Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29690, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707424

RESUMO

Plasmodium falciparum heat shock protein 70-1 (PfHsp70-1) and PfHsp70-z are essential cytosol localised chaperones of the malaria parasite. The two chaperones functionally interact to drive folding of several parasite proteins. While PfHsp70-1 is regarded as a canonical Hsp70 chaperone, PfHsp70-z belongs to the Hsp110 subcluster. One of the distinctive features of PfHsp70-z is its unique linker segment which delineates it from canonical Hsp70. In the current study, we elucidated the role of the linker in regulating Hsp70 self-association and client selection. Using recombinant forms of PfHsp70-1, PfHsp70-z and E. coli Hsp70 (DnaK) and their respective linker switch mutants we investigated self-association of the chaperones using surface plasmon resonance (SPR) analysis. The effect of the changes on client selectivity was investigated on DnaK and its mutant through co-affinity chromatography coupled to LC-MS analysis. Our findings demonstrated that the linker is important for both Hsp70 self-association and client binding.

2.
Data Brief ; 37: 107177, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34141839

RESUMO

Here, we present data on characterisation of the linker of Plasmodium falciparum Hsp110 (PfHsp70-z) relative to the linker of canonical Hsp70s in support of a co-published article [1]. The linker of PfHsp70-z was switched with that of canonical Hsp70s, represented by PfHsp70-1 (cytosolic counterpart of PfHsp70-z) and E. coli Hsp70/DnaK. The datasets represent comparative analyses of PfHsp70-z, PfHsp70-1, and E. coli DnaK, relative to their linker switch mutants; PfHsp70-zLS, PfHsp70-1LS, DnaKLS, respectively. Intrinsic and extrinsic fluorescence spectroscopic analyses were employed to elucidate effects of the mutations on the structural features of the proteins. The structural conformations of the proteins were analysed in the absence as well as presence of nucleotides. In addition, stability of the proteins to stress (pH changes and urea) was also determined. Surface plasmon resonance (SPR) was employed to determine affinity of the proteins for ATP. The relative affinities of PfHsp70-z and PfHsp70-1 for the parasite cytosol localised, J domain co-chaperone, PfHsp40, was determined by SPR analysis. The effect of the linker of PfHsp70-z on the interaction of DnaKLS with DnaJ (a co-chaperone of DnaK), was similarly determined. These data could be used for future investigations involving protein-protein/ligand interactions as described in [1]. The raw data obtained using the various techniques here described are hosted in the Mendeley Data repository at [2].

3.
Cells ; 10(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525518

RESUMO

Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.


Assuntos
Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Humanos , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/fisiopatologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA