Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci. agric. ; 76(4): 274-280, July-Aug. 2019. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-740880

RESUMO

Knowing the spatial variability of sugarcane biomass in the early stages of development may help growers in their management decision-making. Proximal canopy sensing is a promising technology that can identify this variability but is limited to quantifying plant-specific parameters. In this study, we evaluated whether biometric variables integrated with canopy reflectance data can assist in the generation of models for early-stage sugarcane biomass prediction. To substantiate this assertion, four sugarcane-producing fields were measured with an active crop canopy sensor and 30 sampling plots were selected for manually quantifying chlorophyll content, plant height, stalk number and aboveground biomass. We determined that Random Forest and Multiple Linear Regression models are similarly able to predict biomass, and that associating biometric variables such as number of stalks and plant height with reflectance data can assist model performance, depending on the attributes selected. This indicates that, when estimating biomass in the early stages, sugarcane growers can carry out site-specific management in order to increase yield and reduce the use of inputs.(AU)

2.
Sci. agric ; 76(4): 274-280, July-Aug. 2019. ilus, tab, graf
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1497788

RESUMO

Knowing the spatial variability of sugarcane biomass in the early stages of development may help growers in their management decision-making. Proximal canopy sensing is a promising technology that can identify this variability but is limited to quantifying plant-specific parameters. In this study, we evaluated whether biometric variables integrated with canopy reflectance data can assist in the generation of models for early-stage sugarcane biomass prediction. To substantiate this assertion, four sugarcane-producing fields were measured with an active crop canopy sensor and 30 sampling plots were selected for manually quantifying chlorophyll content, plant height, stalk number and aboveground biomass. We determined that Random Forest and Multiple Linear Regression models are similarly able to predict biomass, and that associating biometric variables such as number of stalks and plant height with reflectance data can assist model performance, depending on the attributes selected. This indicates that, when estimating biomass in the early stages, sugarcane growers can carry out site-specific management in order to increase yield and reduce the use of inputs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA