RESUMO
The excess of minerals in the industrial substrates is detrimental for Saccharomyces cerevisiae ethanol fermentation performance. In this work, we sought to understand the effect of some of those minerals on the physiology of Dekkera bruxellensis. Three groups of minerals were classified on the basis of the aerobic growth profiles on glucose: neutrals (K+, Mg2+, P5+ and Zn2+), inducers (Mn2+ and Ca2+) and inhibitors (Al3+, Cu2+ and Fe2+). Cu2+ showed the highest mineral toxicity, and its effect was dependent of the level of medium aeration. On the other hand, copper stimulated respiration by increasing growth on respiratory carbon sources. Most growth inhibitors also hampered glucose fermentation, with changes in carbon distribution to metabolic routes dedicated to anabolic reactions and for alternative reduced co-factors oxidations to maintain cellular homeostasis. The negative effect of Cu2+ on yeast fermentation was partially alleviated by Mg2+ and Mn2+, similar to magnesium antagonism observed for S. cerevisiae. All these results might contribute to understand the action of these minerals in sugarcane substrates on the physiology of D. bruxellensis cells. Therefore, it represents one more step for the consolidation of the industrial use of this yeast in the production of fuel-ethanol as well as other biotechnological goods.
RESUMO
The advancement of knowledge about the physiology of Dekkera bruxellensis has shown its potential for the production of fuel ethanol very close to the conventional fermenting yeast S. cerevisiae. However, some aspects of its metabolism remain uncovered. In the present study, the respiro-fermentative parameters of D. bruxellensis GDB 248 were evaluated under different cultivation conditions. The results showed that sucrose was more efficiently converted to ethanol than glucose, regardless the nitrogen source, which points out for the industrial efficiency of this yeast in sucrose-based substrate. The blockage of the cytosolic acetate production incremented the yeast fermentative efficiency by 27% (in glucose) and 14% (in sucrose). On the other hand, the presence of nitrate as inducer of acetate production reducing the production of ethanol. Altogether, these results settled the hypothesis that acetate metabolism is the main constraint for ethanol production. Besides, this acetate-generating pathway seems to exert some regulatory action on the flux and distribution of the carbon flowing through the central metabolism. These physiological aspects were corroborated by the relative expression analysis of key genes in the crossroad to ethanol, acetate and biomass formation. All the results were discussed in the light of the industrial potential of this yeast.
Assuntos
Dekkera , Saccharomyces cerevisiae , Acetatos/metabolismo , Brettanomyces , Dekkera/genética , Dekkera/metabolismo , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sacarose/metabolismoRESUMO
Amycolatopsis sp. ATCC 39116 catabolizes ferulic acid by the non-oxidative deacetylation and ß-oxidation pathways to produce vanillin and vanillic acid, respectively. In submerged culture, vanillin productivity decreased more than 8-fold, when ferulic, p-coumaric, and caffeic acids were employed in pre-cultures of the microorganism in order to activate the ferulic acid catabolic pathways, resulting in a carbon redistribution since vanillic acid and guaiacol productivities increased more than 5-fold compared with control. In contrast, in surface culture, the effects of ferulic and sinapic acids in pre-cultures were totally opposite to those of the submerged culture, directing the carbon distribution into vanillin formation. In surface culture, more than 30% of ferulic acid can be used as carbon source for other metabolic processes, such as ATP regeneration. In this way, the intracellular ATP concentration remained constant during the biotransformation process by surface culture (100 µg ATP/mg protein), demonstrating a high energetic state, which can maintain active the non-oxidative deacetylation pathway. In contrast, in submerged culture, it decreased 3.15-fold at the end of the biotransformation compared with the initial content, showing a low energetic state, while the NAD+/NADH ratio (23.15) increased 1.81-fold. It seems that in submerged culture, low energetic and high oxidative states are the physiological conditions that can redirect the ferulic catabolism into ß-oxidative pathway and/or vanillin oxidation to produce vanillic acid.
Assuntos
Amycolatopsis/metabolismo , Ácidos Cumáricos/metabolismo , Trifosfato de Adenosina/metabolismo , Amycolatopsis/citologia , Amycolatopsis/crescimento & desenvolvimento , Biotecnologia , Biotransformação , Técnicas de Cultura , Metabolismo Energético , Imersão , Espaço Intracelular/metabolismo , Cinética , OxirreduçãoRESUMO
Dekkera bruxellensis is continuously changing its status in fermentation processes, ranging from a contaminant or spoiling yeast to a microorganism with potential to produce metabolites of biotechnological interest. In spite of that, several major aspects of its physiology are still poorly understood. As an acetogenic yeast, minimal oxygen concentrations are able to drive glucose assimilation to oxidative metabolism, in order to produce biomass and acetate, with consequent low yield in ethanol. In the present study, we used disulfiram to inhibit acetaldehyde dehydrogenase activity to evaluate the influence of cytosolic acetate on cell metabolism. D. bruxellensis was more tolerant to disulfiram than Saccharomyces cerevisiae and the use of different carbon sources revealed that the former yeast might be able to export acetate (or acetyl-CoA) from mitochondria to cytoplasm. Fermentation assays showed that acetaldehyde dehydrogenase inhibition re-oriented yeast central metabolism to increase ethanol production and decrease biomass formation. However, glucose uptake was reduced, which ultimately represents economical loss to the fermentation process. This might be the major challenge for future metabolic engineering enterprises on this yeast.
Assuntos
Acetatos/metabolismo , Dekkera/metabolismo , Etanol/metabolismo , Fermentação , Acetatos/análise , Aldeído Oxirredutases/antagonistas & inibidores , Carbono/metabolismo , Meios de Cultura , Dekkera/efeitos dos fármacos , Dissulfiram/farmacologia , Glucose/metabolismo , Microbiologia Industrial , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismoRESUMO
The monitoring of the content of polycyclic aromatic hydrocarbons (PAHs) is important for evaluating heavy oil products, especially those most likely to cause environmental impacts. In this study, a comparison between samples of heavy petroleum fractions, using different methods, was carried out. The calculation of carbon distribution and polycyclic aromatic contents was compared with other methods using Fourier transform infrared spectroscopy (FTIR). Therefore, it was possible to quickly estimate the aromatic content by the FTIR method, and the results showed consistency with those obtained through traditional methods. A rapid method, using extraction with dimethyl sulfoxide followed by FTIR measurements, was proposed and shown as particularly useful and reliable for a quick quantification of the PAH content, when compared to the traditional IP 346 method. Furthermore, the difference in total aromatic and PAH concentrations may be more clearly established. This rapid method may be used for the evaluation of PAH content in samples obtained from studies for their removal from complex heavy oil fractions.