Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
2.
J Mol Cell Cardiol ; 184: 48-60, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37813179

RESUMO

Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, ß, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Endoteliais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Isoformas de Proteínas/metabolismo
4.
Korean J Pain ; 36(2): 163-172, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36941088

RESUMO

Background: Synaptic plasticity contributes to nociceptive signal transmission and modulation, with calcium/calmodulin-dependent protein kinase II (CaMK II) playing a fundamental role in neural plasticity. This research was conducted to investigate the role of CaMK II in the transmission and regulation of nociceptive information within the nucleus accumbens (NAc) of naïve and morphine-tolerant rats. Methods: Randall Selitto and hot-plate tests were utilized to measure the hindpaw withdrawal latencies (HWLs) in response to noxious mechanical and thermal stimuli. To induce chronic morphine tolerance, rats received intraperitoneal morphine injection twice per day for seven days. CaMK II expression and activity were assessed using western blotting. Results: Intra-NAc microinjection of autocamtide-2-related inhibitory peptide (AIP) induced an increase in HWLs in naïve rats in response to noxious thermal and mechanical stimuli. Moreover, the expression of the phosphorylated CaMK II (p-CaMK II) was significantly decreased as determined by western blotting. Chronic intraperitoneal injection of morphine resulted in significant morphine tolerance in rats on Day 7, and an increase of p-CaMK II expression in NAc in morphine-tolerant rats was observed. Furthermore, intra-NAc administration of AIP elicited significant antinociceptive responses in morphine-tolerant rats. In addition, compared with naïve rats, AIP induced stronger thermal antinociceptive effects of the same dose in rats exhibiting morphine tolerance. Conclusions: This study shows that CaMK II in the NAc is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rats.

5.
Circulation ; 145(15): 1154-1168, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35317609

RESUMO

BACKGROUND: Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease, the leading cause of morbidity and mortality worldwide. At present, there is no effective therapy for reducing cardiac I/R injury. CaMKII (Ca2+/calmodulin-dependent kinase II) plays a pivotal role in the pathogenesis of severe heart conditions, including I/R injury. Pharmacological inhibition of CaMKII is an important strategy in the protection against myocardial damage and cardiac diseases. To date, there is no drug targeting CaMKII for the clinical therapy of heart disease. Furthermore, at present, there is no selective inhibitor of CaMKII-δ, the major CaMKII isoform in the heart. METHODS: A small-molecule kinase inhibitor library and a high-throughput screening system for the kinase activity assay of CaMKII-δ9 (the most abundant CaMKII-δ splice variant in human heart) were used to screen for CaMKII-δ inhibitors. Using cultured neonatal rat ventricular myocytes, human embryonic stem cell-derived cardiomyocytes, and in vivo mouse models, in conjunction with myocardial injury induced by I/R (or hypoxia/reoxygenation) and CaMKII-δ9 overexpression, we sought to investigate the protection of hesperadin against cardiomyocyte death and cardiac diseases. BALB/c nude mice with xenografted tumors of human cancer cells were used to evaluate the in vivo antitumor effect of hesperadin. RESULTS: Based on the small-molecule kinase inhibitor library and screening system, we found that hesperadin, an Aurora B kinase inhibitor with antitumor activity in vitro, directly bound to CaMKII-δ and specifically blocked its activation in an ATP-competitive manner. Hesperadin functionally ameliorated both I/R- and overexpressed CaMKII-δ9-induced cardiomyocyte death, myocardial damage, and heart failure in both rodents and human embryonic stem cell-derived cardiomyocytes. In addition, in an in vivo BALB/c nude mouse model with xenografted tumors of human cancer cells, hesperadin delayed tumor growth without inducing cardiomyocyte death or cardiac injury. CONCLUSIONS: Here, we identified hesperadin as a specific small-molecule inhibitor of CaMKII-δ with dual functions of cardioprotective and antitumor effects. These findings not only suggest that hesperadin is a promising leading compound for clinical therapy of cardiac I/R injury and heart failure, but also provide a strategy for the joint therapy of cancer and cardiovascular disease caused by anticancer treatment.


Assuntos
Insuficiência Cardíaca , Traumatismo por Reperfusão Miocárdica , Neoplasias , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Indóis , Isquemia/metabolismo , Camundongos , Camundongos Nus , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Neoplasias/patologia , Ratos , Sulfonamidas
7.
Circ Res ; 130(7): 994-1010, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35193397

RESUMO

RATIONALE: Atrial fibrillation (AF) and heart failure often coexist, but their interaction is poorly understood. Clinical data indicate that the arrhythmic component of AF may contribute to left ventricular (LV) dysfunction. OBJECTIVE: This study investigates the effects and molecular mechanisms of AF on the human LV. METHODS AND RESULTS: Ventricular myocardium from patients with aortic stenosis and preserved LV function with sinus rhythm or rate-controlled AF was studied. LV myocardium from patients with sinus rhythm and patients with AF showed no differences in fibrosis. In functional studies, systolic Ca2+ transient amplitude of LV cardiomyocytes was reduced in patients with AF, while diastolic Ca2+ levels and Ca2+ transient kinetics were not statistically different. These results were confirmed in LV cardiomyocytes from nonfailing donors with sinus rhythm or AF. Moreover, normofrequent AF was simulated in vitro using arrhythmic or rhythmic pacing (both at 60 bpm). After 24 hours of AF-simulation, human LV cardiomyocytes from nonfailing donors showed an impaired Ca2+ transient amplitude. For a standardized investigation of AF-simulation, human iPSC-cardiomyocytes were tested. Seven days of AF-simulation caused reduced systolic Ca2+ transient amplitude and sarcoplasmic reticulum Ca2+ load likely because of an increased diastolic sarcoplasmic reticulum Ca2+ leak. Moreover, cytosolic Na+ concentration was elevated and action potential duration was prolonged after AF-simulation. We detected an increased late Na+ current as a potential trigger for the detrimentally altered Ca2+/Na+-interplay. Mechanistically, reactive oxygen species were higher in the LV of patients with AF. CaMKII (Ca2+/calmodulin-dependent protein kinase IIδc) was found to be more oxidized at Met281/282 in the LV of patients with AF leading to an increased CaMKII activity and consequent increased RyR2 phosphorylation. CaMKII inhibition and ROS scavenging ameliorated impaired systolic Ca2+ handling after AF-simulation. CONCLUSIONS: AF causes distinct functional and molecular remodeling of the human LV. This translational study provides the first mechanistic characterization and the potential negative impact of AF in the absence of tachycardia on the human ventricle.


Assuntos
Fibrilação Atrial , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
9.
Circ Res ; 130(1): 27-44, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34814703

RESUMO

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+-ATPase 2 (SERCA2) mediates Ca2+ reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates Ca2+ release from SR and triggers contraction. Ca2+/CaMKII (CaM [calmodulin]-dependent protein kinase II) regulates activities of SERCA2 through phosphorylation of PLN (phospholamban) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local Ca2+ signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. METHODS: A role for AKAP18δ (A-kinase anchoring protein 18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adenoassociated virus injection, structural modeling, surface plasmon resonance, and alpha screen technology. RESULTS: Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via 2 distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to the natural CaMKII inhibitor peptide and the Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent Ca2+ threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster Ca2+ reuptake by SERCA2 and Ca2+ release through RYR, AKAP18δ-N had opposite effects. We propose a model where the 2 unique AKAP18δ regions fine-tune Ca2+-frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. CONCLUSIONS: AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge, this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP (A-kinase anchoring protein) reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Sítios de Ligação , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Células Cultivadas , Células HEK293 , Humanos , Miócitos Cardíacos/metabolismo , Ligação Proteica , Ratos , Ratos Wistar
10.
Circulation ; 143(19): 1894-1911, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33793303

RESUMO

BACKGROUND: Mutations in tafazzin (TAZ), a gene required for biogenesis of cardiolipin, the signature phospholipid of the inner mitochondrial membrane, causes Barth syndrome (BTHS). Cardiomyopathy and risk of sudden cardiac death are prominent features of BTHS, but the mechanisms by which impaired cardiolipin biogenesis causes cardiac muscle weakness and arrhythmia are poorly understood. METHODS: We performed in vivo electrophysiology to define arrhythmia vulnerability in cardiac-specific TAZ knockout mice. Using cardiomyocytes derived from human induced pluripotent stem cells and cardiac-specific TAZ knockout mice as model systems, we investigated the effect of TAZ inactivation on Ca2+ handling. Through genome editing and pharmacology, we defined a molecular link between TAZ mutation and abnormal Ca2+ handling and contractility. RESULTS: A subset of mice with cardiac-specific TAZ inactivation developed arrhythmias, including bidirectional ventricular tachycardia, atrial tachycardia, and complete atrioventricular block. Compared with wild-type controls, BTHS-induced pluripotent stem cell-derived cardiomyocytes had increased diastolic Ca2+ and decreased Ca2+ transient amplitude. BTHS-induced pluripotent stem cell-derived cardiomyocytes had higher levels of mitochondrial and cellular reactive oxygen species than wild-type controls, which activated CaMKII (Ca2+/calmodulin-dependent protein kinase II). Activated CaMKII phosphorylated the RYR2 (ryanodine receptor 2) on serine 2814, increasing Ca2+ leak through RYR2. Inhibition of this reactive oxygen species-CaMKII-RYR2 pathway through pharmacological inhibitors or genome editing normalized aberrant Ca2+ handling in BTHS-induced pluripotent stem cell-derived cardiomyocytes and improved their contractile function. Murine Taz knockout cardiomyocytes also exhibited elevated diastolic Ca2+ and decreased Ca2+ transient amplitude. These abnormalities were ameliorated by Ca2+/calmodulin-dependent protein kinase II or reactive oxygen species inhibition. CONCLUSIONS: This study identified a molecular pathway that links TAZ mutation with abnormal Ca2+ handling and decreased cardiomyocyte contractility. This pathway may offer therapeutic opportunities to treat BTHS and potentially other diseases with elevated mitochondrial reactive oxygen species production.


Assuntos
Síndrome de Barth/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Síndrome de Barth/fisiopatologia , Humanos , Camundongos , Camundongos Knockout
11.
Neuropharmacology ; 180: 108302, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931814

RESUMO

Intracellular signalling pathways have been extensively studied as therapeutic targets for the treatment of mental diseases. Our attention has been caught by two kinases potentially involved in anxiety, ERK1/2 and CaMKII. The study aimed to examine changes in the activation of ERK1/2 and CaMKII concerning anxiolytic-like behaviours in mice. To evaluate anxiety-related response in mice, we used the open field test and the elevated plus maze test. Behavioural studies were complemented with the immunoblotting analysis to identify proteins of interest in the cortex, hippocampus, and striatum. We analysed the phosphorylation status of ERK1/2 and CaMKII in mice treated with a well-known anxiolytic drug - diazepam. Next, the blockade of ERK1/2 pathway by SL-327, a selective MEK1/2 inhibitor, was checked for anxiolytic action. Finally, the co-administration of subeffective doses of diazepam and SL-327 was investigated for a potential synergistic anxiolytic effect. Anxiolytic effects of acute diazepam are accompanied by decreased p-ERK1/2 and upregulation of p-CaMKII. Subchronic treatment with SL-327 leads to the manifestation of anxiolytic-like behaviours and changes in the phosphorylation status of both kinases in a diazepam-like manner. Co-administration of subeffective doses of SL-327 and diazepam induces anxiolysis, which is CaMKII-independent and correlates to selectively decreased phosphoactive ERK1/2 in the hippocampus. The MEK-ERK pathway is significantly involved in anxiolytic action of diazepam and its prolonged inhibition produces anxiolytic-like phenotype in mice. ERK inhibition could be used to manage anxiety symptoms in a benzodiazepine-sparing regimen for treatment of anxiety.


Assuntos
Aminoacetonitrila/análogos & derivados , Ansiolíticos/administração & dosagem , Ansiedade/prevenção & controle , Diazepam/administração & dosagem , Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Aminoacetonitrila/administração & dosagem , Animais , Ansiedade/enzimologia , Ansiedade/psicologia , Sinergismo Farmacológico , Hipocampo/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia
12.
Circ Res ; 126(10): e80-e96, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32134364

RESUMO

RATIONALE: Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE: To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS: We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS: Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatias Diabéticas/etiologia , Glucose/toxicidade , Hiperglicemia/complicações , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/fisiopatologia , Ativação Enzimática , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glicosilação , Humanos , Hiperglicemia/enzimologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/enzimologia , NADPH Oxidase 2/deficiência , NADPH Oxidase 2/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/enzimologia
13.
Circulation ; 140(5): 405-419, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31155924

RESUMO

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited cardiac arrhythmia characterized by adrenergically triggered arrhythmias, is inadequately treated by current standard of care. Ca2+/calmodulin-dependent protein kinase II (CaMKII), an adrenergically activated kinase that contributes to arrhythmogenesis in heart disease models, is a candidate therapeutic target in CPVT. However, translation of CaMKII inhibition has been limited by the need for selective CaMKII inhibition in cardiomyocytes. Here, we tested the hypothesis that CaMKII inhibition with a cardiomyocyte-targeted gene therapy strategy would suppress arrhythmia in CPVT mouse models. METHODS: We developed AAV9-GFP-AIP, an adeno-associated viral vector in which a potent CaMKII inhibitory peptide, autocamtide-2-related inhibitory peptide [AIP], is fused to green fluorescent protein (GFP) and expressed from a cardiomyocyte selective promoter. The vector was delivered systemically. Arrhythmia burden was evaluated with invasive electrophysiology testing in adult mice. AIP was also tested on induced pluripotent stem cells derived from patients with CPVT with different disease-causing mutations to determine the effectiveness of our proposed therapy on human induced pluripotent stem cell-derived cardiomyocytes and different pathogenic genotypes. RESULTS: AAV9-GFP-AIP was robustly expressed in the heart without significant expression in extracardiac tissues, including the brain. Administration of AAV9-GFP-AIP to neonatal mice with a known CPVT mutation (RYR2R176Q/+) effectively suppressed ventricular arrhythmias induced by either ß-adrenergic stimulation or programmed ventricular pacing, without significant proarrhythmic effect. Intravascular delivery of AAV9-GFP-AIP to adolescent mice transduced ≈50% of cardiomyocytes and was effective in suppressing arrhythmia in CPVT mice. Induced pluripotent stem cell-derived cardiomyocytes derived from 2 different patients with CPVT with different pathogenic mutations demonstrated increased frequency of abnormal calcium release events, which was suppressed by a cell-permeable form of AIP. CONCLUSIONS: This proof-of-concept study showed that AAV-mediated delivery of a CaMKII peptide inhibitor to the heart was effective in suppressing arrhythmias in a murine model of CPVT. CaMKII inhibition also reversed the arrhythmia phenotype in human CPVT induced pluripotent stem cell-derived cardiomyocyte models with different pathogenic mutations.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Terapia Genética/métodos , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Camundongos , Camundongos Transgênicos , Taquicardia Ventricular/enzimologia
14.
Circulation ; 140(7): 580-594, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195810

RESUMO

BACKGROUND: Worldwide, diabetes mellitus and heart failure represent frequent comorbidities with high socioeconomic impact and steadily growing incidence, calling for a better understanding of how diabetic metabolism promotes cardiac dysfunction. Paradoxically, some glucose-lowering drugs have been shown to worsen heart failure, raising the question of how glucose mediates protective versus detrimental cardiac signaling. Here, we identified a histone deacetylase 4 (HDAC4) subdomain as a molecular checkpoint of adaptive and maladaptive signaling in the diabetic heart. METHODS: A conditional HDAC4 allele was used to delete HDAC4 specifically in cardiomyocytes (HDAC4-knockout). Mice were subjected to diabetes mellitus either by streptozotocin injections (type 1 diabetes mellitus model) or by crossing into mice carrying a leptin receptor mutation (db/db; type 2 diabetes mellitus model) and monitored for remodeling and cardiac function. Effects of glucose and the posttranslational modification by ß-linked N-acetylglucosamine (O-GlcNAc) on HDAC4 were investigated in vivo and in vitro by biochemical and cellular assays. RESULTS: We show that the cardio-protective N-terminal proteolytic fragment of HDAC4 is enhanced in vivo in patients with diabetes mellitus and mouse models, as well as in vitro under high-glucose and high-O-GlcNAc conditions. HDAC4-knockout mice develop heart failure in models of type 1 and type 2 diabetes mellitus, whereas wild-type mice do not develop clear signs of heart failure, indicating that HDAC4 protects the diabetic heart. Reexpression of the N-terminal fragment of HDAC4 prevents HDAC4-dependent diabetic cardiomyopathy. Mechanistically, the posttranslational modification of HDAC4 at serine (Ser)-642 by O-GlcNAcylation is an essential step for production of the N-terminal fragment of HDAC4, which was attenuated by Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632. Preventing O-GlcNAcylation at Ser-642 not only entirely precluded production of the N-terminal fragment of HDAC4 but also promoted Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632, pointing to a mutual posttranslational modification cross talk of (cardio-detrimental) phosphorylation at Ser-632 and (cardio-protective) O-GlcNAcylation at Ser-642. CONCLUSIONS: In this study, we found that O-GlcNAcylation of HDAC4 at Ser-642 is cardio-protective in diabetes mellitus and counteracts pathological Ca2+/calmodulin-dependent protein kinase II signaling. We introduce a molecular model explaining how diabetic metabolism possesses important cardio-protective features besides its known detrimental effects. A deeper understanding of the here-described posttranslational modification cross talk may lay the groundwork for the development of specific therapeutic concepts to treat heart failure in the context of diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Serina/metabolismo
16.
Circ Res ; 124(5): 737-746, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602331

RESUMO

RATIONALE: Voltage-gated Na+ channel ( INa) function is critical for normal cardiac excitability. However, the Na+ channel late component ( INa,L) is directly associated with potentially fatal forms of congenital and acquired human arrhythmia. CaMKII (Ca2+/calmodulin-dependent kinase II) enhances INa,L in response to increased adrenergic tone. However, the pathways that negatively regulate the CaMKII/Nav1.5 axis are unknown and essential for the design of new therapies to regulate the pathogenic INa,L. OBJECTIVE: To define phosphatase pathways that regulate INa,L in vivo. METHODS AND RESULTS: A mouse model lacking a key regulatory subunit (B56α) of the PP (protein phosphatase) 2A holoenzyme displayed aberrant action potentials after adrenergic stimulation. Unbiased computational modeling of B56α KO (knockout) mouse myocyte action potentials revealed an unexpected role of PP2A in INa,L regulation that was confirmed by direct INa,L recordings from B56α KO myocytes. Further, B56α KO myocytes display decreased sensitivity to isoproterenol-induced induction of arrhythmogenic INa,L, and reduced CaMKII-dependent phosphorylation of Nav1.5. At the molecular level, PP2A/B56α complex was found to localize and coimmunoprecipitate with the primary cardiac Nav channel, Nav1.5. CONCLUSIONS: PP2A regulates Nav1.5 activity in mouse cardiomyocytes. This regulation is critical for pathogenic Nav1.5 late current and requires PP2A-B56α. Our study supports B56α as a novel target for the treatment of arrhythmia.


Assuntos
Arritmias Cardíacas/enzimologia , Frequência Cardíaca , Ativação do Canal Iônico , Miócitos Cardíacos/enzimologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Proteína Fosfatase 2/metabolismo , Potenciais de Ação , Agonistas Adrenérgicos beta/farmacologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Fosforilação , Proteína Fosfatase 2/deficiência , Proteína Fosfatase 2/genética , Fatores de Tempo
17.
J Cell Physiol ; 234(5): 6865-6875, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30417368

RESUMO

Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic GnRH neurons and stimulates a GnRH receptor in gonadotroph cells and GnRH neurons. The GnRH receptor belongs to the G-protein-coupled receptors, and stimulation of the GnRH receptor activates extracellular signal-regulated protein kinase (ERK). We reported previously that the δ2 isoform of Ca2+ /calmodulin-dependent protein kinase II (CaM kinase IIδ2) was involved in GnRH-induced ERK activation in cultured GnRH neurons (GT1-7 cells). Recently, we found that GnRH treatment of GT1-7 cells activated proline-rich tyrosine kinase 2 (Pyk2), and Pyk2 was involved in ERK activation. In the current study, we examined the possibility that CaM kinase IIδ2 might activate Pyk2. Knockdown of CaM kinase IIδ2 and KN93, an inhibitor of CaM kinases, inhibited the GnRH-induced activation of Pyk2. In the case of cultured gonadotroph cells (αT3-1 cells), knockdown of CaM kinase IIß'e inhibited GnRH-induced Pyk2 activation. In addition, our inhibitor studies indicated that Pyk2 and CaM kinase II were involved in the GnRH-induced shedding of proHB-EGF in GT1-7 cells. These results suggested that CaM kinase II activated the ERK pathway through Pyk2 activation and HB-EGF production in response to GnRH.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Gonadotrofos/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Receptores LHRH/metabolismo , Transdução de Sinais/fisiologia
18.
Hum Mutat ; 39(12): 2008-2024, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30184290

RESUMO

The abundantly expressed calcium/calmodulin-dependent protein kinase II (CAMK2), alpha (CAMK2A), and beta (CAMK2B) isoforms are essential for learning and memory formation. Recently, a de novo candidate mutation (p.Arg292Pro) in the gamma isoform of CAMK2 (CAMK2G) was identified in a patient with severe intellectual disability (ID), but the mechanism(s) by which this mutation causes ID is unknown. Here, we identified a second, unrelated individual, with a de novo CAMK2G p.Arg292Pro mutation, and used in vivo and in vitro assays to assess the impact of this mutation on CAMK2G and neuronal function. We found that knockdown of CAMK2G results in inappropriate precocious neuronal maturation. We further found that the CAMK2G p.Arg292Pro mutation acts as a highly pathogenic gain-of-function mutation, leading to increased phosphotransferase activity and impaired neuronal maturation as well as impaired targeting of the nuclear CAMK2G isoform. Silencing the catalytic site of the CAMK2G p.Arg292Pro protein reversed the pathogenic effect of the p.Arg292Pro mutation on neuronal maturation, without rescuing its nuclear targeting. Taken together, our results reveal an indispensable function of CAMK2G in neurodevelopment and indicate that the CAMK2G p.Arg292Pro protein acts as a pathogenic gain-of-function mutation, through constitutive activity toward cytosolic targets, rather than impaired targeting to the nucleus.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mutação com Ganho de Função , Deficiência Intelectual/genética , Substituição de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Domínio Catalítico , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Deficiência Intelectual/metabolismo , Masculino , Camundongos
19.
Med Sci Monit ; 24: 3011-3023, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29737974

RESUMO

BACKGROUND Increased small-conductance Ca2+-activated K+ current (SK), abnormal intracellular Ca2+ handling, and enhanced expression and activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) have been found in clinical and/or experimental models of atrial fibrillation (AF), but the cumulative effect of these phenomena and their mechanisms in AF are still unclear. This study aimed to test the hypothesis that CaMKII increases SK current in human chronic AF. MATERIAL AND METHODS Right atrial appendage tissues from patients with either sinus rhythm (SR) or AF and neonatal rat atrial myocytes were used. Patch clamp, qRT-PCR, and Western blotting techniques were used to perform the study. RESULTS Compared to SR, the apamin-sensitive SK current (IKAS) was significantly increased, but the mRNA and protein levels of SK1, SK2, and SK3 were significantly decreased. In AF, the steady-state Ca2+ response curve of [i]IKAS[/i] was shifted leftward and the [Ca2+]i level was significantly increased. CaMKII inhibitors (KN-93 or autocamtide-2-related inhibitory peptide (AIP)) reduced the IKAS in both AF and SR. The inhibitory effect of KN-93 or AIP on [i]IKAS[/i] was greater in AF than in SR. The expression levels of calmodulin, CaMKII, and autophosphorylated CaMKII at Thr287 (but not at Thr286) were significantly increased in AF. Furthermore, KN-93 inhibited the expression of (Thr287)p-CaMKII and SK2 in neonatal rat atrial myocytes. CONCLUSIONS SK current is increased via the enhanced activation of CaMKII in patients with AF. This finding may explain the difference between SK current and channels expression in AF, and thus may provide a therapeutic target for AF.


Assuntos
Fibrilação Atrial/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Benzilaminas/farmacologia , Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Doença Crônica , Seio Coronário/efeitos dos fármacos , Seio Coronário/patologia , Citosol/metabolismo , Regulação para Baixo , Feminino , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos
20.
Arterioscler Thromb Vasc Biol ; 38(6): 1333-1345, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29599132

RESUMO

OBJECTIVE: The main objective of this study is to define the mechanisms by which mitochondria control vascular smooth muscle cell (VSMC) migration and impact neointimal hyperplasia. APPROACH AND RESULTS: The multifunctional CaMKII (Ca2+/calmodulin-dependent kinase II) in the mitochondrial matrix of VSMC drove a feed-forward circuit with the mitochondrial Ca2+ uniporter (MCU) to promote matrix Ca2+ influx. MCU was necessary for the activation of mitochondrial CaMKII (mtCaMKII), whereas mtCaMKII phosphorylated MCU at the regulatory site S92 that promotes Ca2+ entry. mtCaMKII was necessary and sufficient for platelet-derived growth factor-induced mitochondrial Ca2+ uptake. This effect was dependent on MCU. mtCaMKII and MCU inhibition abrogated VSMC migration and mitochondrial translocation to the leading edge. Overexpression of wild-type MCU, but not MCU S92A, mutant in MCU-/- VSMC rescued migration and mitochondrial mobility. Inhibition of microtubule, but not of actin assembly, blocked mitochondrial mobility. The outer mitochondrial membrane GTPase Miro-1 promotes mitochondrial mobility via microtubule transport but arrests it in subcellular domains of high Ca2+ concentrations. In Miro-1-/- VSMC, mitochondrial mobility and VSMC migration were abolished, and overexpression of mtCaMKII or a CaMKII inhibitory peptide in mitochondria (mtCaMKIIN) had no effect. Consistently, inhibition of mtCaMKII increased and prolonged cytosolic Ca2+ transients. mtCaMKII inhibition diminished phosphorylation of focal adhesion kinase and myosin light chain, leading to reduced focal adhesion turnover and cytoskeletal remodeling. In a transgenic model of selective mitochondrial CaMKII inhibition in VSMC, neointimal hyperplasia was significantly reduced after vascular injury. CONCLUSIONS: These findings identify mitochondrial CaMKII as a key regulator of mitochondrial Ca2+ uptake via MCU, thereby controlling mitochondrial translocation and VSMC migration after vascular injury.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Lesões das Artérias Carótidas/enzimologia , Movimento Celular , Mitocôndrias Musculares/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neointima , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Modelos Animais de Doenças , Hiperplasia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Musculares/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...