Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 608
Filtrar
1.
ACS Nano ; 18(24): 15332-15357, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38837178

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of mortality and therefore pose a significant threat to human health. Cardiac electrophysiology plays a crucial role in the investigation and treatment of CVDs, including arrhythmia. The long-term and accurate detection of electrophysiological activity in cardiomyocytes is essential for advancing cardiology and pharmacology. Regarding the electrophysiological study of cardiac cells, many micronano bioelectric devices and systems have been developed. Such bioelectronic devices possess unique geometric structures of electrodes that enhance quality of electrophysiological signal recording. Though planar multielectrode/multitransistors are widely used for simultaneous multichannel measurement of cell electrophysiological signals, their use for extracellular electrophysiological recording exhibits low signal strength and quality. However, the integration of three-dimensional (3D) multielectrode/multitransistor arrays that use advanced penetration strategies can achieve high-quality intracellular signal recording. This review provides an overview of the manufacturing, geometric structure, and penetration paradigms of 3D micronano devices, as well as their applications for precise drug screening and biomimetic disease modeling. Furthermore, this review also summarizes the current challenges and outlines future directions for the preparation and application of micronano bioelectronic devices, with an aim to promote the development of intracellular electrophysiological platforms and thereby meet the demands of emerging clinical applications.


Assuntos
Miócitos Cardíacos , Humanos , Fenômenos Eletrofisiológicos , Animais
3.
Europace ; 26(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864516

RESUMO

AIMS: Electroanatomical adaptations during the neonatal to adult phase have not been comprehensively studied in preclinical animal models. To explore the impact of age as a biological variable on cardiac electrophysiology, we employed neonatal and adult guinea pigs, which are a recognized animal model for developmental research. METHODS AND RESULTS: Electrocardiogram recordings were collected in vivo from anaesthetized animals. A Langendorff-perfusion system was employed for the optical assessment of action potentials and calcium transients. Optical data sets were analysed using Kairosight 3.0 software. The allometric relationship between heart weight and body weight diminishes with age, it is strongest at the neonatal stage (R2 = 0.84) and abolished in older adults (R2 = 1E-06). Neonatal hearts exhibit circular activation, while adults show prototypical elliptical shapes. Neonatal conduction velocity (40.6 ± 4.0 cm/s) is slower than adults (younger: 61.6 ± 9.3 cm/s; older: 53.6 ± 9.2 cm/s). Neonatal hearts have a longer action potential duration (APD) and exhibit regional heterogeneity (left apex; APD30: 68.6 ± 5.6 ms, left basal; APD30: 62.8 ± 3.6), which was absent in adults. With dynamic pacing, neonatal hearts exhibit a flatter APD restitution slope (APD70: 0.29 ± 0.04) compared with older adults (0.49 ± 0.04). Similar restitution characteristics are observed with extrasystolic pacing, with a flatter slope in neonates (APD70: 0.54 ± 0.1) compared with adults (younger: 0.85 ± 0.4; older: 0.95 ± 0.7). Neonatal hearts display unidirectional excitation-contraction coupling, while adults exhibit bidirectionality. CONCLUSION: Postnatal development is characterized by transient changes in electroanatomical properties. Age-specific patterns can influence cardiac physiology, pathology, and therapies for cardiovascular diseases. Understanding heart development is crucial to evaluating therapeutic eligibility, safety, and efficacy.


Assuntos
Potenciais de Ação , Adaptação Fisiológica , Animais Recém-Nascidos , Animais , Cobaias , Fatores Etários , Frequência Cardíaca/fisiologia , Eletrocardiografia , Envelhecimento/fisiologia , Preparação de Coração Isolado , Sinalização do Cálcio , Masculino , Coração/fisiologia , Imagens com Corantes Sensíveis à Voltagem , Fatores de Tempo , Peso Corporal , Sistema de Condução Cardíaco/fisiologia , Feminino
4.
Methods Mol Biol ; 2796: 211-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38856904

RESUMO

The dynamic clamp technique has emerged as a powerful tool in the field of cardiac electrophysiology, enabling researchers to investigate the intricate dynamics of ion currents in cardiac cells. Potassium channels play a critical role in the functioning of cardiac cells and the overall electrical stability of the heart. This chapter provides a comprehensive overview of the methods and applications of dynamic clamp in the study of key potassium currents in cardiac cells. A step-by-step guide is presented, detailing the experimental setup and protocols required for implementing the dynamic clamp technique in cardiac cell studies. Special attention is given to the design and construction of a dynamic clamp setup with Real Time eXperimental Interface, configurations, and the incorporation of mathematical models to mimic ion channel behavior. The chapter's core focuses on applying dynamic clamp to elucidate the properties of various potassium channels in cardiac cells. It discusses how dynamic clamp can be used to investigate channel kinetics, voltage-dependent properties, and the impact of different potassium channel subtypes on cardiac electrophysiology. The chapter will also include examples of specific dynamic clamp experiments that studied potassium currents or their applications in cardiac cells.


Assuntos
Miócitos Cardíacos , Técnicas de Patch-Clamp , Canais de Potássio , Técnicas de Patch-Clamp/métodos , Canais de Potássio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Humanos , Ativação do Canal Iônico , Potássio/metabolismo , Cinética
5.
Biomedicines ; 12(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38927420

RESUMO

A sodium current (INa) reduction occurs in the setting of many acquired and inherited conditions and is associated with cardiac conduction slowing and increased arrhythmia risks. The sodium channel blocker mexiletine has been shown to restore the trafficking of mutant sodium channels to the membrane. However, these studies were mostly performed in heterologous expression systems using high mexiletine concentrations. Moreover, the chronic effects on INa in a non-diseased cardiomyocyte environment remain unknown. In this paper, we investigated the chronic and acute effects of a therapeutic dose of mexiletine on INa and the action potential (AP) characteristics in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) of a healthy individual. Control hiPSC-CMs were incubated for 48 h with 10 µM mexiletine or vehicle. Following the wash-out of mexiletine, patch clamp analysis and immunocytochemistry experiments were performed. The incubation of hiPSC-CMs for 48 h with mexiletine (followed by wash-out) induced a significant increase in peak INa of ~75%, without any significant change in the voltage dependence of (in)activation. This was accompanied by a significant increase in AP upstroke velocity, without changes in other AP parameters. The immunocytochemistry experiments showed a significant increase in membrane Nav1.5 fluorescence following a 48 h incubation with mexiletine. The acute re-exposure of hiPSC-CMs to 10 µM mexiletine resulted in a small but significant increase in AP duration, without changes in AP upstroke velocity, peak INa density, or the INa voltage dependence of (in)activation. Importantly, the increase in the peak INa density and resulting AP upstroke velocity induced by chronic mexiletine incubation was not counteracted by the acute re-administration of the drug. In conclusion, the chronic administration of a clinically relevant concentration of mexiletine increases INa density in non-diseased hiPSC-CMs, likely by enhancing the membrane trafficking of sodium channels. Our findings identify mexiletine as a potential therapeutic strategy to enhance and/or restore INa and cardiac conduction.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38924224

RESUMO

INTRODUCTION: Training in clinical cardiac electrophysiology (CCEP) involves the development of catheter handling skills to safely deliver effective treatment. Objective data from analysis of ablation data for evaluating trainee of CCEP procedures has not previously been possible. Using the artificial intelligence cloud-based system (CARTONET), we assessed the impact of trainee progress through ablation procedural quality. METHODS: Lesion- and procedure-level data from all de novo atrial fibrillation (AF) and cavotricuspid isthmus (CTI) ablations involving first-year (Y1) or second-year (Y2) fellows across a full year of fellowship was curated within Cartonet. Lesions were automatically assigned to anatomic locations. RESULTS: Lesion characteristics, including contact force, catheter stability, impedance drop, ablation index value, and interlesion time/distance were similar over each training year. Anatomic location and supervising operator significantly affected catheter stability. The proportion of lesion sets delivered independently and of lesions delivered by the trainee increased steadily from the first quartile of Y1 to the last quartile of Y2. Trainee perception of difficult regions did not correspond to objective measures. CONCLUSION: Objective ablation data from Cartonet showed that the progression of trainees through CCEP training does not impact lesion-level measures of treatment efficacy (i.e., catheter stability, impedance drop). Data demonstrates increasing independence over a training fellowship. Analyses like these could be useful to inform individualized training programs and to track trainee's progress. It may also be a useful quality assurance tool for ensuring ongoing consistency of treatment delivered within training institutions.

7.
Heart Rhythm ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752906

RESUMO

BACKGROUND: Rapid technologic development and expansion of procedural expertise have led to widespread proliferation of catheter-based electrophysiology procedures. It is unclear whether these advances come at cost to patient safety. OBJECTIVE: This meta-analysis aimed to assess complication rates after modern electrophysiology procedures during the lifetime of the procedures. METHODS: A comprehensive search was performed to identify relevant data published before May 30, 2023. Studies were included if they met the following inclusion criteria: prospective trials or registries, including comprehensive complications data; and patients undergoing atrial fibrillation ablation, ventricular tachyarrhythmia ablation, leadless cardiac pacemaker implantation, and percutaneous left atrial appendage occlusion. Pooled incidences of procedure-related complications were individually assessed by random effects models to account for heterogeneity. Temporal trends in complications were investigated by clustering trials by publication year (2000-2018 vs 2019-2023). RESULTS: A total of 174 studies (43,914 patients) met criteria for analysis: 126 studies of atrial fibrillation ablation (n = 24,057), 25 studies of ventricular tachyarrhythmia ablation (n = 1781), 21 studies of leadless cardiac pacemaker (n = 8896), and 18 studies of left atrial appendage occlusion (n = 9180). The pooled incidences of serious procedure-related complications (3.49% [2000-2018] vs 3.05% [2019-2023]; P < .001), procedure-related stroke (0.46% vs 0.28%; P = .002), pericardial effusion requiring intervention (1.02% vs 0.83%; P = .037), and procedure-related death (0.15% vs 0.06%; P = .003) significantly decreased over time. However, there was no significant difference in the incidence of vascular complications over time (1.86% vs 1.88%; P = .888). CONCLUSION: Despite an increase in cardiac electrophysiology procedures, procedural safety has improved over time.

8.
Cureus ; 16(4): e59057, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38803756

RESUMO

BRASH syndrome is a syndrome that comprises bradycardia, renal failure, atrioventricular nodal block, shock, and hyperkalemia. This syndrome is usually associated with a junctional rhythm. Early recognition of this clinical entity is crucial for appropriate management. In this case report, we describe a 70-year-old female who presented with BRASH syndrome-induced atrial fibrillation with a slow ventricular response.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38807744

RESUMO

Computational models of cardiac electrophysiology have gradually matured during the past few decades and are now being personalised to provide patient-specific therapy guidance for improving suboptimal treatment outcomes. The predictive features of these personalised electrophysiology models hold the promise of providing optimal treatment planning, which is currently limited in the clinic owing to reliance on a population-based or average patient approach. The generation of a personalised electrophysiology model entails a sequence of steps for which a range of activation mapping, calibration methods and therapy simulation pipelines have been suggested. However, the optimal methods that can potentially constitute a clinically relevant in silico treatment are still being investigated and face limitations, such as uncertainty of electroanatomical data recordings, generation and calibration of models within clinical timelines and requirements to validate or benchmark the recovered tissue parameters. This paper is aimed at reporting techniques on the personalisation of cardiac computational models, with a focus on calibrating cardiac tissue conductivity based on electroanatomical mapping data.

10.
Comput Methods Programs Biomed ; 251: 108189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728827

RESUMO

BACKGROUND AND OBJECTIVE: Simulation of cardiac electrophysiology (CEP) is an important research tool that is increasingly being adopted in industrial and clinical applications. Typical workflows for CEP simulation consist of a sequence of processing stages starting with building an anatomical model and then calibrating its electrophysiological properties to match observable data. While the calibration stages are common and generalizable, most CEP studies re-implement these steps in complex and highly variable workflows. This lack of standardization renders the execution of computational CEP studies in an efficient, robust, and reproducible manner a significant challenge. Here, we propose ForCEPSS as an efficient and robust, yet flexible, software framework for standardizing CEP simulation studies. METHODS AND RESULTS: Key processing stages of CEP simulation studies are identified and implemented in a standardized workflow that builds on openCARP1 Plank et al. (2021) and the Python-based carputils2 framework. Stages include (i) the definition and initialization of action potential phenotypes, (ii) the tissue scale calibration of conduction properties, (iii) the functional initialization to approximate a limit cycle corresponding to the dynamic reference state according to an experimental protocol, and, (iv) the execution of the CEP study where the electrophysiological response to a perturbation of the limit cycle is probed. As an exemplar application, we employ ForCEPSS to prepare a CEP study according to the Virtual Arrhythmia Risk Prediction protocol used for investigating the arrhythmogenic risk of developing infarct-related ventricular tachycardia (VT) in ischemic cardiomyopathy patients. We demonstrate that ForCEPSS enables a fully automated execution of all stages of this complex protocol. CONCLUSION: ForCEPSS offers a novel comprehensive, standardized, and automated CEP simulation workflow. The high degree of automation accelerates the execution of CEP simulation studies, reduces errors, improves robustness, and makes CEP studies reproducible. Verification of simulation studies within the CEP modeling community is thus possible. As such, ForCEPSS makes an important contribution towards increasing transparency, standardization, and reproducibility of in silico CEP experiments.


Assuntos
Potenciais de Ação , Simulação por Computador , Software , Humanos , Arritmias Cardíacas/fisiopatologia , Eletrofisiologia Cardíaca , Calibragem , Modelos Cardiovasculares , Coração/fisiologia
11.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R109-R121, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38766772

RESUMO

Rhythmic feeding behavior is critical for regulating phase and amplitude in the ≈24-h variation of heart rate (RR intervals), ventricular repolarization (QT intervals), and core body temperature in mice. We hypothesized changes in cardiac electrophysiology associated with feeding behavior were secondary to changes in core body temperature. Telemetry was used to record electrocardiograms and core body temperature in mice during ad libitum-fed conditions and after inverting normal feeding behavior by restricting food access to the light cycle. Light cycle-restricted feeding modified the phase and amplitude of 24-h rhythms in RR and QT intervals, and core body temperature to realign with the new feeding time. Changes in core body temperature alone could not account for changes in phase and amplitude in the ≈24-h variation of the RR intervals. Heart rate variability analysis and inhibiting ß-adrenergic and muscarinic receptors suggested that changes in the phase and amplitude of 24-h rhythms in RR intervals were secondary to changes in autonomic signaling. In contrast, changes in QT intervals closely mirrored changes in core body temperature. Studies at thermoneutrality confirmed that the daily variation in QT interval, but not RR interval, primarily reflected daily changes in core body temperature (even in ad libitum-fed conditions). Correcting the QT interval for differences in core body temperature helped unmask QT interval prolongation after starting light cycle-restricted feeding and in a mouse model of long QT syndrome. We conclude feeding behavior alters autonomic signaling and core body temperature to regulate phase and amplitude in RR and QT intervals, respectively.NEW & NOTEWORTHY We used time-restricted feeding and thermoneutrality to demonstrate that different mechanisms regulate the 24-h rhythms in heart rate and ventricular repolarization. The daily rhythm in heart rate reflects changes in autonomic input, whereas daily rhythms in ventricular repolarization reflect changes in core body temperature. This novel finding has major implications for understanding 24-h rhythms in mouse cardiac electrophysiology, arrhythmia susceptibility in transgenic mouse models, and interpretability of cardiac electrophysiological data acquired in thermoneutrality.


Assuntos
Temperatura Corporal , Ritmo Circadiano , Comportamento Alimentar , Frequência Cardíaca , Camundongos Endogâmicos C57BL , Animais , Ritmo Circadiano/fisiologia , Frequência Cardíaca/fisiologia , Comportamento Alimentar/fisiologia , Masculino , Temperatura Corporal/fisiologia , Camundongos , Eletrocardiografia , Fotoperíodo , Fatores de Tempo , Sistema Nervoso Autônomo/fisiologia
12.
Technol Health Care ; 32(S1): 27-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759037

RESUMO

BACKGROUND: Myocardial ischemia, caused by insufficient myocardial blood supply, is a leading cause of human death worldwide. Therefore, it is crucial to prioritize the prevention and treatment of this condition. Mathematical modeling is a powerful technique for studying heart diseases. OBJECTIVE: The aim of this study was to discuss the quantitative relationship between extracellular potassium concentration and the degree of myocardial ischemia directly related to it. METHODS: A human cardiac electrophysiological multiscale model was developed to calculate action potentials of all cells simultaneously, enhancing efficiency over traditional reaction-diffusion models. RESULTS: Contrary to the commonly held view that myocardial ischemia is caused by an increase in extracellular potassium concentration, our simulation results indicate that level 1 ischemia is associated with a decrease in extracellular potassium concentration. CONCLUSION: This unusual finding provides a new perspective on the mechanisms underlying myocardial ischemia and has the potential to lead to the development of new diagnostic and treatment strategies.


Assuntos
Potenciais de Ação , Modelos Cardiovasculares , Isquemia Miocárdica , Potássio , Humanos , Isquemia Miocárdica/fisiopatologia , Potenciais de Ação/fisiologia , Potássio/metabolismo , Simulação por Computador , Fenômenos Eletrofisiológicos , Coração/fisiopatologia , Coração/fisiologia
13.
Heart Rhythm ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608920

RESUMO

BACKGROUND: Rhythm control is a cornerstone of atrial fibrillation (AF) management. Shorter time between diagnosis of AF and receipt of catheter ablation is associated with greater rates of therapy success. Previous work considered diagnosis-to-ablation time as a binary or categorical variable and did not consider the unique risk profile of patients after a referral for ablation was made. OBJECTIVE: The purpose of this study was to comprehensively assess the impact of diagnosis-to-ablation and referral-to-ablation time on postprocedural outcomes at a population level. METHODS: This observational cohort study included patients who received catheter ablation to treat AF in Ontario, Canada. Patient demographics, medical comorbidities, AF diagnosis date, ablation referral date, and ablation date were collected. The primary outcomes of interest included a composite of death and hospitalization/emergency department visit for AF, heart failure, or ischemic stroke. Multivariable Cox models assessed the impact of diagnosis-to-ablation and referral-to-ablation times on the primary outcome. RESULTS: Our cohort included 7472 patients who received ablation for de novo AF between April 1, 2016, and March 31, 2022. Median [interquartile range] diagnosis-to-ablation time was 718 [399-1274] days and median referral-to-ablation time was 221 [117-363] days. Overall, 911 patients (12.2%) had the composite endpoint within 1 year of ablation. Increasing diagnosis-to-ablation time was associated with a greater incidence for the primary outcome (hazard ratio [HR]1.02; 95% confidence interval [CI] 1.01-1.02 per month). Increasing referral-to-ablation time did not impact the primary outcome (HR 1.00; 95% CI 0.98-1.01 per month). CONCLUSION: Delays between AF diagnosis and ablation referral may contribute to adverse postprocedural outcomes and provide an opportunity for health system quality improvements.

14.
Biomed Pharmacother ; 174: 116513, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565056

RESUMO

Amiodarone is a benzofuran-based class III antiarrhythmic agent frequently used for the treatment of atrial and ventricular arrhythmias. The primary target of class III antiarrhythmic drugs is the cardiac human ether-a-go-go-related gene (hERG) encoded channel, KCNH2, commonly known as HERG, that conducts the rapidly activating delayed rectifier potassium current (IKr). Like other class III antiarrhythmic drugs, amiodarone exerts its physiologic effects mainly through IKr blockade, delaying the repolarization phase of the action potential and extending the effective refractory period. However, while many class III antiarrhythmics, including sotalol and dofetilide, can cause long QT syndrome (LQTS) that can progress to torsade de pointes, amiodarone displays less risk of inducing this fatal arrhythmia. This review article discusses the arrhythmogenesis in LQTS from the aspects of the development of early afterdepolarizations (EADs) associated with Ca2+ current, transmural dispersion of repolarization (TDR), as well as reverse use dependence associated with class III antiarrhythmic drugs to highlight electropharmacological effects of amiodarone on the myocardium.


Assuntos
Amiodarona , Antiarrítmicos , Amiodarona/farmacologia , Humanos , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Animais , Potenciais de Ação/efeitos dos fármacos , Canais Iônicos/metabolismo , Canais Iônicos/efeitos dos fármacos , Miocárdio/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Síndrome do QT Longo/fisiopatologia , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/tratamento farmacológico
15.
Curr Probl Cardiol ; 49(6): 102566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599558

RESUMO

Brugada syndrome (BrS) is a genetic disorder known for its characteristic electrocardiogram (ECG) patterns and increased risk of sudden cardiac death. Brugada phenocopy (BrP) presents similar ECG patterns but is distinguished by its reversible nature when the underlying conditions are resolved. This article delineates the intricacies of BrP, emphasizing its etiology, clinical presentation, diagnosis, treatment, and prognosis. The article categorizes BrP based on various underlying causes, including metabolic disturbances, myocardial infarction, and mechanical compression, among others. It also underscores the critical importance of differentiating BrP from BrS to avoid misdiagnosis and inappropriate treatment, such as unnecessary implantation of cardioverter-defibrillators. The reversible aspect of BrP underlines the necessity for an etiology-specific approach to treatment, which not only prevents cardiac death but also highlights the significance of understanding the dynamic nature of ECG patterns. Through an exploration of case studies and current research, this review advocates for increased awareness and further investigation into BrP. It aims to enhance the diagnostic accuracy and management strategies, thereby improving the prognosis for patients presenting with Brugada-like ECG patterns. The review culminates in a call for further research to close existing knowledge gaps and improve patient outcomes.


Assuntos
Síndrome de Brugada , Eletrocardiografia , Fenótipo , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/terapia , Síndrome de Brugada/fisiopatologia , Humanos , Diagnóstico Diferencial , Prognóstico , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/etiologia , Desfibriladores Implantáveis
16.
Heart Rhythm ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641221

RESUMO

BACKGROUND: Premature ventricular contraction (PVC) burden is a risk factor for heart failure and cardiovascular death in patients with structural heart disease. Long-term electrocardiographic monitoring can have a significant impact on PVC burden evaluation by further defining PVC distribution patterns. OBJECTIVE: This study aimed to ascertain the optimal duration of electrocardiographic monitoring to characterize PVC burden and to understand clinical characteristics associated with frequent PVCs and nonsustained ventricular tachycardia in a large US cohort. METHODS: Commercial data (iRhythm's Zio patch) from June 2011 to April 2022 were analyzed. Inclusion criteria were age >18 years, PVC burden ≥5%, and wear period ≥13 days. PVC burden cutoffs were determined on the basis of AHA/ACC/HRS guidelines for very frequent PVCs (10,000-20,000 during 24 hours). Patients were assigned to categories by PVC densities: low, <10%; moderate, 10% to <20%; and high, ≥20%. Mean measured error was assessed at baseline and daily until the wear period's end for overall PVC burden and different PVC densities. RESULTS: Analysis of 106,705 patch monitors revealed a study population with mean age of 70.6 ± 14.6 years (33.6% female). PVC burden was higher in male patients and those >65 years of age. PVC burden mean error decreased from 2.9% at 24 hours to 1.3% at 7 days and 0.7% at 10 days. Number of ventricular tachycardia episodes per patient increased with increasing PVC burden (P < .0001). CONCLUSION: Extending ambulatory monitoring beyond 24 hours to 7 days or more improves accuracy of assessing PVC burden. Ventricular tachycardia frequency and duration vary by initial PVC density, highlighting the need for prolonged cardiac monitoring.

17.
Biol Psychiatry Glob Open Sci ; 4(3): 100296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38560725

RESUMO

A common genetic risk factor for bipolar disorder is CACNA1C, a gene that is also critical for cardiac rhythm. The impact of CACNA1C mutations on bipolar patient cardiac rhythm is unknown. Here, we report the cardiac electrophysiological implications of a bipolar disorder-associated genetic risk factor in CACNA1C using patient induced pluripotent stem cell-derived cardiomyocytes. Results indicate that the CACNA1C bipolar disorder-related mutation causes cardiac electrical impulse conduction slowing mediated by impaired intercellular coupling via connexin 43 gap junctions. In vitro gene therapy to restore connexin 43 expression increased cardiac electrical impulse conduction velocity and protected against thioridazine-induced QT prolongation. Patients positive for bipolar disorder CACNA1C genetic risk factors may have elevated proarrhythmic risk for adverse events in response to psychiatric medications that slow conduction or prolong the QT interval. This in vitro diagnostic tool enables cardiac testing specific to patients with psychiatric disorders to determine their sensitivity to off-target effects of psychiatric medications.


Bipolar disorder (BD) is associated with genetic risk factors that present as mutations in specific genes. One gene commonly associated with BD is the calcium channel gene CACNA1C, found in the brain and the heart. The impact of CACNA1C mutation on cardiac function in patients with BD is unclear. Here, we created a BD CACNA1C mutant patient "heart in a dish" using patient-specific stem cells. Gene editing was also used to correct the mutation to create an isogenic control cell line. We found that the BD calcium gene mutation caused slow electrical impulse propagation, reduced the function of the calcium channel, and was associated with low intercellular communication channels called connexin. Using connexin gene therapy in vitro, the the cardiac dysfunction could be corrected and cured. This new approach offers patient-specific hearts-in-a-dish that can be used to ensure that medications will not cause heart racing or arrhythmias.

18.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598284

RESUMO

Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.


Assuntos
Miócitos Cardíacos , Redes Neurais de Computação , Humanos , Potenciais de Ação , Simulação por Computador , Bioensaio
19.
Cureus ; 16(2): e55211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38425331

RESUMO

This case report aims to highlight an atypical presentation of deceleration-dependent aberrancy (DDA) following the induction of general anesthesia in a patient with no known cardiac history. It emphasizes the critical role of intraoperative monitoring and the potential effects of anesthetic agents on the cardiac conduction system. A 46-year-old Hispanic male with no significant past medical or surgical history presented for surgical repair of a comminuted radial fracture. Following anesthesia induction with propofol, midazolam, and fentanyl, he developed a transient left bundle branch block (LBBB) exhibiting deceleration-dependent characteristics. Despite stable hemodynamics, the LBBB pattern appeared at heart rates below 60 beats per minute and resolved with heart rates above 90 beats per minute. This was managed intraoperatively with glycopyrrolate. Postoperative evaluations, including a 12-lead ECG, echocardiogram, and nuclear stress test, indicated normal biventricular function with a small to moderate reversible perfusion defect. The patient did not report cardiac symptoms postoperatively and did not prefer to undergo a coronary angiogram. This report underscores the importance of recognizing rate-dependent LBBB as a potential intraoperative complication, even in patients without pre-existing cardiac conditions. The transient nature of DDA, influenced by anesthetic agents and managed through careful monitoring and pharmacological intervention, highlights the necessity for vigilance in perioperative settings. This case contributes to a growing body of evidence suggesting that anesthetic management may require tailored approaches for patients experiencing or at risk for conduction abnormalities. This case illustrates the complexities of cardiac conduction disturbances such as DDA in the context of general anesthesia, serving as a reminder of the importance of thorough monitoring and the judicious use of rate-modifying drugs. It fosters a deeper understanding of the interaction between anesthesia and cardiac electrophysiology. Further research is needed to explore the mechanisms and management strategies for anesthetic-related cardiac conduction abnormalities.

20.
Radiol Clin North Am ; 62(3): 489-508, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553182

RESUMO

With the increasing prevalence of arrhythmias, the use of electrophysiology (EP) procedures has increased. Recent advancements in computed tomography (CT) technology have expanded its use in pre-assessments and post-assessments of EP procedures. CT provides high-resolution images, is noninvasive, and is widely available. This article highlights the strengths and weaknesses of cardiac CT in EP.


Assuntos
Ablação por Cateter , Técnicas Eletrofisiológicas Cardíacas , Humanos , Eletrofisiologia Cardíaca , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/cirurgia , Tomografia Computadorizada por Raios X/métodos , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...