RESUMO
The continued interest in 2D carbon allotropes stems from their unique structural and electronic characteristics, which are crucial for diverse applications. This work theoretically introduces PHOTH-Graphene (PHOTH-G), a novel 2D planar carbon allotrope formed by 4-5-6-7-8 carbon rings. PHOTH-G emerges as a narrow band gap semiconducting material with low formation energy, demonstrating good stability under thermal and mechanical conditions. This material has slight mechanical anisotropy with Young modulus and Poisson ratios varying between 7.08-167.8 GPa and 0.21-0.96. PHOTH-G presents optical activity restricted to the visible range. Li atoms adsorbed on its surface have a migration barrier averaging 0.38 eV.
RESUMO
The category of 2D carbon allotropes has gained considerable interest due to its outstanding optoelectronic and mechanical characteristics, which are crucial for various device applications, including energy storage. This study uses density functional theory calculations, ab initio molecular dynamics (AIMD), and classical reactive molecular dynamics (MD) simulations to introduce TODD-Graphene, an innovative 2D planar carbon allotrope with a distinctive porous arrangement comprising 3-8-10-12 carbon rings. TODD-G exhibits intrinsic metallic properties with a low formation energy and stability in thermal and mechanical behavior. Calculations indicate a substantial theoretical capacity for adsorbing Li atoms, revealing a low average diffusion barrier of 0.83 eV. The metallic framework boasts excellent conductivity and positioning TODD-G as an active layer for superior lithium-ion battery efficiency. Charge carrier mobility calculations for electrons and holes in TODD-G surpass those of graphene. Classical reactive MD simulation results affirm its structural integrity, maintaining stability without bond reconstructions at 2200 K.
RESUMO
CONTEXT: Popgraphene (PopG) is a two-dimensional carbon-based material with fused pentagonal and octagonal rings. Like graphene, it exhibits a metallic band gap and exceptional thermal, dynamic, and mechanical stability. Here, we theoretically study the electronic and structural properties of PopG monolayers, including their doped and vacancy-endowed versions, as O[Formula: see text] adsorbers. Our findings show that pristine and vacancy-endowed PopG sheets have a comparable ability to adsorb O[Formula: see text] molecules, with adsorption energies ranging from [Formula: see text]0.57 to [Formula: see text]0.59 eV (physisorption). In these cases, octagonal rings play a dominant role in the adsorption mechanism. Platinum and Silicon doping enhance the O[Formula: see text] adsorption in areas close to the octagonal rings, resulting in adsorption energies ranging from [Formula: see text]1.13 to [Formula: see text]2.56 eV (chemisorption). Furthermore, we computed the recovery time for the adsorbed O[Formula: see text] molecules. The results suggest that PopG/O[Formula: see text] interaction in pristine and vacancy-endowed cases can change the PopG electronic properties before O[Formula: see text] diffusion. METHODS: Density Functional Theory (DFT) simulations, with Van der Waals corrections (DFT-D, within the Grimme scheme), were performed to study the structural and electronic properties of PopG/O[Formula: see text] systems using the DMol3 code within the Biovia Materials Studio software. The exchange and correlation functions are treated within the generalized gradient approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE) functional. We used the double-zeta plus polarization (DZP) for the basis set in these cases. We also considered the BSSE correction through the counterpoise method and the nuclei-valence electron interactions by including semi-core DFT pseudopotentials.
RESUMO
Carbon-based tubular materials have sparked a great interest in future electronics and optoelectronics device applications. In this work, we computationally studied the mechanical properties of nanotubes generated from popgraphene (PopNTs). Popgraphene is a 2D carbon allotrope composed of 5-8-5 rings. We carried out fully atomistic reactive (ReaxFF) molecular dynamics for PopNTs of different chiralities ( n,0 and 0,n ) and/or diameters and at different temperatures (from 300 up to 1200â K). Results showed that the tubes are thermally stable (at least up to 1200â K). All tubes presented stress/strain curves with a quasi-linear behavior followed by an abrupt drop of stress values. Interestingly, armchair-like PopNTs ( 0,n ) can stand a higher strain load before fracturing when contrasted to the zigzag-like ones ( n,0 ). Moreover, it was obtained that Young's modulus (YMod ) (750-900â GPa) and ultimate strength (σUS ) (120-150â GPa) values are similar to the ones reported for conventional armchair and zigzag carbon nanotubes. YMod values obtained for PopNTs are not significantly temperature-dependent. While the σUS values for the 0,n showed a quasi-linear dependence with the temperature, the n,0 exhibited no clear trends.
RESUMO
Popgraphene (PopG) is a new 2D planar carbon allotrope which is composed of 5-8-5 carbon rings. PopG is intrinsically metallic and possesses excellent thermal and mechanical stability. In this work, we report a detailed study of the thermal effects on the mechanical properties of PopG membranes using fully-atomistic reactive (ReaxFF) molecular dynamics simulations. Our results showed that PopG presents very distinct fracture mechanisms depending on the temperature and direction of the applied stretching. The main fracture dynamics trends are temperature independent and exhibit an abrupt rupture followed by fast crack propagation. The reason for this anisotropy is due to the fact that y-direction stretching leads to a deformation in the shape of the rings that cause the breaking of bonds in the pentagon-octagon and pentagon-pentagon ring connections, which is not observed for the x-direction. PopG is less stiff than graphene membranes, but the Young's modulus value is only 15 % smaller.
RESUMO
A structurally stable microporous metallic carbon allotrope, poly(spiro[2.2]penta-1,4-diyne) or, for short, spiro-carbon, with I41 /amd (D4h ) symmetry is predicted by first-principles calculations using density functional theory (DFT). The calculations of electronic, vibrational, and structural properties show that spiro-carbon has lower relative energy than other elusive carbon allotropes such as T-Carbon and 1-diamondyne (Y-Carbon). Its structure can be pictured as a set of trans-cisoid-polyacetylene chains tangled and interconnected together by sp3 carbon atoms. Calculations reveal a metallic electronic structure arising from an "intrinsic doping" of trans-cisoid-polyacetylene chains with sp3 carbon atoms. Possible synthetic routes and various simulated spectra (XRD, NMR, and IR absorption) are provided in order to guide future efforts to synthesize this novel material.