users can run the analysis to both, the complete image, and portions of it in an easy way, and replicate it on a series of images. This analysis provides users with information on the spatial and temporal changes in calcium releases and characterizes them. The web application also allows users to extract calcium dynamics data in downloadable tables, simplifying the calculation of alternation and discordance indices and their classification. CardIAP aims to provide a tool that could assist biomedical researchers in studying the underlying mechanisms of anomalous calcium release phenomena.

6.
Biomedicines ; 11(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37509534

RESUMO

Cirrhotic cardiomyopathy is a syndrome of blunted cardiac systolic and diastolic function in patients with cirrhosis. However, the mechanisms remain incompletely known. Since contractility and relaxation depend on cardiomyocyte calcium transients, any factors that impact cardiac contractile and relaxation functions act eventually through calcium transients. In addition, calcium transients play an important role in cardiac arrhythmias. The present review summarizes the calcium handling system and its role in cardiac function in cirrhotic cardiomyopathy and its mechanisms. The calcium handling system includes calcium channels on the sarcolemmal plasma membrane of cardiomyocytes, the intracellular calcium-regulatory apparatus, and pertinent proteins in the cytosol. L-type calcium channels, the main calcium channel in the plasma membrane of cardiomyocytes, are decreased in the cirrhotic heart, and the calcium current is decreased during the action potential both at baseline and under stimulation of beta-adrenergic receptors, which reduces the signal to calcium-induced calcium release. The study of sarcomere length fluctuations and calcium transients demonstrated that calcium leakage exists in cirrhotic cardiomyocytes, which decreases the amount of calcium storage in the sarcoplasmic reticulum (SR). The decreased storage of calcium in the SR underlies the reduced calcium released from the SR, which results in decreased cardiac contractility. Based on studies of heart failure with non-cirrhotic cardiomyopathy, it is believed that the calcium leakage is due to the destabilization of interdomain interactions (dispersion) of ryanodine receptors (RyRs). A similar dispersion of RyRs may also play an important role in reduced contractility. Multiple defects in calcium handling thus contribute to the pathogenesis of cirrhotic cardiomyopathy.

7.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240370

RESUMO

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo
8.
Front Cell Neurosci ; 17: 1094070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006467

RESUMO

Activated glia are known to exhibit either neuroprotective or neurodegenerative effects, depending on their phenotype, while participating in chronic pain regulation. Until recently, it has been believed that satellite glial cells and astrocytes are electrically slight and process stimuli only through intracellular calcium flux that triggers downstream signaling mechanisms. Though glia do not exhibit action potentials, they do express both voltage- and ligand-gated ion channels that facilitate measurable calcium transients, a measure of their own phenotypic excitability, and support and modulate sensory neuron excitability through ion buffering and secretion of excitatory or inhibitory neuropeptides (i.e., paracrine signaling). We recently developed a model of acute and chronic nociception using co-cultures of iPSC sensory neurons (SN) and spinal astrocytes on microelectrode arrays (MEAs). Until recently, only neuronal extracellular activity has been recorded using MEAs with a high signal-to-noise ratio and in a non-invasive manner. Unfortunately, this method has limited compatibility with simultaneous calcium transient imaging techniques, which is the most common method for monitoring the phenotypic activity of astrocytes. Moreover, both dye-based and genetically encoded calcium indicator imaging rely on calcium chelation, affecting the culture's long-term physiology. Therefore, it would be ideal to allow continuous and simultaneous direct phenotypic monitoring of both SNs and astrocytes in a high-to-moderate throughput non-invasive manner and would significantly advance the field of electrophysiology. Here, we characterize astrocytic oscillating calcium transients (OCa2+Ts) in mono- and co-cultures of iPSC astrocytes as well as iPSC SN-astrocyte co-cultures on 48 well plate MEAs. We demonstrate that astrocytes exhibit OCa2+Ts in an electrical stimulus amplitude- and duration-dependent manner. We show that OCa2+Ts can be pharmacologically inhibited with the gap junction antagonist, carbenoxolone (100 µM). Most importantly, we demonstrate that both neurons and glia can be phenotypically characterized in real time, repeatedly, over the duration of the culture. In total, our findings suggest that calcium transients in glial populations may serve as a stand-alone or supplemental screening technique for identifying potential analgesics or compounds targeting other glia-mediated pathologies.

9.
J Physiol ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37057678

RESUMO

Myocardial stretch physiologically activates NADPH oxidase 2 (NOX2) to increase reactive oxygen species (ROS) production. Although physiological low-level ROS are known to be important as signalling molecules, the role of stretch-induced ROS in the intact myocardium remains unclear. To address this, we investigated the effects of stretch-induced ROS on myocardial cellular contractility and calcium transients in C57BL/6J and NOX2-/- mice. Axial stretch was applied to the isolated cardiomyocytes using a pair of carbon fibres attached to both cell ends to evaluate stretch-induced modulation in the time course of the contraction curve and calcium transient, as well as to evaluate maximum cellular elastance, an index of cellular contractility, which is obtained from the end-systolic force-length relationship. In NOX2-/- mice, the peak calcium transient was not altered by stretch, as that in wild-type mice, but the lack of stretch-induced ROS delayed the rise of calcium transients and reduced contractility. Our mathematical modelling studies suggest that the augmented activation of ryanodine receptors by stretch-induced ROS causes a rapid and large increase in the calcium release flux, resulting in a faster rise in the calcium transient. The slight increase in the magnitude of calcium transients is offset by a decrease in sarcoplasmic reticulum calcium content as a result of ROS-induced calcium leakage, but the faster rise in calcium transients still maintains higher contractility. In conclusion, a physiological role of stretch-induced ROS is to increase contractility to counteract a given preload, that is, it contributes to the Frank-Starling law of the heart. KEY POINTS: Myocardial stretch increases the production of reactive oxygen species by NADPH oxidase 2. We used NADPH oxidase 2 knockout mice to elucidate the physiological role of stretch-induced reactive oxygen species in the heart. We showed that stretch-induced reactive oxygen species modulate the rising phase of calcium transients and increase myocardial contractility. A mathematical model simulation study demonstrated that rapid activation of ryanodine receptors by reactive oxygen species is important for increased contractility. This response is advantageous for the myocardium, which must contract against a given preload.

10.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902420

RESUMO

During bone remodeling, high extracellular calcium levels accumulated around the resorbing bone tissue as soon as the activation of osteoclasts. However, if and how calcium is involved in the regulation of bone remodeling remains unclear. In this study, the effect of high extracellular calcium concentrations on osteoblast proliferation and differentiation, intracellular calcium ([Ca2+]i) levels, metabolomics, and the expression of proteins related to energy metabolism were investigated. Our results showed that high extracellular calcium levels initiated a [Ca2+]i transient via the calcium-sensing receptor (CaSR) and promoted the proliferation of MC3T3-E1 cells. Metabolomics analysis showed that the proliferation of MC3T3-E1 cells was dependent on aerobic glycolysis, but not the tricarboxylic acid cycle. Moreover, the proliferation and glycolysis of MC3T3-E1 cells were suppressed following the inhibition of AKT. These results indicate that calcium transient triggered by high extracellular calcium levels activated glycolysis via AKT-related signaling pathways and ultimately promoted the proliferation of osteoblasts.


Assuntos
Cálcio , Osteoblastos , Proteínas Proto-Oncogênicas c-akt , Cálcio/metabolismo , Cálcio da Dieta/farmacologia , Diferenciação Celular , Proliferação de Células , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Camundongos , Linhagem Celular
11.
Front Bioeng Biotechnol ; 11: 1108340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845191

RESUMO

Background: We had shown that cardiomyocytes (CMs) were more efficiently differentiated from human induced pluripotent stem cells (hiPSCs) when the hiPSCs were reprogrammed from cardiac fibroblasts rather than dermal fibroblasts or blood mononuclear cells. Here, we continued to investigate the relationship between somatic-cell lineage and hiPSC-CM production by comparing the yield and functional properties of CMs differentiated from iPSCs reprogrammed from human atrial or ventricular cardiac fibroblasts (AiPSC or ViPSC, respectively). Methods: Atrial and ventricular heart tissues were obtained from the same patient, reprogrammed into AiPSCs or ViPSCs, and then differentiated into CMs (AiPSC-CMs or ViPSC-CMs, respectively) via established protocols. Results: The time-course of expression for pluripotency genes (OCT4, NANOG, and SOX2), the early mesodermal marker Brachyury, the cardiac mesodermal markers MESP1 and Gata4, and the cardiovascular progenitor-cell transcription factor NKX2.5 were broadly similar in AiPSC-CMs and ViPSC-CMs during the differentiation protocol. Flow-cytometry analyses of cardiac troponin T expression also indicated that purity of the two differentiated hiPSC-CM populations (AiPSC-CMs: 88.23% ± 4.69%, ViPSC-CMs: 90.25% ± 4.99%) was equivalent. While the field-potential durations were significantly longer in ViPSC-CMs than in AiPSC-CMs, measurements of action potential duration, beat period, spike amplitude, conduction velocity, and peak calcium-transient amplitude did not differ significantly between the two hiPSC-CM populations. Yet, our cardiac-origin iPSC-CM showed higher ADP and conduction velocity than previously reported iPSC-CM derived from non-cardiac tissues. Transcriptomic data comparing iPSC and iPSC-CMs showed similar gene expression profiles between AiPSC-CMs and ViPSC-CMs with significant differences when compared to iPSC-CM derived from other tissues. This analysis also pointed to several genes involved in electrophysiology processes responsible for the physiological differences observed between cardiac and non-cardiac-derived cardiomyocytes. Conclusion: AiPSC and ViPSC were differentiated into CMs with equal efficiency. Detected differences in electrophysiological properties, calcium handling activity, and transcription profiles between cardiac and non-cardiac derived cardiomyocytes demonstrated that 1) tissue of origin matters to generate a better-featured iPSC-CMs, 2) the sublocation within the cardiac tissue has marginal effects on the differentiation process.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36743445

RESUMO

Background: Myocardial delivery of non-excitable cells-namely human mesenchymal stem cells (hMSCs) and c-kit+ cardiac interstitial cells (hCICs)-remains a promising approach for treating the failing heart. Recent empirical studies attempt to improve such therapies by genetically engineering cells to express specific ion channels, or by creating hybrid cells with combined channel expression. This study uses a computational modeling approach to test the hypothesis that custom hypothetical cells can be rationally designed to restore a healthy phenotype when coupled to human heart failure (HF) cardiomyocytes. Methods: Candidate custom cells were simulated with a combination of ion channels from non-excitable cells and healthy human cardiomyocytes (hCMs). Using a genetic algorithm-based optimization approach, candidate cells were accepted if a root mean square error (RMSE) of less than 50% relative to healthy hCM was achieved for both action potential and calcium transient waveforms for the cell-treated HF cardiomyocyte, normalized to the untreated HF cardiomyocyte. Results: Custom cells expressing only non-excitable ion channels were inadequate to restore a healthy cardiac phenotype when coupled to either fibrotic or non-fibrotic HF cardiomyocytes. In contrast, custom cells also expressing cardiac ion channels led to acceptable restoration of a healthy cardiomyocyte phenotype when coupled to fibrotic, but not non-fibrotic, HF cardiomyocytes. Incorporating the cardiomyocyte inward rectifier K+ channel was critical to accomplishing this phenotypic rescue while also improving single-cell action potential metrics associated with arrhythmias, namely resting membrane potential and action potential duration. The computational approach also provided insight into the rescue mechanisms, whereby heterocellular coupling enhanced cardiomyocyte L-type calcium current and promoted calcium-induced calcium release. Finally, as a therapeutically translatable strategy, we simulated delivery of hMSCs and hCICs genetically engineered to express the cardiomyocyte inward rectifier K+ channel, which decreased action potential and calcium transient RMSEs by at least 24% relative to control hMSCs and hCICs, with more favorable single-cell arrhythmia metrics. Conclusion: Computational modeling facilitates exploration of customizable engineered cell therapies. Optimized cells expressing cardiac ion channels restored healthy action potential and calcium handling phenotypes in fibrotic HF cardiomyocytes and improved single-cell arrhythmia metrics, warranting further experimental validation studies of the proposed custom therapeutic cells.

13.
Toxicol Sci ; 189(2): 216-224, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35866629

RESUMO

Febuxostat is a xanthine oxidase inhibitor used to reduce the formation of uric acid and prevent gout attacks. Previous studies have suggested that febuxostat was associated with a higher risk of cardiovascular events, including atrial fibrillation, compared with allopurinol, another anti-hyperuricemia drug. Whereas in our clinical practice, we identified 2 cases of febuxostat-associated ventricular tachycardia (VT) events. The proarrhythmogenic effects of febuxostat on human cardiomyocytes and underlined mechanisms remain poorly understood. In this study, we employed real-time cell analysis and calcium transient to investigate the effects of febuxostat on the cytotoxicity and electrophysiology properties of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Up to 10 µM febuxostat treatment did not show toxicity to cell viability. However, 48-h febuxostat exposure generated dose-dependent increased irregular calcium transients and decreased calcium transient amplitude. Furthermore, RNA-seq analysis indicated that the MAPK signaling pathway was enriched in the febuxostat-treated group, especially the protein kinases c-Jun N-terminal kinase (JNK). Western blotting of 3 main protein kinases demonstrated that JNK activation is related to febuxostat-induced arrhythmia rather than extracellular signal regulated kinases (ERK) or p38. The dysfunctional calcium dynamics of febuxostat-treated hiPSC-CMs could be ameliorated by SP600125, the inhibitor of JNK. In conclusion, our study demonstrated that febuxostat increases the predisposition to ventricular arrhythmia by dysregulating calcium dynamics.


Assuntos
Febuxostat , Células-Tronco Pluripotentes Induzidas , Alopurinol/metabolismo , Alopurinol/toxicidade , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Febuxostat/metabolismo , Febuxostat/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia , Xantina Oxidase/metabolismo , Xantina Oxidase/farmacologia
14.
Exp Biol Med (Maywood) ; 247(18): 1691-1700, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35880885

RESUMO

The aim of this study was to verify the effects of moderate-intensity continuous (MICT) and high-intensity interval (HIIT) aerobic training on cardiac morphology and function and the mechanical properties of single cardiomyocytes in spontaneously hypertensive rats (SHR) in the compensated phase of hypertension. Sixteen-week-old male SHR and normotensive Wistar (WIS) rats were allocated to six groups of six animals each: SHR CONT or WIS CONT (control); SHR MICT or WIS MICT (underwent MICT, 30 min/day, five days per week for eight weeks); and SHR HIIT or WIS HIIT (underwent HIIT, 30 min/day, five days per week for eight weeks). Total exercise time until fatigue and maximum running speed were determined using a maximal running test before and after the experimental period. Systolic (SAP), diastolic (DAP), and mean (MAP) blood pressures were measured using tail plethysmography before and after the experimental period. Echocardiographic evaluations were performed at the end of the experimental period. The rats were euthanized after in vivo assessments, and left ventricular myocytes were isolated to evaluate global intracellular Ca2+ transient ([Ca2+]i) and contractile function. Cellular measurements were performed at basal temperature (~37°C) at 3, 5, and 7 Hz. The results showed that both training programs increased total exercise time until fatigue and, consequently, maximum running speed. In hypertensive rats, MICT decreased SAP, DAP, MAP, interventricular septal thickness during systole and diastole, and the contraction amplitude at 5 Hz. HIIT increased heart weight and left ventricular wall thickness during systole and diastole and reduced SAP, MAP, and the time to peak [Ca2+]i at all pacing frequencies. In conclusion, both aerobic training protocols promoted beneficial adaptations to cardiac morphology, function, and mechanical properties of single cardiomyocytes in SHR.


Assuntos
Hipertensão , Condicionamento Físico Animal , Masculino , Animais , Ratos , Ratos Endogâmicos SHR , Condicionamento Físico Animal/fisiologia , Ratos Wistar , Hipertensão/terapia , Miócitos Cardíacos/fisiologia , Fadiga
15.
ACS Appl Mater Interfaces ; 14(31): 35376-35388, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35901275

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are considered immature in the sarcomere organization, contractile machinery, calcium transient, and transcriptome profile, which prevent them from further applications in modeling and studying cardiac development and disease. To improve the maturity of hiPSC-CMs, here, we engineered the hiPSC-CMs into cardiac microfibers (iCMFs) by a stencil-based micropatterning method, which enables the hiPSC-CMs to be aligned in an end-to-end connection for prolonged culture on the hydrogel of physiological stiffness. A series of characterization approaches were performed to evaluate the maturation in iCMFs on both structural and functional levels, including immunohistochemistry, calcium transient, reverse-transcription quantitative PCR, cardiac contractility, and electrical pacing analysis. Our results demonstrate an improved cardiac maturation of hiPSC-CMs in iCMFs compared to micropatterned or random single hiPSC-CMs and hiPSC-CMs in a random cluster at the same cell number of iCMFs. We found an increased sarcomere length, better regularity and alignment of sarcomeres, enhanced contractility, matured calcium transient, and T-tubule formation and improved adherens junction and gap junction formation. The hiPSC-CMs in iCMFs showed a robust calcium cycling in response to the programmed and continuous electrical pacing from 0.5 to 7 Hz. Moreover, we generated the iCMFs with hiPSC-CMs with mutations in myosin-binding protein C (MYBPC3) to have a proof-of-concept of iCMFs in modeling cardiac hypertrophic phenotype. These findings suggest that the multipatterned iCMF connection of hiPSC-CMs boosts the cardiac maturation structurally and functionally, which will reveal the full potential of the application of hiPSC-CM models in disease modeling of cardiomyopathy and cardiac regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cálcio/metabolismo , Diferenciação Celular , Humanos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo
16.
Methods Mol Biol ; 2485: 147-157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35618904

RESUMO

Risk assessment assays for chemically induced arrhythmia are critical, but significant limitations exist with current cardiotoxicity testing, including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. To be predictive of actual adverse clinical arrhythmic risk, arrhythmia assessment models for chemicals and drugs should be fit-for-purpose and suited for evaluating compounds in which the mechanism of action may not be entirely known. Here, we describe methods for efficient and reliable screening for arrhythmogenic cardiotoxicity with a 3D human cardiac microtissue model using purified human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and human cardiac fibroblasts. Applying optical mapping of voltage and calcium-sensitive dyes-an established approach to evaluate cardiac action potentials and calcium transients-to 3D heterotypic cardiac myocyte-fibroblast tissues allows for the generation and functional analysis of a large number of individual microtissues to provide greater throughput and high statistical power in analyses. Hundreds of microtissues in standard cell culture plates can be produced with low variability beat-to-beat, microtissue-to-microtissue, and across hiPSC-cardiomyocyte differentiation batches, reducing the number of microtissues required per condition for predictive outputs. The platform described here can be used as a sensitive, efficient, and predictive preclinical model validated for the purpose of assessing human pro-arrhythmic risk.


Assuntos
Cálcio , Miócitos Cardíacos , Arritmias Cardíacas/induzido quimicamente , Cardiotoxicidade , Fibroblastos , Humanos
17.
Channels (Austin) ; 16(1): 97-112, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35501948

RESUMO

Carvedilol is a nonspecific ß-blocker clinically used for the treatment of cardiovascular diseases but has also been shown to have profound effects on excitation-contraction coupling and Ca signaling at the cellular level. We investigate the mechanism by which carvedilol facilitates Ca transient (CaT) and action potential duration (APD) alternans in rabbit atrial myocytes. Carvedilol lowered the frequency threshold for pacing-induced CaT alternans and facilitated alternans in a concentration-dependent manner. Carvedilol prolonged the sarcoplasmic reticulum (SR) Ca release refractoriness by significantly increasing the time constant τ of recovery of SR Ca release; however, no changes in L-type calcium current recovery from inactivation or SR Ca load were found after carvedilol treatment. Carvedilol enhanced the degree of APD alternans nearly two-fold. Carvedilol slowed the APD restitution kinetics and steepened the APD restitution curve at the pacing frequency (2 Hz) where alternans were elicited. No effect on the CaT or APD alternans ratios was observed in experiments with a different ß-blocker (metoprolol), excluding the possibility that the carvedilol effect on CaT and APD alternans was determined by its ß-blocking properties. These data suggest that carvedilol contributes to the generation of CaT and APD alternans in atrial myocytes by modulating the restitution of CaT and APD.


Assuntos
Sinalização do Cálcio , Cálcio , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Carvedilol/metabolismo , Carvedilol/farmacologia , Coelhos , Retículo Sarcoplasmático/metabolismo
18.
Cells ; 11(6)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35326497

RESUMO

Ischemic heart disease (IHD) is one of the leading causes of mortality worldwide. Preserving functionality and preventing arrhythmias of the heart are key principles in the management of patients with IHD. Levosimendan, a unique calcium (Ca2+) enhancer with inotropic activity, has been introduced into clinical usage for heart failure treatment. Human-induced pluripotent cell-derived cardiomyocytes (hiPSC-CMs) offer an opportunity to better understand the pathophysiological mechanisms of the disease as well as to serve as a platform for drug screening. Here, we developed an in vitro IHD model using hiPSC-CMs in hypoxic conditions and defined the effects of the subsequent hypoxic stress on CMs functionality. Furthermore, the effect of levosimendan on hiPSC-CMs functionality was evaluated during and after hypoxic stress. The morphology, contractile, Ca2+-handling, and gene expression properties of hiPSC-CMs were investigated in response to hypoxia. Hypoxia resulted in significant cardiac arrhythmia and decreased Ca2+ transient amplitude. In addition, disorganization of sarcomere structure was observed after hypoxia induction. Interestingly, levosimendan presented significant antiarrhythmic properties, as the arrhythmia was abolished or markedly reduced with levosimendan treatment either during or after the hypoxic stress. Moreover, levosimendan presented significant protection from the sarcomere alterations induced by hypoxia. In conclusion, this chip model appears to be a suitable preclinical representation of IHD. With this hypoxia platform, detailed knowledge of the disease pathophysiology can be obtained. The antiarrhythmic effect of levosimendan was clearly observed, suggesting a possible new clinical use for the drug.


Assuntos
Células-Tronco Pluripotentes Induzidas , Isquemia Miocárdica , Antiarrítmicos/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Células Cultivadas , Humanos , Hipóxia/metabolismo , Isquemia/metabolismo , Dispositivos Lab-On-A-Chip , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Simendana/metabolismo , Simendana/farmacologia
19.
Comput Biol Med ; 142: 105218, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34999413

RESUMO

In the present research we tackled the classification of seven genetic cardiac diseases and control subjects by using an extensive set of machine learning algorithms with their variations from simple K-nearest neighbor searching method to support vector machines. The research was based on calcium transient signals measured from induced pluripotent stem cell-derived cardiomyocytes. All in all, 55 different machine learning alternatives were used to model eight classes by applying the principle of 10-fold crossvalidation with the peak data of 1626 signals. The best classification accuracy of approximately 69% was given by random forests, which can be seen high enough here to show machine learning to be potential for the differentiation of the eight disease classes.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , Algoritmos , Ciência de Dados , Humanos , Aprendizado de Máquina , Máquina de Vetores de Suporte
20.
Appl Biochem Biotechnol ; 194(5): 2236-2250, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066748

RESUMO

[Formula: see text] plays an important role as an intracellular second messenger in the growth and development of cardiomyocytes (CMs), which can be visualized by calcium imaging and be quantified as calcium transient. Based on calcium imaging, the widely applied measurement method for cellular calcium transient requires laborious and inefficient calibration experiments, as well as affected by photobleaching. In this study, we presented a calibration-free method, based on calcium imaging, to calculate cellular calcium transient and correct photobleaching directly from the target video. We also set up image acquisition and calculation system on custom software, applied to calcium transients monitoring of neonatal rat cardiomyocytes. Results showed that the effect of the new method was similar to that of the traditional one with a Pearson correlation coefficient of 0.99 ± 0.01. Moreover, the residual sum of squares of the two methods was only 26.31 ± 26.28 when the area of the region of interest was greater than 8% of the image area. This result indicated that the new method provided a new concept of cellular [Formula: see text] concentration quantification as well as a rapid and adaptive method for monitoring cellular calcium transient.


Assuntos
Sinalização do Cálcio , Cálcio , Animais , Cálcio/metabolismo , Calibragem , Miócitos Cardíacos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...