RESUMO
Cashew nut production generates large amounts of cashew apple as residue. In Colombia, cashew cultivation is increasing together with the concerns on residue management. The objective of this study was to provide the first chemical, physical and thermal decomposition characterization of cashew apple from Colombian varieties harvested in Vichada, Colombia. This characterization was focused to identify the important bioactive and natural compounds that can be further valorized in the formulation of food, nutraceuticals, and pharmacological products. The results obtained in this study are helpful to portray the cashew apple as a potential by-product due to its renewable nature and valuable composition, instead of seeing it just as an agricultural residue. For that, cashew apples of Regional 8315 and Mapiria varieties were studied. The natural juice (cashew apple juice) that was extracted from the cashew apples and the remanent solids (cashew apple bagasse) were separately analyzed. The HPLC analytical technique was used to determine the concentration of bioactive compounds, structural carbohydrates, and soluble sugars that constitute this biomass. Spectrophotometric techniques were used to determine the concentration of tannins, carotenoids, and total polyphenols. Mineral content and antioxidant activity (DPPH and ABTS assays) were determined in the biomass. Also, the thermal decomposition under an inert atmosphere or pyrolysis was performed on cashew apple bagasse. The varieties of cashew apple studied in this work showed similar content of bioactive compounds, total phenolic content, and structural carbohydrates. However, the Mapiria variety showed values slightly higher than the Regional 8315. Regarding cashew apple juice, it is rich in tannins and ascorbic acid with values of 191 mg/100 mL and 70 mg/100 mL, respectively, for Mapiria variety. Additionally, the principal reservoir of bioactive compounds and constitutive carbohydrates was the cashew apple bagasse. About 50 wt.% of it was composed of cellulose and hemicellulose. Also, in the bagasse, the ascorbic acid content was in a range of 180-200 mg/100 g, which is higher than other fruits and vegetables. Moreover, alkaloids were identified in cashew apples. The maximum value of antioxidant activity (DPPH assay: 405 TEs/g) was observed in the bagasse of Mapiria variety. The bagasse thermal decomposition started around 150 °C when the structural carbohydrates and other constitutive substances started to degrade. After thermogravimetric analysis, a remanent of 20% of the initial weight suggested the formation of a rich-carbon solid, which could correspond to biochar. Therefore, the cashew apple harvested in Vichada is a valuable reservoir of a wide range of biomolecules that potentially could be valorized into energy, foods, and pharmacologic applications. Nevertheless, future work is necessary to describe the complex compounds of this residual biomass that are still unknown.
RESUMO
KEY MESSAGE: We found 34 and 71 key genes potentially involved in flavonoid biosynthesis and cell wall disassembly, respectively, which could be associated with specific peel coloration and softening of each genotype. Cashew apple (Anacardium occidentale) has a great economic importance worldwide due to its high nutritional value, peculiar flavor and aroma. During ripening, the peduncle develops different peel color and becomes quickly fragile due to its oversoftening, impacting its consumers' acceptance. In view of this, the understanding about its transcriptional dynamics throughout ripening is imperative. In this study, we performed a transcriptome sequencing of two cashew apple genotypes (CCP 76 and BRS 265), presenting different firmness and color peel, in the immature and ripe stages. Comparative transcriptome analysis between immature and ripe cashew apple revealed 4374 and 3266 differentially expressed genes (DEGs) to CCP 76 and BRS 265 genotypes, respectively. These genes included 71 and 34 GDEs involved in the cell wall disassembly and flavonoid biosynthesis, respectively, which could be associated with firmness loss and anthocyanin accumulation during cashew apple development. Then, softer peduncle of CCP 76 could be justified by down-regulated EXP and up-regulation of genes involved in pectin degradation (PG, PL and PAE) and in cell wall biosynthesis. Moreover, genes related to flavonoid biosynthesis (PAL, C4H and CHS) could be associated with early high accumulation of anthocyanin in red-peel peduncle of BRS 265. Finally, expression patterns of the selected genes were tested by real-time quantitative PCR (qRT-PCR), and the qRT-PCR results were consistent with transcriptome data. The information generated in this work will provide insights into transcriptome responses to cashew apple ripening and hence, it will be helpful for cashew breeding programs aimed at developing genotypes with improved quality traits.
Assuntos
Anacardium , Anacardium/genética , Antocianinas , Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Melhoramento Vegetal , TranscriptomaRESUMO
Carotenoids are an essential component of cashew and can be used in pharmaceuticals, cosmetics, natural pigment, food additives, among other applications. The present work focuses on optimizing and comparing conventional and ultrasound-assisted extraction methods. Every optimization step took place with a 1:1 (w:w) mixture of yellow and red cashew apples lyophilized and ground in a cryogenic mill. A Simplex-centroid design was applied for both methods, and the solvents acetone, methanol, ethanol, and petroleum ether were evaluated. After choosing the extractor solvent, a central composite design was applied to optimize the sample mass (59-201 mg) and extraction time (6-34 min). The optimum conditions for the extractor solvent were 38% acetone, 30% ethanol, and 32% petroleum ether for CE and a mixture of 44% acetone and 56% methanol for UAE. The best experimental conditions for UAE were a sonication time of 19 min and a sample mass of 153 mg, while the CE was 23 min and 136 mg. Comparing red and yellow cashews, red cashews showed a higher carotenoid content in both methodologies. The UAE methodology was ca. 21% faster, presented a more straightforward composition of extracting solution, showed an average yield of superior carotenoid content in all samples compared to CE. Therefore, UAE has demonstrated a simple, efficient, fast, low-cost adjustment methodology and a reliable alternative for other applications involving these bioactive compounds in the studied or similar matrix.
Assuntos
Anacardium , Carotenoides , Metanol , Solventes , UltrassomRESUMO
Cashew apple, the hypertrophied peduncle of cashew nut, is a functional food with a high antioxidant activity and with good characteristics for juice industrialization and fresh consumption such as fleshy pulp, soft peel, without seeds, and exotic flavor. However, it is still poorly used or totally wasted. For this reason, the quality of cashew apples has received more attention from the Brazilian breeding program to maximize their uses. In this study, the volatile compound profiles of peduncles of seven cashew clones and their relation to the aroma and flavor differences were investigated. Nine trained panelists evaluated the cashew apples by descriptive analysis. After the standardization of headspace solid-phase microextraction (HS-SPME) extraction and chromatographic conditions, the volatile organic compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 48 compounds were identified with esters being the major chemical class, both in number of compounds and chromatographic peak area. The targeted and untargeted principal component analysis (PCA) analyses showed complementary and corroborative results from the cashew apple volatile composition based on genotype. The partial least squares (PLS) modeling revealed the high correlation of the unpleasant sensory attributes with the PRO805 and CAPI17 clones; sweet taste and sweet odor with the CCP76 clone; and cashew aroma/cashew flavor with the EMBRAPA51, HAC276, PRO555, and SLC12.20 clones. The correlation between the most relevant volatile organic compounds (VOC) for cashew apples and the sensory descriptors showed that the compounds methyl butanoate, methyl 3-methylbutanoate, ethyl 2-methylbutanoate, methyl 2-butenoate, methyl 3-methylpentanoate, 3-carene, methyl (E)-2-methyl-2-butenoate, ethyl 4-methylpentanoate, 2-hexenal, butyl 3-methylbutanoate, butyl pentanoate, and 3-methyl butanoic acid were important to explain differences in the characteristic fruit aroma and flavor of cashew apples among the studied clones. PRACTICAL APPLICATION: Cashew crops have been developed by using improved clones with increased nut productivity and resistance to diseases. The Brazilian genetic improvement program is also seeking to improve the quality of peduncles to maximize their use and prevent their destination as agricultural waste. In this study, the volatile profile of peduncles of seven cashew clones was determined and its correlation with the differences in their aroma and flavor attributes established. The results will provide important information about the potential of the new materials for fresh consumption and for the manufacturing of cashew juices, in addition to be used by breeders interested in improving the aroma of the fruit.
Assuntos
Anacardium , Compostos Orgânicos Voláteis , Quimiometria , Células Clonais , Melhoramento VegetalRESUMO
In this work, cashew apple pectin (CP) of the species Anacardium occidentale L. was used as an encapsulation matrix for hydrophobic drugs. The model drug chosen was mangiferin (Mf), a glycosylated C-xanthone which has antioxidant properties but low solubility in aqueous medium. CP (1-100 µg mL-1) was not toxic to human neutrophils and also did not significantly interfere with the pro-inflammatory mechanism of these cells in the concentration range of 12.5 and 100 µg mL-1. The results are promising because they show that pectin encapsulated mangiferin after spray drying presented an efficiency of 82.02%. The results obtained in the dissolution test, simulating the release of mangiferin in the gastrointestinal tract (pH 1.2, 4.6 and 6.8) and using Franz diffusion cells (pH 7.4), showed that cashew pectin may be a promising vehicle in prolonged drug delivery systems for both oral and dermal applications.
Assuntos
Anacardium/química , Portadores de Fármacos/administração & dosagem , Composição de Medicamentos/métodos , Neutrófilos/efeitos dos fármacos , Pectinas/administração & dosagem , Secagem por Atomização , Xantonas/administração & dosagem , Cápsulas , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Química Analítica , Preparações de Ação Retardada , Difusão , Liberação Controlada de Fármacos , Frutas/química , Humanos , Microscopia Eletrônica de Varredura , Pectinas/isolamento & purificação , Peroxidase/análise , Solubilidade , ViscosidadeRESUMO
Xylitol was biotechnologically produced by Kluyveromyces marxianus ATCC36907 using the hemicellulosic hydrolysate of the cashew apple bagasse (CABHH). Sequentially, the present study investigated the recovery and purification of xylitol evaluating different antisolvents [ethanol, isopropanol and the ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA)], their proportion in the medium (10-90% v/v), and their cooling rate (VC 0.25-0.50 °C/min). These processes were contrasted with the crystallization process of commercial xylitol. This study is the first to assess xylitol crystallization using a protic ionic liquid. The hydrolysate obtained from a mild treatment with sulfuric acid contained mainly glucose and xylose at concentrations of 15.7 g/L and 11.9 g/L, respectively. With this bioprocess, a maximum xylitol production of 4.5 g/L was achieved. The performance of the investigated antisolvents was similar in all conditions evaluated in the crystallization process of the commercial xylitol, with no significant difference in yields. For the crystallization processes of the produced xylitol, the best conditions were: 50% (v/v) isopropanol as antisolvent, cooling rate of 0.5 °C/min, with a secondary nucleation of yield and purity of 69.7% and 84.8%, respectively. Under the same linear cooling rate, using ethanol, isopropanol or the protic ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA), crystallization did not occur, probably due to the presence of carbohydrates not metabolized by the yeast in the broth, which influences the solubility curve of xylitol. With the results of this work, a possible economical and environmentally friendly process of recovery and purification of xylitol from CABHH could be proposed.
Assuntos
Biotecnologia/métodos , Celulose/química , Microbiologia Industrial/métodos , Kluyveromyces/metabolismo , Malus , Polissacarídeos/química , Xilitol/química , Anacardium/metabolismo , Cristalização , Etanol/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Líquidos Iônicos , Microscopia Eletrônica de Varredura , Solubilidade , Solventes , Ácidos Sulfúricos/química , Temperatura , Fatores de Tempo , Xilose/metabolismoRESUMO
A hybrid neural model (HNM) and particle swarm optimization (PSO) was used to optimize ethanol production by a flocculating yeast, grown on cashew apple juice. HNM was obtained by combining artificial neural network (ANN), which predicted reaction specific rates, to mass balance equations for substrate (S), product and biomass (X) concentration, being an alternative method for predicting the behavior of complex systems. ANNs training was conducted using an experimental set of data of X and S, temperature and stirring speed. The HNM was statistically validated against a new dataset, being capable of representing the system behavior. The model was optimized based on a multiobjective function relating efficiency and productivity by applying the PSO. Optimal estimated conditions were: S0 = 127 g L-1, X0 = 5.8 g L-1, 35 °C and 111 rpm. In this condition, an efficiency of 91.5% with a productivity of 8.0 g L-1 h-1 was obtained at approximately 7 h of fermentation.
Assuntos
Etanol/metabolismo , Sucos de Frutas e Vegetais , Malus/química , Modelos Biológicos , Redes Neurais de Computação , Saccharomyces cerevisiae/crescimento & desenvolvimentoRESUMO
Plant co-products currently represent an attractive alternative to the food industry, especially to the growing market of development low-fat products. Among the co-products resulting from tropical fruits' processing, the cashew apple's fibre presents unusual nutritional and sensory characteristics. In several food preparations could use it as an ingredient. In this work, the bioactive compounds of both artisanal and industrialized cashew apple fibre were studied and the influence of the different cooking methods on their bioactive content, and the acceptance and sensory preference of products new plants-based products formulated. It was observed that both artisanal and industrial cashew apple fibres presented a rich composition in the bioactive compounds, especially regarding the content of ascorbic acid found in artisanal (147.8 mg.100g-1) and carotenoids in industrialized fibre (1.87 mg 100 g-1), which resulted in a higher antioxidant activity for both samples in each method evaluated. Frying (180 °C/3 min) and cooking in a combination oven (98 °C/10 min) exhibited higher averages regarding the retention of the bioactive compounds in the fibres, resulting in a higher antioxidant activity for the products processed by these methods. In contrast, it was boiling processing (100 °C/18min) leads to leach of water-soluble biocompounds and, consequently, their products presented a reduced antioxidant activity. The cashew apple "paçoca" and "meatballs" were judged in terms of their attributes (appearance, aroma, taste, overall impression) and buy intention. In general, the average of these results indicated a high sensorial acceptance and a partial possibility in their purchase of these products. The cashew apple fibres are a source of nutrients. Its incorporation in culinary preparations can be a friendly way to avoid waste and promote new food products.
RESUMO
The cashew tree (Anacardium occidentale) is a tropical evergreen tree largely cultivated in Brazil, which produces the cashew apple, a peduncle rich in carbohydrates and considered an industrial waste of the nut production. Until now, there were no data available about the chemical structure of cell wall polysaccharides found in cashew apple. In this work, its pectic polysaccharides have been characterized through monosaccharide composition, HPSEC, methylation and 13C and 1H/13C HSQC-DEPT-NMR analyses. Highly methyl esterified homogalacturonan with a DE of 76% mixed with arabinogalactan were found. This latter was purified and presented a highly branched type II arabinogalactan (AG II) and small amounts of a type I rhamnogalacturonan in which the AG II could be anchored. These findings about the chemical structure of cashew apple pectins could contribute to develop future nutritional, biotechnological and pharmacological uses for this industrial waste from the cashew nut production.
Assuntos
Anacardium/química , Pectinas/química , Sequência de Carboidratos , Parede Celular/química , Frutas/química , Galactanos/isolamento & purificação , Resíduos Industriais/análise , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Pectinas/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificaçãoRESUMO
The kinetics and thermodynamics of pectin hydrolysis in cashew apple juice by polygalacturonase (PG) from Aspergillus aculeatus URM4953 covalently-immobilized on calcium alginate beads were investigated. Immobilized-PG activity in cashew apple juice was the highest at 20⯰C, showing a maximum hydrolysis rate of 58.2â¯mg/mL·min, a catalytic constant of 166.2â¯s-1 and an affinity constant of 113.0â¯mg/mL. Since the enzyme exhibited an allosteric behavior, the hydrolysis rate was modeled, with excellent accuracy, by the Hill Equation as function of pectin concentration. The Hill coefficient increased from 3 to 5 with increasing temperature from 20 to 50⯰C, evidencing a positive cooperativity mechanism. The reaction activation energy and the standard enthalpy variation of enzyme unfolding were 80.3 and 16.6â¯kJ/mol, respectively. Consistently with the kinetic results, PG-catalyzed pectin hydrolysis proceeded with maximum spontaneity at 20⯰C, showing activation Gibbs free energy, enthalpy and entropy of 59.3â¯kJ/mol, 77.9â¯kJ/mol and 63.4â¯J/mol·K, respectively. Immobilized PG was successful in the hydrolysis of cashew apple juice pectin, requiring a low temperature to act optimally.
Assuntos
Alginatos/química , Anacardium/química , Aspergillus/enzimologia , Enzimas Imobilizadas/metabolismo , Sucos de Frutas e Vegetais , Microesferas , Pectinas/metabolismo , Poligalacturonase/metabolismo , Hidrólise , Cinética , Termodinâmica , Fatores de TempoRESUMO
In this work, the effect of initial sugar concentration and temperature on the production of ethanol by Saccharomyces cerevisiae CCA008, a flocculent yeast, using cashew apple juice in a 1L-bioreactor was studied. The experimental results were used to develop a kinetic model relating biomass, ethanol production and total reducing sugar consumption. Monod, Andrews, Levenspiel and Ghose and Tyagi models were investigated to represent the specific growth rate without inhibition, with inhibition by substrate and with inhibition by product, respectively. Model validation was performed using a new set of experimental data obtained at 34 °C and using 100 g L-1 of initial substrate concentration. The model proposed by Ghose and Tyagi was able to accurately describe the dynamics of ethanol production by S. cerevisiae CCA008 growing on cashew apple juice, containing an initial reducing sugar concentration ranging from 70 to 170 g L-1 and temperature, from 26 to 42 °C. The model optimization was also accomplished based on the following parameters: percentage volume of ethanol per volume of solution (%V ethanol/V solution), efficiency and reaction productivity. The optimal operational conditions were determined using response surface graphs constructed with simulated data, reaching an efficiency and a productivity of 93.5% and 5.45 g L-1 h-1, respectively.
Assuntos
Fermentação , Anacardium , Etanol , Sucos de Frutas e Vegetais , Malus , Saccharomyces cerevisiae , TemperaturaRESUMO
Cashew immature and ripe peduncles (Anacardium occidentale L.) from orange- and red-colored clones CCP 76 and BRS 189, respectively, were prepared as juice or fibrous fraction and submitted to UPLC-MS analyses, while the soluble fraction was also submitted to enzymatic evaluation. Cinnamoyl glucoside was present in ripe juice samples from both cashew clones, while monogalloyl diglucoside and digalloyl glucoside were present in immature juice samples from both cashew clones. Four compounds were found at immature fiber of both clones, anacardic acids (1, 2, 3) and GA19. The phenolic biosynthetic pathway was evaluated in juice samples and phenylalanine ammonia-lyase activity decreased significantly during the development, although it was much higher in ripe CCP 76. UDP-glycosyltransferases activity differed between clones, however its product cinnamoyl glucoside was a possible chemical marker of ripe juice samples from both clones. Flavonol synthase showed the highest specific activity in both cashew clones and its product, flavonols were identified in cashew apple at immature and ripe stages.
Assuntos
Ácidos Anacárdicos/análise , Anacardium/enzimologia , Anacardium/crescimento & desenvolvimento , Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Glucosídeos/análise , Fenóis/análise , Ácidos Anacárdicos/metabolismo , Anacardium/química , Anacardium/metabolismo , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Frutas/química , Frutas/metabolismo , Glucosídeos/metabolismo , Glucuronosiltransferase/metabolismo , Oxirredutases/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Espectrometria de Massas em TandemRESUMO
To enhance the enzymatic digestibility of cashew apple bagasse (CAB) feedstock in order to produce sugar fermentation-derived bioproducts, the CAB was subjected to three different pretreatments with the ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA) and characterized by FTIR, NMR and chemical methods. All conditions were able to delignify CAB, however the best lignin removal (95.8%) was achieved through the method performed with 8.7% w/w of CAB/2-HEAA ratio at 130°C for 24h. Although the cellulose crystallinity has been increased in CAB treated with the ionic liquid, but this fact did not influence its digestibility. Nevertheless, the pretreatment with 2-HEAA enhanced significantly the cellulose digestibility, increasing the glucose yield from 48 to 747.72mgglucose/gCAB. Furthermore, 2-HEAA pretreatment was efficient even with reused ionic liquid, obtaining high glucose concentration.
Assuntos
Anacardium/química , Biotecnologia/métodos , Líquidos Iônicos/química , Acetatos/química , Anacardium/metabolismo , Celulase/química , Celulase/metabolismo , Celulose/química , Celulose/metabolismo , Etanolamina/química , Glucose/química , Glucose/metabolismo , Hidrólise , Resíduos Industriais , Lignina/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Ethanol production from acidic-alkaline pretreated cashew apple bagasse (CAB-OH) was investigated using separated hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes. First, a screening of Kluyveromyces strains was conducted by SHF and a maximum ethanol concentration of 24.1 g L(-1) was obtained using Kluyveromyces marxianus ATCC36907, which presented similar profiles when compared to results obtained by a Saccharomyces strain. The effect of temperature on ethanol production conducted by SHF using K. marxianus ATCC36907 was investigated, and the maximum ethanol yield (YE/G) was obtained at 40 °C (0.46 g g(-1)) using a synthetic medium. In the SHF using CAB-OH hydrolysate, the maximum ethanol concentration obtained was 24.9 g L(-1), 5.92 g L(-1) h(-1) of productivity, and ethanol yield of 0.43 g g(-1) at 40 °C. Afterwards, K. marxianus ATCC36907 was used in the bioconversion of CAB-OH by SSF, and an ethanol concentration of 41.41 ± 0.2 g L(-1) was obtained using 10 % CAB-OH at 40 °C, 150 rpm and 24 h, resulting in a Y'E/G of 0.50 gE gG (-1) and an efficiency of 98.4 %, in the process conducted with cellobiase supplementation. SHF and SSF processes using CAB-OH and K. marxianus ATCC36907 can be used to ethanol production, but the SSF process required only one step to achieve the same production.
Assuntos
Anacardium/química , Celulose/química , Etanol/química , Fermentação , Hidrólise , TemperaturaRESUMO
A multiresidue method for the determination of 46 pesticides in fruits was validated. Samples were extracted with acidified ethyl acetate, MgSO4 and CH3COONa and cleaned up by dispersive SPE with PSA. The compounds were analysed by GC-FPD, GC-µECD or LC-MS/MS, with LOQs from 1 to 8 µg/kg. The method was used to analyse 238 kaki, cashew apple, guava, and peach fruit and pulp samples, which were also analysed for dithiocarbamates (DTCs) using a spectrophotometric method. Over 70% of the samples were positive, with DTC present in 46.5%, λ-cyhalothrin in 37.1%, and omethoate in 21.8% of the positive samples. GC-MS/MS confirmed the identities of the compounds detected by GC. None of the pesticides found in kaki, cashew apple and guava was authorised for these crops in Brazil. The risk assessment has shown that the cumulative acute intake of organophosphorus or pyrethroid compounds from the consumption of these fruits is unlikely to pose a health risk to consumers.
Assuntos
Cromatografia Líquida/métodos , Contaminação de Alimentos/análise , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nozes/química , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Anacardium/química , Brasil , Aditivos Alimentares/análise , Malus/química , Prunus/química , Psidium/química , Medição de RiscoRESUMO
In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer.
Assuntos
Anacardium/química , Meios de Cultura/química , Ácido Hialurônico/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Biomassa , FermentaçãoRESUMO
In vitro chemical properties and antioxidant potential and in vivo mutagenic activity of honey-sweetened cashew apple nectar (HSCAN), a beverage produced from the cashew pseudo-fruit (Anacardium occidentale L.) and of its constituents were assessed. Analytical procedures were carried out to investigate the honey used in the HSCAN preparation, and the results observed are in accordance with Brazilian legal regulations, except for diastase number. HSCAN and pulp were investigated for ascorbic acid, carotenoid, anthocyanin and total phenolic contents, and both showed high acid ascorbic concentrations. Antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and/or ß-carotene/linoleic acid systems were applied and demonstrated a weak antioxidant capacity of honey and HSCAN, but cashew apple pulp demonstrated high antioxidant capacity. A weakly positive mutagenic effect of cashew pulp 20% was observed using the somatic mutation and recombination test (SMART) in Drosophila melanogaster only in the high-bioactivation (HB) cross. On the contrary, HSCAN was not mutagenic in both standard and high bioactivation crosses. HSCAN exhibited slight antioxidant activity, which could be associated with the high amount of ascorbic acid found in the samples evaluated. The beverage prepared did not induce DNA damage in somatic cells of D. melanogaster, which means that it is neither mutagenic nor recombinagenic in this test system.
Assuntos
Anacardium/química , Antioxidantes/farmacologia , Bebidas/análise , Mel , Mutagênicos/toxicidade , Néctar de Plantas/farmacologia , Animais , Antioxidantes/análise , Ácido Ascórbico/análise , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Feminino , Masculino , Testes de Mutagenicidade , Fenóis/análise , Néctar de Plantas/química , Recombinação Genética , Edulcorantes/farmacologiaRESUMO
In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer.
Assuntos
Anacardium/química , Meios de Cultura/química , Ácido Hialurônico/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Biomassa , FermentaçãoRESUMO
As frutas são fontes ricas de nutrientes e os sucos de frutas são formas mais populares de consumi-las. O desenvolvimento de sucos mistos, em que duas ou mais frutas são misturadas para se obter um produto que combina o valor nutricional das frutas, tem sido estimulado pela indústria de alimentos e bem aceita pelos consumidores. Este trabalho teve como objetivo desenvolver néctares mistos de frutas tropicais (caju, manga e acerola) e comparar os dados de aceitabilidade por teste de média e análises estatísticas multivariadas de agrupamento hierárquico e componentes principais. O resultado do teste de médias indicou uma maior aceitação para os néctares com maiores teores de manga e caju e menores teores de acerola. A formulação contendo 12,25% de polpa de caju, 21% de polpa de manga e 1,75% de polpa de acerola teve o maior escore na avaliação global. No entanto, pode ser observado pela análise de cluster de dados dos consumidores e posterior análise de componentes principais destes resultados claramente uma segmentação dos consumidores.
Fruits are a rich source of nutrients and fruit juices are a popular way of consuming them. Development of mixed juices, where two or more fruit juices are blended to obtain a product that combines the nutritional value of fruits, has been encouraged by the food industry and well accepted by consumers. This work aimed to develop mixed nectars of tropical fruits (cashew apple, mango and acerola) and to compare the acceptability data by mean test and multivariate statistical analysis of hierarchic grouping and principal compounds. The tropical fruit nectars showed good acceptability, the formulations with higher mango and cashew and lower acerola contents the most accepted. The formulation with 12.25% cashew apple pulp, 21% mango pulp and 1.75% acerola pulp had the highest global evaluation score. However, it could be observed by the cluster analysis of consumers data and posterior principal components analysis of these results a clearly segmentation of consumers.
RESUMO
In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer.