Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 727079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540842

RESUMO

Autism spectrum disorders (ASD) are pervasive neurodevelopmental conditions detected during childhood when delayed language onset and social deficits are observed. Children diagnosed with ASD frequently display sensorimotor deficits associated with the cerebellum, suggesting a dysfunction of synaptic circuits. Astroglia are part of the tripartite synapses and postmortem studies reported an increased expression of the glial fibrillary acidic protein (GFAP) in the cerebellum of ASD patients. Astroglia respond to neuronal activity with calcium transients that propagate to neighboring cells, resulting in a functional response known as a calcium wave. This form of intercellular signaling is implicated in proliferation, migration, and differentiation of neural precursors. Prenatal exposure to valproate (VPA) is a preclinical model of ASD in which premature migration and excess of apoptosis occur in the internal granular layer (IGL) of the cerebellum during the early postnatal period. In this study we tested calcium wave propagation in the IGL of mice prenatally exposed to VPA. Sensorimotor deficits were observed and IGL depolarization evoked a calcium wave with astrocyte recruitment. The calcium wave propagation, initial cell recruitment, and mean amplitude of the calcium transients increased significantly in VPA-exposed mice compared to the control group. Astrocyte recruitment was significantly increased in the VPA model, but the mean amplitude of the calcium transients was unchanged. Western blot and histological studies revealed an increased expression of GFAP, higher astroglial density and augmented morphological complexity. We conclude that the functional signature of the IGL is remarkably augmented in the preclinical model of autism.

2.
Cell Tissue Res ; 365(2): 343-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26987821

RESUMO

Successful wound closure is mainly the result of two cellular processes: migration and proliferation. Apoptosis has also been suggested to play a role in the mechanisms of wound healing. The fast calcium wave (FCW), triggered immediately after a wound is produced, has been proposed to be involved in determining healing responses in epithelia. We have explored the effects of the reversible inhibition of FCW on the apoptotic and proliferative responses of healing bovine corneal endothelial (BCE) cells in culture. The most important findings of this study are that caspase-dependent apoptosis occurs during the healing process, that the amount of apoptosis has a linear dependence on the migrated distance, and that FCW inhibition greatly increases the apoptotic index. We have further been able to establish that FCW plays a role in the control of cell proliferation during BCE wound healing. These results indicate that one of the main roles of the wave is to inhibit an excessive apoptotic response of the healing migrating cells. This property might represent a basic mechanism to allow sufficient migration and proliferation of the healing cells to assure proper restitution of the injured tissue.


Assuntos
Apoptose , Sinalização do Cálcio , Epitélio/patologia , Cicatrização , Trifosfato de Adenosina/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Bromodesoxiuridina/metabolismo , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Bovinos , Proliferação de Células/efeitos dos fármacos , Endotélio Corneano/citologia , Epitélio/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA