Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biomolecules ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397410

RESUMO

Calcium dyshomeostasis is an early critical event in neurodegeneration as exemplified by Alzheimer's (AD), Huntington's (HD) and Parkinson's (PD) diseases. Neuronal calcium homeostasis is maintained by a diversity of ion channels, buffers, calcium-binding protein effectors, and intracellular storage in the endoplasmic reticulum, mitochondria, and lysosomes. The function of these components and compartments is impacted by the toxic hallmark proteins of AD (amyloid beta and Tau), HD (huntingtin) and PD (alpha-synuclein) as well as by interactions with downstream calcium-binding proteins, especially calmodulin. Each of the toxic hallmark proteins (amyloid beta, Tau, huntingtin, and alpha-synuclein) binds to calmodulin. Multiple channels and receptors involved in calcium homeostasis and dysregulation also bind to and are regulated by calmodulin. The primary goal of this review is to show the complexity of these interactions and how they can impact research and the search for therapies. A secondary goal is to suggest that therapeutic targets downstream from calcium dyshomeostasis may offer greater opportunities for success.


Assuntos
Proteínas de Ligação a Calmodulina , Canais Iônicos , Doenças Neurodegenerativas , Humanos , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Canais Iônicos/metabolismo , Doenças Neurodegenerativas/metabolismo
2.
J Clin Med ; 12(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38002659

RESUMO

Seven major neurodegenerative diseases and their variants share many overlapping biomarkers that are calmodulin-binding proteins: Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTD), Huntington's disease (HD), Lewy body disease (LBD), multiple sclerosis (MS), and Parkinson's disease (PD). Calcium dysregulation is an early and persistent event in each of these diseases, with calmodulin serving as an initial and primary target of increased cytosolic calcium. Considering the central role of calcium dysregulation and its downstream impact on calcium signaling, calmodulin has gained interest as a major regulator of neurodegenerative events. Here, we show that calmodulin serves a critical role in neurodegenerative diseases via binding to and regulating an abundance of biomarkers, many of which are involved in multiple neurodegenerative diseases. Of special interest are the shared functions of calmodulin in the generation of protein biomarker aggregates in AD, HD, LBD, and PD, where calmodulin not only binds to amyloid beta, pTau, alpha-synuclein, and mutant huntingtin but also, via its regulation of transglutaminase 2, converts them into toxic protein aggregates. It is suggested that several calmodulin binding proteins could immediately serve as primary drug targets, while combinations of calmodulin binding proteins could provide simultaneous insight into the onset and progression of multiple neurodegenerative diseases.

3.
Curr Issues Mol Biol ; 45(8): 6246-6261, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37623212

RESUMO

A multifactorial syndrome, Alzheimer's disease is the main cause of dementia, but there is no existing therapy to prevent it or stop its progression. One of the earliest events of Alzheimer's disease is the disruption of calcium homeostasis but that is just a prelude to the disease's devastating impact. Calcium does not work alone but must interact with downstream cellular components of which the small regulatory protein calmodulin is central, if not primary. This review supports the idea that, due to calcium dyshomeostasis, calmodulin is a dominant regulatory protein that functions in all stages of Alzheimer's disease, and these regulatory events are impacted by amyloid beta. Amyloid beta not only binds to and regulates calmodulin but also multiple calmodulin-binding proteins involved in Alzheimer's. Together, they act on the regulation of calcium dyshomeostasis, neuroinflammation, amyloidogenesis, memory formation, neuronal plasticity and more. The complex interactions between calmodulin, its binding proteins and amyloid beta may explain why many therapies have failed or are doomed to failure unless they are considered.

4.
Biomolecules ; 13(4)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189425

RESUMO

An increasing number of plant-based herbal treatments, dietary supplements, medical foods and nutraceuticals and their component phytochemicals are used as alternative treatments to prevent or slow the onset and progression of Alzheimer's disease. Their appeal stems from the fact that no current pharmaceutical or medical treatment can accomplish this. While a handful of pharmaceuticals are approved to treat Alzheimer's, none has been shown to prevent, significantly slow or stop the disease. As a result, many see the appeal of alternative plant-based treatments as an option. Here, we show that many phytochemicals proposed or used as Alzheimer's treatments share a common theme: they work via a calmodulin-mediated mode of action. Some phytochemicals bind to and inhibit calmodulin directly while others bind to and regulate calmodulin-binding proteins, including Aß monomers and BACE1. Phytochemical binding to Aß monomers can prevent the formation of Aß oligomers. A limited number of phytochemicals are also known to stimulate calmodulin gene expression. The significance of these interactions to amyloidogenesis in Alzheimer's disease is reviewed.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Calmodulina/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Ligação a Calmodulina , Ácido Aspártico Endopeptidases/genética , Compostos Fitoquímicos/farmacologia , Peptídeos beta-Amiloides/metabolismo
5.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674908

RESUMO

Calmodulin (CaM) and a diversity of CaM-binding proteins (CaMBPs) are involved in the onset and progression of Alzheimer's disease (AD). In the amyloidogenic pathway, AßPP1, BACE1 and PSEN-1 are all calcium-dependent CaMBPs as are the risk factor proteins BIN1 and TREM2. Ca2+/CaM-dependent protein kinase II (CaMKII) and calcineurin (CaN) are classic CaMBPs involved in memory and plasticity, two events impacted by AD. Coupled with these events is the production of amyloid beta monomers (Aß) and oligomers (Aßo). The recent revelations that Aß and Aßo each bind to both CaM and to a host of Aß receptors that are also CaMBPs adds a new level of complexity to our understanding of the onset and progression of AD. Multiple Aß receptors that are proven CaMBPs (e.g., NMDAR, PMCA) are involved in calcium homeostasis an early event in AD and other neurodegenerative diseases. Other CaMBPs that are Aß receptors are AD risk factors while still others are involved in the amyloidogenic pathway. Aß binding to receptors not only serves to control CaM's ability to regulate critical proteins, but it is also implicated in Aß turnover. The complexity of the Aß/CaM/CaMBP interactions is analyzed using two events: Aß generation and NMDAR function. The interactions between Aß, CaM and CaMBPs reveals a new level of complexity to critical events associated with the onset and progression of AD and may help to explain the failure to develop successful therapeutic treatments for the disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Calmodulina/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Cálcio/metabolismo , Ácido Aspártico Endopeptidases/metabolismo
6.
Chinese Journal of Neurology ; (12): 111-117, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-994808

RESUMO

Recent studies have found that in the development of epilepsy, cyclic adenosine monophosphate response element binding protein (CREB) may cause recurrent epilepsy by inhibiting the expression of γ-aminobutyric acid, resulting in neuron damage and weakened effect of antiepileptic drug targets. Antiepileptic drugs can not control the extent or frequency of seizures, and then the patients are in a persistent state, hence the development of drug-resistant epilepsy. Therefore, the mechanism of CREB leading to drug-resistant epilepsy was reviewed in this paper, hoping to provide ideas for the treatment of drug-resistant epilepsy patients.

7.
Curr Issues Mol Biol ; 44(11): 5802-5814, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421678

RESUMO

Neurodegeneration leads to multiple early changes in cognitive, emotional, and social behaviours and ultimately progresses to dementia. The dysregulation of calcium is one of the earliest potentially initiating events in the development of neurodegenerative diseases. A primary neuronal target of calcium is the small sensor and effector protein calmodulin that, in response to calcium levels, binds to and regulates hundreds of calmodulin binding proteins. The intimate and entangled relationship between calmodulin binding proteins and all phases of Alzheimer's disease has been established, but the relationship to other neurodegenerative diseases is just beginning to be evaluated. Risk factors and hallmark proteins from Parkinson's disease (PD; SNCA, Parkin, PINK1, LRRK2, PARK7), Huntington's disease (HD; Htt, TGM1, TGM2), Lewy Body disease (LBD; TMEM175, GBA), and amyotrophic lateral sclerosis/frontotemporal disease (ALS/FTD; VCP, FUS, TDP-43, TBK1, C90rf72, SQSTM1, CHCHD10, SOD1) were scanned for the presence of calmodulin binding domains and, within them, appropriate binding motifs. Binding domains and motifs were identified in multiple risk proteins, some of which are involved in multiple neurodegenerative diseases. The potential calmodulin binding profiles for risk proteins involved in HD, PD, LBD, and ALS/FTD coupled with other studies on proven binding proteins supports the central and potentially critical role for calmodulin in neurodegenerative events.

8.
BMC Neurosci ; 23(1): 10, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246032

RESUMO

Calcium dysregulation ("Calcium Hypothesis") is an early and critical event in Alzheimer's and other neurodegenerative diseases. Calcium binds to and regulates the small regulatory protein calmodulin that in turn binds to and regulates several hundred calmodulin binding proteins. Initial and continued research has shown that many calmodulin binding proteins mediate multiple events during the onset and progression of Alzheimer's disease, thus establishing the "Calmodulin Hypothesis". To gain insight into the general applicability of this hypothesis, the involvement of calmodulin in neuroinflammation in Alzheimer's, amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, frontotemporal dementia, and other dementias was explored. After a literature search for calmodulin binding, 11 different neuroinflammatory proteins (TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, ABCA1, CH3L1/YKL-40 and NLRP3) were scanned for calmodulin binding domains using the Calmodulin Target Database. This analysis revealed the presence of at least one binding domain within which visual scanning demonstrated the presence of valid binding motifs. Coupled with previous research that identified 13 other neuroinflammation linked proteins (BACE1, BIN1, CaMKII, PP2B, PMCA, NOS, NMDAR, AchR, Ado A2AR, Aß, APOE, SNCA, TMEM175), this work shows that at least 24 critical proteins involved in neuroinflammation are putative or proven calmodulin binding proteins. Many of these proteins are linked to multiple neurodegenerative diseases indicating that calmodulin binding proteins lie at the heart of neuroinflammatory events associated with multiple neurodegenerative diseases. Since many calmodulin-based pharmaceuticals have been successfully used to treat Huntington's and other neurodegenerative diseases, these findings argue for their immediate therapeutic implementation.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Humanos , Doenças Neuroinflamatórias
9.
Plant Cell Environ ; 45(4): 1127-1145, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102557

RESUMO

In nature, plants are frequently exposed to drought and bacterial pathogens simultaneously. However, information on how the drought and defence pathways interact and orchestrate global transcriptional regulation is limited. Here, we show that moderate drought stress enhances the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato DC3000. Using transcriptome meta-analysis, we found that drought and bacterial stress antagonistically modulate a large set of genes predominantly involved in salicylic acid (SA) and abscisic acid (ABA) signalling networks. We identified that the levels of SA and ABA are dynamically regulated during the course of stress. Importantly, under combined stress, drought through the ABA pathway downregulates the induction of Calmodulin-binding Protein 60 g (CBP60g) and Systemic Acquired Resistance Deficient 1 (SARD1), two transcription factors crucial for SA production upon bacterial infection. We also identified an important role of NPR1-LIKE PROTEIN 3 and 4 (NPR3/4) transcriptional repressors in the drought-mediated negative regulation of CBP60g/SARD1 expression. Using a genetic approach, we show that CBP60g/SARD1 expression is the key determinant of plant defence against bacterial pathogens under combined stress. Thus, these transcription factors act as critical nodes for the crosstalk between drought and bacterial stress signalling under combined stress in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Life Sci ; 290: 120247, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954214

RESUMO

AIMS: The Ca2+-binding protein calmodulin (CaM) modulates numerous target proteins but is produced insufficiently to bind all of them, generating a limiting CaM equilibrium. Menopause increases cardiac morbidity; however, it is unknown if the cardiac CaM equilibrium is affected by estrogen. We devised an assay to assess the effects of ovariectomy and estrogen treatment on the cardiac CaM equilibrium. MATERIALS AND METHODS: Sprague-Dawley rats received sham surgery or ovariectomy, followed by 2-week treatment with vehicle or 17ß-estradiol. Ca2+-saturated left ventricular (LV) lysates were processed through CaM sepharose columns, which retained CaM-binding proteins unoccupied by endogenous CaM. Eluants therefrom were subjected to a competitive binding assay against purified CaM and a CaM biosensor to assess the amounts of unoccupied CaM-binding sites. LV cellular composition was assessed by immunohistochemistry. KEY FINDINGS: LV eluants processed from sham animals reduce biosensor response by ~32%, indicating baseline presence of unoccupied CaM-binding sites and a limiting CaM equilibrium. Ovariectomy exacerbates the limiting CaM equilibrium, reducing biosensor response by ~65%. 17ß-estradiol treatment equalizes the difference between sham and ovariectomized animals. These changes reflect whole tissue responses and are not mirrored by changes in total surface areas of cardiomyocytes and fibroblasts. Consistently, Ca2+-dependent, but not Ca2+-independent, interaction between CaM and the cardiac inositol trisphosphate receptor (IP3R) is reduced following ovariectomy and is restored by subsequent 17ß-estradiol treatment. SIGNIFICANCE: Our assay provides a new parameter to assess tissue CaM equilibrium. The exacerbated limiting CaM equilibrium following estrogen loss may contribute to cardiac morbidity and is prevented by estrogen treatment.


Assuntos
Calmodulina/metabolismo , Estradiol/farmacologia , Miócitos Cardíacos/metabolismo , Animais , Sítios de Ligação , Sinalização do Cálcio/efeitos dos fármacos , Calmodulina/efeitos dos fármacos , Estradiol/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ovariectomia , Pós-Menopausa/fisiologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley
11.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067061

RESUMO

Intraneuronal amyloid ß (Aß) oligomer accumulation precedes the appearance of amyloid plaques or neurofibrillary tangles and is neurotoxic. In Alzheimer's disease (AD)-affected brains, intraneuronal Aß oligomers can derive from Aß peptide production within the neuron and, also, from vicinal neurons or reactive glial cells. Calcium homeostasis dysregulation and neuronal excitability alterations are widely accepted to play a key role in Aß neurotoxicity in AD. However, the identification of primary Aß-target proteins, in which functional impairment initiating cytosolic calcium homeostasis dysregulation and the critical point of no return are still pending issues. The micromolar concentration of calmodulin (CaM) in neurons and its high affinity for neurotoxic Aß peptides (dissociation constant ≈ 1 nM) highlight a novel function of CaM, i.e., the buffering of free Aß concentrations in the low nanomolar range. In turn, the concentration of Aß-CaM complexes within neurons will increase as a function of time after the induction of Aß production, and free Aß will rise sharply when accumulated Aß exceeds all available CaM. Thus, Aß-CaM complexation could also play a major role in neuronal calcium signaling mediated by calmodulin-binding proteins by Aß; a point that has been overlooked until now. In this review, we address the implications of Aß-CaM complexation in the formation of neurotoxic Aß oligomers, in the alteration of intracellular calcium homeostasis induced by Aß, and of dysregulation of the calcium-dependent neuronal activity and excitability induced by Aß.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Calmodulina/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Animais , Humanos
12.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809535

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that manifests with rest tremor, muscle rigidity and movement disturbances. At the microscopic level it is characterized by formation of specific intraneuronal inclusions, called Lewy bodies (LBs), and by a progressive loss of dopaminergic neurons in the striatum and substantia nigra. All living cells, among them neurons, rely on Ca2+ as a universal carrier of extracellular and intracellular signals that can initiate and control various cellular processes. Disturbances in Ca2+ homeostasis and dysfunction of Ca2+ signaling pathways may have serious consequences on cells and even result in cell death. Dopaminergic neurons are particularly sensitive to any changes in intracellular Ca2+ level. The best known and studied Ca2+ sensor in eukaryotic cells is calmodulin. Calmodulin binds Ca2+ with high affinity and regulates the activity of a plethora of proteins. In the brain, calmodulin and its binding proteins play a crucial role in regulation of the activity of synaptic proteins and in the maintenance of neuronal plasticity. Thus, any changes in activity of these proteins might be linked to the development and progression of neurodegenerative disorders including PD. This review aims to summarize published results regarding the role of calmodulin and its binding proteins in pathology and pathogenesis of PD.


Assuntos
Calmodulina/metabolismo , Doença de Parkinson/metabolismo , Animais , Sinalização do Cálcio , Homeostase , Humanos , Ligação Proteica , Especificidade por Substrato
13.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572113

RESUMO

Calmodulin (CaM) is an essential calcium-binding protein within eukaryotes. CaM binds to calmodulin-binding proteins (CaMBPs) and influences a variety of cellular and developmental processes. In this study, we used immunoprecipitation coupled with mass spectrometry (LC-MS/MS) to reveal over 500 putative CaM interactors in the model organism Dictyostelium discoideum. Our analysis revealed several known CaMBPs in Dictyostelium and mammalian cells (e.g., myosin, calcineurin), as well as many novel interactors (e.g., cathepsin D). Gene ontology (GO) term enrichment and Search Tool for the Retrieval of Interacting proteins (STRING) analyses linked the CaM interactors to several cellular and developmental processes in Dictyostelium including cytokinesis, gene expression, endocytosis, and metabolism. The primary localizations of the CaM interactors include the nucleus, ribosomes, vesicles, mitochondria, cytoskeleton, and extracellular space. These findings are not only consistent with previous work on CaM and CaMBPs in Dictyostelium, but they also provide new insight on their diverse cellular and developmental roles in this model organism. In total, this study provides the first in vivo catalogue of putative CaM interactors in Dictyostelium and sheds additional light on the essential roles of CaM and CaMBPs in eukaryotes.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Calmodulina/metabolismo , Dictyostelium/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a Calmodulina/análise , Proliferação de Células , Cromatografia Líquida de Alta Pressão/métodos , Dictyostelium/citologia , Dictyostelium/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/fisiologia , Proteômica/métodos , Proteínas de Protozoários/análise , Espectrometria de Massas em Tandem/métodos
14.
Front Endocrinol (Lausanne) ; 11: 568203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133016

RESUMO

17ß-Estradiol (E2) is the main estrogenic hormone in the body and exerts many cardiovascular protective effects. Via three receptors known to date, including estrogen receptors α (ERα) and ß (ERß) and the G protein-coupled estrogen receptor 1 (GPER, aka GPR30), E2 regulates numerous calcium-dependent activities in cardiovascular tissues. Nevertheless, effects of E2 and its receptors on components of the calcium signaling machinery (CSM), the underlying mechanisms, and the linked functional impact are only beginning to be elucidated. A picture is emerging of the reciprocality between estrogen biology and Ca2+ signaling. Therein, E2 and GPER, via both E2-dependent and E2-independent actions, moderate Ca2+-dependent activities; in turn, ERα and GPER are regulated by Ca2+ at the receptor level and downstream signaling via a feedforward loop. This article reviews current understanding of the effects of E2 and its receptors on the cardiovascular CSM and vice versa with a focus on mechanisms and combined functional impact. An overview of the main CSM components in cardiovascular tissues will be first provided, followed by a brief review of estrogen receptors and their Ca2+-dependent regulation. The effects of estrogenic agonists to stimulate acute Ca2+ signals will then be reviewed. Subsequently, E2-dependent and E2-independent effects of GPER on components of the Ca2+ signals triggered by other stimuli will be discussed. Finally, a case study will illustrate how the many mechanisms are coordinated to moderate Ca2+-dependent activities in the cardiovascular system.


Assuntos
Sinalização do Cálcio/fisiologia , Sistema Cardiovascular/metabolismo , Estrogênios/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Fenômenos Fisiológicos Cardiovasculares , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Vasodilatação/fisiologia
15.
Int J Mol Sci ; 21(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027906

RESUMO

The integral role of calmodulin in the amyloid pathway and neurofibrillary tangle formation in Alzheimer's disease was first established leading to the "Calmodulin Hypothesis". Continued research has extended our insight into the central function of the small calcium sensor and effector calmodulin and its target proteins in a multitude of other events associated with the onset and progression of this devastating neurodegenerative disease. Calmodulin's involvement in the contrasting roles of calcium/CaM-dependent kinase II (CaMKII) and calcineurin (CaN) in long term potentiation and depression, respectively, and memory impairment and neurodegeneration are updated. The functions of the proposed neuronal biomarker neurogranin, a calmodulin binding protein also involved in long term potentiation and depression, is detailed. In addition, new discoveries into calmodulin's role in regulating glutamate receptors (mGluR, NMDAR) are overviewed. The interplay between calmodulin and amyloid beta in the regulation of PMCA and ryanodine receptors are prime examples of how the buildup of classic biomarkers can underly the signs and symptoms of Alzheimer's. The role of calmodulin in the function of stromal interaction molecule 2 (STIM2) and adenosine A2A receptor, two other proteins linked to neurodegenerative events, is discussed. Prior to concluding, an analysis of how targeting calmodulin and its binding proteins are viable routes for Alzheimer's therapy is presented. In total, calmodulin and its binding proteins are further revealed to be central to the onset and progression of Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Calmodulina/genética , Receptor A2A de Adenosina/genética , Molécula 2 de Interação Estromal/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cálcio/metabolismo , Sinalização do Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/classificação , Proteínas de Ligação a Calmodulina/genética , Humanos , Neurogranina/genética , Neurônios/metabolismo , Neurônios/patologia , Receptores de Glutamato/genética
16.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456244

RESUMO

Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.


Assuntos
Calmodulina/metabolismo , Carcinogênese/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Calmodulina/genética , Carcinogênese/genética , Pleiotropia Genética , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética
17.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054133

RESUMO

Dictyostelium discoideum is gaining increasing attention as a model organism for the study of calcium binding and calmodulin function in basic biological events as well as human diseases. After a short overview of calcium-binding proteins, the structure of Dictyostelium calmodulin and the conformational changes effected by calcium ion binding to its four EF hands are compared to its human counterpart, emphasizing the highly conserved nature of this central regulatory protein. The calcium-dependent and -independent motifs involved in calmodulin binding to target proteins are discussed with examples of the diversity of calmodulin binding proteins that have been studied in this amoebozoan. The methods used to identify and characterize calmodulin binding proteins is covered followed by the ways Dictyostelium is currently being used as a system to study several neurodegenerative diseases and how it could serve as a model for studying calmodulinopathies such as those associated with specific types of heart arrythmia. Because of its rapid developmental cycles, its genetic tractability, and a richly endowed stock center, Dictyostelium is in a position to become a leader in the field of calmodulin research.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Calmodulina/metabolismo , Dictyostelium/metabolismo , Proteínas de Protozoários/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/química , Proteínas de Ligação a Calmodulina/química , Dictyostelium/química , Motivos EF Hand , Humanos , Modelos Moleculares , Ligação Proteica , Infecções por Protozoários/parasitologia , Proteínas de Protozoários/química
18.
Cells ; 7(11)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380624

RESUMO

Despite the increased focus on the role of calcium in the neuronal ceroid lipofuscinoses (NCLs, also known as Batten disease), links between calcium signalling and the proteins associated with the disease remain to be identified. A central protein in calcium signalling is calmodulin (CaM), which regulates many of the same cellular processes affected in the NCLs. In this study, we show that 11 of the 13 NCL proteins contain putative CaM-binding domains (CaMBDs). Many of the missense mutations documented from NCL patients overlap with the predicted CaMBDs and are often key residues of those domains. The two NCL proteins lacking such domains, CLN7 and CLN11, share a commonality in undergoing proteolytic processing by cathepsin L, which contains a putative CaMBD. Since CaM appears to have both direct and indirect roles in the NCLs, targeting it may be a valid therapeutic approach for treating the disease.

19.
Front Plant Sci ; 6: 809, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528296

RESUMO

Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.

20.
J Alzheimers Dis ; 46(3): 553-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25812852

RESUMO

The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-ß plaques including amyloid-ß protein precursor, ß-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Humanos , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Receptores Colinérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...