Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.757
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38985691

RESUMO

AIM: To determine in patients undergoing stress CMR whether fully automated stress artificial intelligence (AI)-based left ventricular ejection fraction (LVEFAI) can provide incremental prognostic value to predict death above traditional prognosticators. MATERIEL AND RESULTS: Between 2016 and 2018, we conducted a longitudinal study that included all consecutive patients referred for vasodilator stress CMR. LVEFAI was assessed using AI-algorithm combines multiple deep learning networks for LV segmentation. The primary outcome was all-cause death assessed using the French National Registry of Death. Cox regression was used to evaluate the association of stress LVEFAI with death after adjustment for traditional risk factors and CMR findings.In 9,712 patients (66±15 years, 67% men), there was an excellent correlation between stress LVEFAI and LVEF measured by expert (LVEFexpert) (r=0.94, p<0.001). Stress LVEFAI was associated with death (median [IQR] follow-up 4.5 [3.7-5.2] years) before and after adjustment for risk factors (adjusted hazard ratio [HR], 0.84 [95% CI, 0.82-0.87] per 5% increment, p<0.001). Stress LVEFAI had similar significant association with death occurrence compared with LVEFexpert. After adjustment, stress LVEFAI value showed the greatest improvement in model discrimination and reclassification over and above traditional risk factors and stress CMR findings (C-statistic improvement: 0.11; NRI=0.250; IDI=0.049, all p<0.001; LR-test p<0.001), with an incremental prognostic value over LVEFAI determined at rest. CONCLUSION: AI-based fully automated LVEF measured at stress is independently associated with the occurrence of death in patients undergoing stress CMR, with an additional prognostic value above traditional risk factors, inducible ischemia and LGE.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38985851

RESUMO

Cardiovascular magnetic resonance (CMR) imaging is recommended in patients with congenital heart disease (CHD) in clinical practice guidelines as the imaging standard for a large variety of diseases. As CMR is evolving, novel techniques are becoming available. Some of them are already used clinically, whereas others still need further evaluation. In this statement the authors give an overview of relevant new CMR techniques for the assessment of CHD. Studies with reference values for these new techniques are listed in the supplement.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38965018

RESUMO

BACKGROUND: Left ventricular (LV) structural and functional changes have been reported in patients with aortic stenosis (AS) who have undergone transcatheter aortic valve implantation (TAVI); however, the relationship between change in LV structure and systolic function and tissue characteristics assessed via cardiovascular magnetic resonance imaging (CMRI) post-TAVI has been not fully elucidated. This study aimed to investigate this relationship in patients with severe AS who underwent TAVI and CMRI. METHODS: In this retrospective study, 65 patients who underwent TAVI and CMRI at the 6-month follow-up were analyzed. The relationship between percent changes in LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV ejection fraction (LVEF), and LV mass (LVM) (⊿LVEDV, ⊿LVESV, ⊿LVEF, and ⊿LVM) and those in the native T1 value (⊿native T1) was analyzed using a correlation analysis. Moreover, extracellular volume fraction (ECV) value changes were analyzed. RESULTS: The ⊿native T1 significantly decreased from 1292.8 (1269.9-1318.4) ms at pre-TAVI to 1282.3 (1262.6-1310.2) ms at the 6-month follow-up (P = 0.022). A significant positive correlation between ⊿LVEDV, ⊿LVESV, and ⊿LVM and ⊿native T1 (r = 0.351, P = 0.004; r = 0.339, P = 0.006; r = 0.261, P = 0.035, respectively) and a tendency toward a negative correlation between ⊿LVEF and ⊿native T1 (r = -0.237, P = 0.058) were observed. The ECV value increased significantly from 26.7 % (25.3-28.3) to 28.2 % (25.7-30.5) (P = 0.002). CONCLUSIONS: The decrease in native T1 might be associated with LV reverse remodeling. Evaluating structural and functional changes using CMRI may be useful for patient management.

4.
J Cardiovasc Magn Reson ; : 101054, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960284

RESUMO

INTRODUCTION: The prognostic value of myocardial deformation parameters in adults with repaired tetralogy of Fallot (rTOF) has not been well-elucidated. We therefore aimed to explore myocardial deformation parameters for outcome prediction in adults with rTOF using cardiovascular magnetic resonance imaging (CMR). METHODS: Adults with rTOF and at least moderate pulmonary regurgitation (PR) were identified from an institutional prospective CMR registry. Left (LV) and right ventricular (RV) global strain were recorded in longitudinal (GLS), circumferential (GCS) and radial (GRS) directions. Major adverse cardiovascular events (MACE) were defined as a composite of mortality, resuscitated sudden death, sustained ventricular tachycardia (>30seconds) or heart failure (hospital admission >24hours). In patients with pulmonary valve replacement (PVR), pre-and post-PVR CMR studies were analysed to assess for predictors of complete RV reverse remodelling, which we defined as RV end-diastolic volume indexed (RVEDVi) <110ml/m2. Logistic regression models were used to estimate the odds ratio (OR) per unit change in absolute strain value associated with clinical outcomes and receiver operator characteristic (ROC) curves were constructed with area under the curve (AUC) for select CMR variables. RESULTS: We included 307 patients (age 35±13 years, 59% male). During 6.1 years (3.3-8.8) of follow-up, pulmonary valve replacement (PVR) was performed in 142 (46%) and MACE occurred in 31 (10%). On univariate analysis, baseline biventricular ejection fraction (EF), mass and all strain parameters were associated with MACE. After adjustment for LVEF, only LVGLS remained independently predictive of MACE (OR 0.822 [0.693-0.976] p=0.025). Receiver operator curves identified an absolute LVGLS value less than 15 and LVEF <51% as thresholds for MACE prediction (AUC 0.759 [0.655-0.840] and 0.720 [0.608-0.810]). After adjusting for baseline RVEDVi, RVGCS (OR 1.323 [1.094-1.600] p=0.004), LVGCS (OR 1.276 [1.029-1.582] p=0.027) and LVGRS (OR 1.101 [1.0210-1.200], p=0.028) were independent predictors of complete remodelling post-PVR remodelling. CONCLUSIONS: Biventricular strain parameters predict clinical outcomes and post-PVR remodelling in rTOF. Further study will be necessary to establish the role of myocardial deformation parameters in clinical practice.

5.
J Cardiovasc Magn Reson ; : 101055, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971501

RESUMO

OBJECTIVES: To summarize the status of the SCMR Registry at 150,000 exams. BACKGROUND: Cardiovascular magnetic resonance (CMR) is increasingly utilized to evaluate expanding cardiovascular conditions. The SCMR Registry is a central repository for real-world clinical data to support cardiovascular research, including those relating to outcomes, quality improvement, and machine learning. The SCMR Registry is built on a regulatory-compliant, cloud-based infrastructure that houses searchable content and Digital Imaging and Communications in Medicine (DICOM) images. METHODS: The processes for data security, data submission, and research access are outlined. We interrogated the Registry and present a summary of its contents. RESULTS: Data were compiled from 154,458 CMR scans across 20 United States sites, containing 299,622,066 total images (~100 terabytes of storage). The human subjects had an average age of 58 years (range 1 month to >90 years old), were 44% female, 72% Caucasian, and had a mortality rate of 8%. The most common indication was cardiomyopathy (27%), and most frequently used current procedural terminology (CPT) code was 75561 (35%). Macrocyclic gadolinium-based contrast agents represented 89% of contrast utilization after 2015. Short-axis cines were performed in 99% of scans, short-axis LGE in 66%, and stress perfusion sequences in 30%. Mortality data demonstrated increased mortality in patients with left ventricular ejection fraction (LVEF) < 35%, the presence of wall motion abnormalities, stress perfusion defects, and infarct late gadolinium enhancement (LGE), compared to those without these markers. There were 456,678 patient-years of all-cause mortality follow-up, with a median follow-up time of 3.6 years. CONCLUSIONS: The vision of the SCMR Registry is to promote evidence-based utilization of CMR through a collaborative effort by providing a web mechanism for centers to securely upload de-identified data and images for research, education, and quality control. The Registry quantifies changing practice over time and supports large-scale real-world multicenter observational studies of prognostic utility. CONDENSED ABSTRACT: The SCMR Registry is a central regulatory-compliant cloud-based repository for real-world clinical data and DICOM images for multicenter cardiovascular research, including outcomes-based data. The Registry contains 299,622,066 DICOM images and 456,678 patient-years follow-up. Data compiled from 154,458 CMR scans across 20 US sites demonstrated cardiomyopathy as the most common indication and 89% macrocyclic gadolinium contrast utilization after 2015. There was an overall mortality rate of 8%, with higher rates in those with LVEF<35%, abnormal wall motion, ischemia presence, or infarct LGE. The Registry aims to promote evidence-based CMR utilization through a collaborative effort to positively impact cardiovascular outcomes.

6.
Int J Cardiol ; : 132319, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971535

RESUMO

BACKGROUND: The aim of this cross-sectional study was to investigate the association of left ventricular (LV) strain parameters with demographics, clinical data, cardiovascular magnetic resonance (CMR) findings, and cardiac complications (heart failure and arrhythmias) in patients with ß-thalassemia major (ß-TM). METHOD: We considered 266 ß-TM patients (134 females, 37.08 ±â€¯11.60 years) consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia (E-MIOT) project and 80 healthy controls (50 females, mean age 39.77 ±â€¯11.29 years). The CMR protocol included cine images for the assessment of global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) using feature tracking (FT) and for the quantification of LV function parameters, the T2* technique for the assessment of myocardial iron overload, and late gadolinium enhancement (LGE) technique. RESULTS: In comparison to the healthy control group, ß-TM patients showed impaired GLS, GCS, and GRS values. Among ß-TM patients, sex was identified as the sole independent determinant of all LV strain parameters. All LV strain parameters displayed a significant correlation with LV end-diastolic volume index, end-systolic volume index, mass index, and ejection fraction, and with the number of segments exhibiting LGE. Only GLS exhibited a significant correlation with global heart T2* values and the number of segments with T2* < 20 ms. Patients with cardiac complications exhibited significantly impaired GLS compared to those without cardiac complications. CONCLUSION: In patients with ß-TM, GLS, GCS, and GRS were impaired in comparison with control subjects. Among LV strain parameters, only GLS demonstrated a significant association with cardiac iron levels and complications.

7.
J Magn Reson Imaging ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979719

RESUMO

BACKGROUND: Epicardial adipose tissue (EAT) is a metabolically active visceral fat linked to cardiovascular disease. Prior studies demonstrated the predictive value of EAT volume (EATV) in atrial fibrillation (AF) among hypertrophic obstructive cardiomyopathy patients. PURPOSE: To investigate the association between EATV and AF in hypertrophic cardiomyopathy (HCM). STUDY TYPE: Retrospective. POPULATION: Two hundred and twenty-four HCM patients (including 79 patients with AF and 145 patients without AF, 154 men) and 80 healthy controls (54 men). FIELD STRENGTH/SEQUENCE: 3.0 T scanner; balanced steady-state free precession (SSFP) cine sequence, gradient echo. ASSESSMENT: EAT thickness was assessed in the 4-chamber and basal short-axis planes. EAT volume was calculated by outlining the epicardial border and visceral pericardium layer on short-axis cine images. STATISTICAL TESTS: Shapiro-Wilk test, Student's t test or the Mann-Whitney U test, chi-square test or Fisher's exact test, Multivariate linear regression analyses, Multivariable binary logistic regression analysis. Intraclass correlation coefficient. Significance was determined at P < 0.05. RESULTS: EATV and EAT volume index (EATVI) were significantly greater in HCM patients with AF than those without AF (126.6 ± 25.9 mL vs. 90.5 ± 24.5 mL, and 73.0 ± 15.9 mL/m2 vs. 51.3 ± 13.4 mL/m2). EATVI was associated with AF in multivariable linear regression analysis among HCM patients (ß = 0.62). Multivariable logistic regression analysis revealed that compared to other indicators, the area under curve (AUC) of EATVI was 0.86 (cut-off, 53.9 mL/m2, 95% CI, 0.80-0.89), provided a better performance, with the sensitivity of 96.2% and specificity of 58.6%. The combined model exhibited superior association with AF presence compared to the clinical model (AUC 0.96 vs. 0.76) and the imaging model (AUC 0.96 vs. 0.93). DATA CONCLUSION: EATVI was associated with AF. EATVI was significantly correlated with incident AF, and provided a better performance in HCM patients compared to other indicators. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

8.
Cancer Innov ; 3(3): e109, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947756

RESUMO

Background: Immune checkpoint inhibitors (ICI) are increasingly used in the first-line treatment of malignant tumors. There is increasing recognition of their cardiotoxicity and, in particular, their potential to lead to myocarditis. Cardiovascular magnetic resonance (CMR) can quantify pathological changes, such as myocardial edema and fibrosis. The purpose of this systematic review and meta-analysis was to examine the evidence for the roles of CMR in predicting prognosis in ICI-associated myocarditis. Methods: PubMed, Cochrane Library, and Web of Science databases were searched until October 2023 for published works investigating the relationship between CMR parameters and adverse events in patients with ICI-associated myocarditis. The analysis included studies reporting the incidence of late gadolinium enhancement (LGE), T1 values, T2 values, and CMR-derived left ventricular ejection fraction (LVEF). Odds ratios (OR) and weighted mean differences (WMD) were combined for binary and continuous data, respectively. Newcastle-Ottawa Scale was used to assess the methodological quality of the included studies. Results: Five cohort studies were included (average age 65-68 years; 25.4% female). Of these, four studies were included in the meta-analysis of LGE-related findings. Patients with major adverse cardiovascular events (MACE) had a higher incidence of LGE compared with patients without MACE (OR = 4.18, 95% CI: 1.72-10.19, p = 0.002). A meta-analysis, incorporating data from two studies, showed that patients who developed MACE exhibited significantly higher T1 value (WMD = 36.16 ms, 95% CI: 21.43-50.89, p < 0.001) and lower LVEF (WMD = - 8.00%, 95% CI: -13.60 to -2.40, p = 0.005). Notably, T2 value (WMD = -0.23 ms, 95% CI: -1.86 to -1.39, p = 0.779) was not associated with MACE in patients with ICI-related myocarditis. Conclusions: LGE, T1 value, and LVEF measured by CMR imaging have potential prognostic value for long-term adverse events in patients with ICI-related myocarditis.

9.
Children (Basel) ; 11(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38929206

RESUMO

The complete transposition of the great arteries (C-TGA) is a congenital cardiac anomaly characterized by the reversal of the main arteries. Early detection and precise management are crucial for optimal outcomes. This review emphasizes the integral role of multimodal imaging, including fetal echocardiography, transthoracic echocardiography (TTE), cardiovascular magnetic resonance (CMR), and cardiac computed tomography (CCT) in the diagnosis, treatment planning, and long-term follow-up of C-TGA. Fetal echocardiography plays a pivotal role in prenatal detection, enabling early intervention strategies. Despite technological advances, the detection rate varies, highlighting the need for improved screening protocols. TTE remains the cornerstone for initial diagnosis, surgical preparation, and postoperative evaluation, providing essential information on cardiac anatomy, ventricular function, and the presence of associated defects. CMR and CCT offer additional value in C-TGA assessment. CMR, free from ionizing radiation, provides detailed anatomical and functional insights from fetal life into adulthood, becoming increasingly important in evaluating complex cardiac structures and post-surgical outcomes. CCT, with its high-resolution imaging, is indispensable in delineating coronary anatomy and vascular structures, particularly when CMR is contraindicated or inconclusive. This review advocates for a comprehensive imaging approach, integrating TTE, CMR, and CCT to enhance diagnostic accuracy, guide therapeutic interventions, and monitor postoperative conditions in C-TGA patients. Such a multimodal strategy is vital for advancing patient care and improving long-term prognoses in this complex congenital heart disease.

11.
JACC Adv ; 3(6): 100946, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938852

RESUMO

Background: Heart failure with reduced ejection fraction (HFrEF) is characterized by ventricular remodeling and impaired myocardial energetics. Left ventricular pressure-volume (PV) loop analysis can be performed noninvasively using cardiovascular magnetic resonance (CMR) imaging to assess cardiac thermodynamic efficiency. Objectives: The aim of the study was to investigate whether noninvasive PV loop parameters, derived from CMR, could predict major adverse cardiac events (MACE) in HFrEF patients. Methods: PV loop parameters (stroke work, ventricular efficiency, external power, contractility, and energy per ejected volume) were computed from CMR cine images and brachial blood pressure. The primary end point was MACE (cardiovascular death, heart failure (HF) hospitalization, myocardial infarction, revascularization, ventricular tachycardia/fibrillation, heart transplantation, or left ventricular assist device implantation within 5 years). Associations between PV loop parameters and MACE were evaluated using multivariable Cox regression. Results: One hundred and sixty-four HFrEF patients (left ventricular ejection fraction ≤40%, age 63 [IQR: 55-70] years, 79% male) who underwent clinical CMR examination between 2004 and 2014 were included. Eighty-eight patients (54%) experienced at least one MACE after an average of 2.8 years. Unadjusted models demonstrated a significant association between MACE and all PV loop parameters (P < 0.05 for all), HF etiology (P < 0.001), left ventricular ejection fraction (P = 0.003), global longitudinal strain (P < 0.001), and N-terminal prohormone of brain natriuretic peptide level (P = 0.001). In the multivariable Cox regression analysis adjusted for age, sex, hypertension, diabetes, and HF etiology, ventricular efficiency was associated with MACE (HR: 1.04 (95% CI: 1.01-1.08) per-% decrease, P = 0.01). Conclusions: Ventricular efficiency, derived from noninvasive PV loop analysis from standard CMR scans, is associated with MACE in patients with HFrEF.

12.
Radiol Cardiothorac Imaging ; 6(3): e230271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842455

RESUMO

Purpose To provide a comprehensive head-to-head comparison and temporal analysis of cardiac MRI indications between the European Society of Cardiology (ESC) and American College of Cardiology/American Heart Association (ACC/AHA) guidelines to identify areas of consensus and divergence. Materials and Methods A systematic review and meta-analysis was conducted. ESC and ACC/AHA guidelines published until May 2023 were systematically screened for recommendations related to cardiac MRI. The class of recommendation (COR) and level of evidence (LOE) for cardiac MRI recommendations were compared between the two guidelines and between newer versus older versions of each guideline using χ2 or Fisher exact tests. Results ESC guidelines included 109 recommendations regarding cardiac MRI, and ACC/AHA guidelines included 90 recommendations. The proportion of COR I and LOE B was higher in ACC/AHA versus ESC guidelines (60% [54 of 90] vs 46.8% [51 of 109]; P = .06 and 53% [48 of 90] vs 35.8% [39 of 109], respectively; P = .01). The increase in the number of cardiac MRI recommendations over time was significantly higher in ESC guidelines (from 63 to 109 for ESC vs from 65 to 90 for ACC/AHA; P = .03). The main areas of consensus were found in heart failure and hypertrophic cardiomyopathy, while the main divergences were in valvular heart disease, arrhythmias, and aortic disease. Conclusion ESC guidelines included more recommendations related to cardiac MRI use, whereas the ACC/AHA recommendations had higher COR and LOE. The number of cardiac MRI recommendations increased significantly over time in both guidelines, indicating the increasing role of cardiac MRI evaluation and management of cardiovascular disease. Keywords: Cardiovascular Magnetic Resonance, Guideline, European Society of Cardiology, ESC, American College of Cardiology/American Heart Association, ACC/AHA Supplemental material is available for this article. © RSNA, 2024.


Assuntos
American Heart Association , Imageamento por Ressonância Magnética , Guias de Prática Clínica como Assunto , Humanos , Guias de Prática Clínica como Assunto/normas , Imageamento por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/métodos , Estados Unidos , Europa (Continente) , Cardiologia/normas , Cardiologia/tendências , Cardiopatias/diagnóstico por imagem , Sociedades Médicas
13.
Heliyon ; 10(11): e31889, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912500

RESUMO

Background: Myocardial segmental motion is associated with cardiovascular pathology, often assessed through myocardial strain features. The stability of the motion can be influenced by myocardial fibrosis. This research aimed to explore the complexity metrics (CM) of myocardial segmental motion curves, observe their correlation with late gadolinium enhancement (LGE) transmural extension (TE), and assess diagnostic efficacy combined with segmental strains in different TE segments. Methods: We included 42 myocardial infarction patients, dividing images into 672 myocardial segments (208 remote, 384 viable, and 80 unviable segments based on TE). Radial and circumferential segmental strain, along with CM for motion curves, were extracted. Correlation between CM and LGE, as well as the potential distinguishing role of CM, was evaluated using Pearson correlation, univariate linear regression (F-test), multivariate regression analysis (T-test), area under curve (AUC), machine learning models, and DeLong test. Results: All CMs showed significant linear correlation with TE (P < 0.001). Six CMs were correlated with TE (r > 0.3), with radial frequency drift (FD) displayed the strongest correlation (r = 0.496, P < 0.001). Radial and circumferential FD significantly differed in higher TE myocardium than in remote segments (P < 0.05). Radial FD had practical diagnostic efficacy (remote vs. unviable AUC = 0.89, viable vs. unviable AUC = 0.77, remote vs. viable AUC = 0.65). Combining CM with segmental strain features boosted diagnostic efficacy than models using only segmental strain features (DeLong test, P < 0.05). Conclusions: The CM of myocardial motion curves has been associated with LGE infarction, and combining CM with strain features improves the diagnosis of different myocardial LGE infarction degrees.

14.
Cardiovasc Diabetol ; 23(1): 216, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907259

RESUMO

BACKGROUND: Pretransplant type 2 diabetes mellitus (T2DM) is associated with increased cardiovascular and all-cause mortality after heart transplant (HT), but the underlying causes of this association remain unclear. The purpose of this research was to examine the impact of T2DM on left ventricular (LV) myocardial deformation and myocardial perfusion following heart transplantation using cardiovascular magnetic resonance imaging. METHODS: We investigated thirty-one HT recipients with pretransplant T2DM [HT(DM+)], thirty-four HT recipients without pretransplant T2DM [HT(DM-)] and thirty-six controls. LV myocardial strains, including the global longitudinal, radial, and circumferential strain (GLS, GRS and GCS, respectively), were calculated and compared among groups, as were resting myocardial perfusion indices, which included time to peak myocardial signal intensity (TTM), maximum signal intensity (MaxSI), and Upslope. The relationships between LV strain parameters or perfusion indices and biochemical indicators were determined through Spearman's analysis. The impact of T2DM on LV strains in HT recipients was assessed using multivariable linear regression analyses with backward stepwise selection. RESULTS: In the HT(DM+) group, the LV GLS, GRS, and GCS exhibited significantly lower magnitudes than those in both the HT(DM-) and control groups. TTM was higher in the HT(DM+) group than in both the HT(DM-) and control groups, while no significant differences were observed among the groups regarding Upslope and MaxSI. There was a negative correlation between glycated hemoglobin and the magnitude of strains (longitudinal, r = - 0.399; radial, r = - 0.362; circumferential, r = - 0.389) (all P < 0.05), and a positive correlation with TTM (r = 0.485, P < 0.001). Regression analyses that included both pretransplant T2DM and perfusion indices revealed that pretransplant T2DM, rather than perfusion indices, was an independent determinant of LV strain (ß = longitudinal, - 0.508; radial, - 0.370; circumferential, - 0.371) (all P < 0.05). CONCLUSION: In heart transplant recipients, pretransplant T2DM has a detrimental effect on subclinical left ventricular systolic function and could potentially impact myocardial microcirculation following HT.


Assuntos
Circulação Coronária , Diabetes Mellitus Tipo 2 , Transplante de Coração , Imagem de Perfusão do Miocárdio , Valor Preditivo dos Testes , Disfunção Ventricular Esquerda , Função Ventricular Esquerda , Humanos , Transplante de Coração/efeitos adversos , Masculino , Pessoa de Meia-Idade , Feminino , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Imagem de Perfusão do Miocárdio/métodos , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia , Resultado do Tratamento , Adulto , Imagem Cinética por Ressonância Magnética , Fatores de Risco , Idoso , Estudos de Casos e Controles , Fatores de Tempo , Fenômenos Biomecânicos , Biomarcadores/sangue , Contração Miocárdica
15.
J Cardiovasc Magn Reson ; : 101051, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909656

RESUMO

Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment of heart disease; however, limitations of CMR include long exam times and high complexity compared to other cardiac imaging modalities. Recently advancements in artificial intelligence (AI) technology have shown great potential to address many CMR limitations. While the developments are remarkable, translation of AI-based methods into real-world CMR clinical practice remains at a nascent stage and much work lies ahead to realize the full potential of AI for CMR. Herein we review recent cutting-edge and representative examples demonstrating how AI can advance CMR in areas such as exam planning, accelerated image reconstruction, post-processing, quality control, classification and diagnosis. These advances can be applied to speed up and simplify essentially every application including cine, strain, late gadolinium enhancement, parametric mapping, 3D whole heart, flow, perfusion and others. AI is a unique technology based on training models using data. Beyond reviewing the literature, this paper discusses important AI-specific issues in the context of CMR, including (1) properties and characteristics of datasets for training and validation, (2) previously published guidelines for reporting CMR AI research, (3) considerations around clinical deployment, (4) responsibilities of clinicians and the need for multi-disciplinary teams in the development and deployment of AI in CMR, (5) industry considerations, and (6) regulatory perspectives. Understanding and consideration of all these factors will contribute to the effective and ethical deployment of AI to improve clinical CMR.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38912832

RESUMO

AIMS: To evaluate different cardiovascular magnetic resonance (CMR) parameters for the differentiation of light chain amyloidosis (AL) and transthyretin-related amyloidosis (ATTR). METHODS AND RESULTS: In total, 75 patients, 53 with cardiac amyloidosis (20 patients with AL (66±12 years, 14 males [70%]) and 33 patients with ATTR (78±5 years, 28 males [88%])) were retrospectively analyzed regarding CMR parameters such as T1 and T2 mapping, extracellular volume (ECV), and late gadolinium enhancement (LGE) distribution patterns, and myocardial strain, and compared to a control cohort with other causes of left ventricular hypertrophy (LVH; 22 patients (53±16 years, 17 males [85%])). One way-ANOVA and receiver operating characteristic analysis were used for statistical analysis. ECV was the single best parameter to differentiate between cardiac amyloidosis and controls (area under the curve [AUC]: 0.97, 95% confidence intervals [CI]: 0.89-0.99, p<.0001, cutoff: >30%). T2 mapping was the best single parameter to differentiate between AL and ATTR amyloidosis (AL: 63±4 ms, ATTR: 58±2 ms, p<.001, AUC: 0.86, 95% CI: 0.74-0.94, cutoff: >61 ms). Subendocardial LGE was predominantly observed in AL patients (10/20 [50%] vs. 5/33 [15%]; p=.002). Transmural LGE was predominantly observed in ATTR patients (23/33 [70%] vs. 2/20 [10%]; p<.001). The diagnostic performance of T2 mapping to differentiate between AL and ATTR amyloidosis was further increased with the inclusion of LGE patterns (AUC: 0.96, 95% CI: 0.86-0.99]; p=.05). CONCLUSION: ECV differentiates cardiac amyloidosis from other causes of LVH. T2 mapping combined with LGE differentiates AL from ATTR amyloidosis with high accuracy on a patient level.

17.
J Imaging Inform Med ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940890

RESUMO

Cardiac amyloidosis (CA) is characterized by the deposition of amyloid fibrils within the myocardium, resulting in a restrictive physiology. Although microvascular dysfunction is a common feature, it is difficult to assess. This study aimed to explore myocardial transit time (MyoTT) by cardiovascular magnetic resonance (CMR) as a potential novel parameter of microcirculatory dysfunction in CA. This prospective study enrolled 20 CA patients and 20 control subjects. CMR acquisition included cine imaging, pre- and post-contrast T1 mapping, and MyoTT assessment, which was calculated from the time delay in contrast agent arrival between the aortic root and coronary sinus (CS). Compared to the control group, patients with CA exhibited significantly reduced left ventricular (LV) ejection fraction and myocardial strain, an increase in LV global peak wall thickness (LVGPWT), extracellular volume fraction (ECV), and prolonged MyoTT (14.4 ± 3.8 s vs. 7.7 ± 1.5 s, p < 0.001). Moreover, patients at Mayo stage III had a significantly longer MyoTT compared to those at stage I/II. MyoTT showed a positive correlation with the ECV, LVGPWT, and LV global longitudinal strain (LV-GLS) (p < 0.05). The area under the curve (AUC) for MyoTT was 0.962, demonstrating diagnostic performance comparable to that of the ECV (AUC 0.995) and LV-GLS (AUC 0.950) in identifying CA. MyoTT is significantly prolonged in patients with CA, correlating with fibrosis markers, remodeling, and dysfunction. As a novel parameter of coronary microvascular dysfunction (CMD), MyoTT has the potential to be an integral biomarker in multiparametric CMR assessment of CA.

18.
J Cardiovasc Magn Reson ; 26(2): 101047, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825155

RESUMO

BACKGROUND: Coronary artery wall contrast enhancement (CE) has been applied to non-invasive visualization of changes to the coronary artery wall in systemic lupus erythematosus (SLE). This study investigated the feasibility of quantifying CE to detect coronary involvement in IgG4-related disease (IgG4-RD), as well as the influence on disease activity assessment. METHODS: A total of 93 subjects (31 IgG4-RD; 29 SLE; 33 controls) were recruited in the study. Coronary artery wall imaging was performed in a 3.0 T MRI scanner. Serological markers and IgG4-RD Responder Index (IgG4-RD-RI) scores were collected for correlation analysis. RESULTS: Coronary wall CE was observed in 29 (94 %) IgG4-RD patients and 22 (76 %) SLE patients. Contrast-to-noise ratio (CNR) and total CE area were significantly higher in patient groups compared to controls (CNR: 6.1 ± 2.7 [IgG4-RD] v. 4.2 ± 2.3 [SLE] v. 1.9 ± 1.5 [control], P < 0.001; Total CE area: 3.0 [3.0-6.6] v. 1.7 [1.5-2.6] v. 0.3 [0.3-0.9], P < 0.001). In the IgG4-RD group, CNR and total CE area were correlated with the RI (CNR: r = 0.55, P = 0.002; total CE area: r = 0.39, P = 0.031). RI´ scored considering coronary involvement by CE, differed significantly from RI scored without consideration of CE (RI v. RI´: 15 ± 6 v. 16 ± 6, P < 0.001). CONCLUSIONS: Visualization and quantification of CMR coronary CE by CNR and total CE area could be utilized to detect subclinical and clinical coronary wall involvement, which is prevalent in IgG4-RD. The potential inclusion of small and medium-sized vessel involvements in the assessment of disease activity in IgG4-RD is worthy of further investigation.

19.
J Am Heart Assoc ; 13(13): e032781, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934873

RESUMO

BACKGROUND: This study assesses the diagnostic utility of strain parameters from cardiovascular magnetic resonance feature tracking across all cardiac chambers in patients with acute myocarditis, stratified by ejection fraction. METHODS AND RESULTS: Our cohort included 65 patients with acute myocarditis and 25 healthy controls; all underwent cardiac magnetic resonance imaging. Patients were divided into 2 groups based on left ventricular ejection fraction (EF)with a 55% cutoff: acute myocarditis with preserved EF, EF ≥55%, n=48; and acute myocarditis with reduced EF, EF <55%, n=17. The control group matched for age and sex. Cardiovascular magnetic resonance feature tracking evaluated strain parameters across all cardiac chambers. Both acute myocarditis with preserved EF and acute myocarditis with reduced EF groups showed significant decreases in left atrial peak early negative strain rate compared with controls. The acute myocarditis with reduced EF group had significantly reduced left ventricular circumferential strain relative to acute myocarditis with preserved EF and controls. Receiver operating characteristic curve analysis confirmed the diagnostic accuracy in distinguishing patients with acute myocarditis with preserved EF from controls, with left atrial peak early negative strain rate achieving 92.9% specificity, left ventricular circumferential strain demonstrating an area under the curve of 0.832, and similarly effective results for left ventricular longitudinal strain and right ventricular longitudinal strain. Additionally, left atrial peak early negative strain rate and left ventricular circumferential strain showed significant correlations with troponin I levels, indicating myocardial injury. CONCLUSIONS: Cardiovascular magnetic resonance feature-tracking-derived strain parameters, particularly left atrial peak early negative strain rate and left ventricular circumferential strain, effectively diagnose acute myocarditis across different EFs, enhancing diagnostic accuracy and facilitating early detection, notably in patients with preserved EF.


Assuntos
Imagem Cinética por Ressonância Magnética , Miocardite , Volume Sistólico , Função Ventricular Esquerda , Humanos , Miocardite/fisiopatologia , Miocardite/diagnóstico por imagem , Miocardite/diagnóstico , Masculino , Feminino , Volume Sistólico/fisiologia , Adulto , Doença Aguda , Função Ventricular Esquerda/fisiologia , Imagem Cinética por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos de Casos e Controles , Estudos Retrospectivos
20.
medRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38883759

RESUMO

The UK Biobank (UKB) imaging project is a crucial resource for biomedical research, but is limited to 100,000 participants due to cost and accessibility barriers. Here we used genetic data to predict heritable imaging-derived phenotypes (IDPs) for a larger cohort. We developed and evaluated 4,375 IDP genetic scores (IGS) derived from UKB brain and body images. When applied to UKB participants who were not imaged, IGS revealed links to numerous phenotypes and stratified participants at increased risk for both brain and somatic diseases. For example, IGS identified individuals at higher risk for Alzheimer's disease and multiple sclerosis, offering additional insights beyond traditional polygenic risk scores of these diseases. When applied to independent external cohorts, IGS also stratified those at high disease risk in the All of Us Research Program and the Alzheimer's Disease Neuroimaging Initiative study. Our results demonstrate that, while the UKB imaging cohort is largely healthy and may not be the most enriched for disease risk management, it holds immense potential for stratifying the risk of various brain and body diseases in broader external genetic cohorts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...