Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Protein Cell ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676703

RESUMO

Caspase-2, a highly conserved member of the caspase family, is considered an initiator caspase that triggers apoptosis in response to some cellular stresses. Previous studies suggest that an intracellular multi-protein complex PIDDosome, induced by genotoxic stress, serves as a platform for caspase-2 activation. However, due to caspase-2's inability to process effector caspases, the mechanism underlying caspase-2-mediated cell death upon PIDDosome activation remains unclear. Here we conducted an unbiased genome-wide genetic screen and identified that the Bcl2 family protein BID is required for PIDDosome-induced, caspase-2-mediated apoptosis. PIDDosome-activated caspase-2 directly and functionally processes BID to signal the mitochondrial pathway for apoptosis induction. Additionally, a designed chemical screen identified a compound, HUHS015, that specifically activates caspase-2-mediated apoptosis. HUHS015-stimulated apoptosis also requires BID but is independent of the PIDDosome. Through extensive structure-activity relationship efforts, we identified a derivative with a potency of ~ 60 nmol/L in activating caspase-2-mediated apoptosis. The HUHS015-series of compounds act as efficient agonists that directly target the interdomain linker in caspase-2, representing a new mode of initiator caspase activation. Human and mouse caspase-2 differ in two crucial residues in the linker, rendering a selectivity of the agonists for human caspase-2. The caspase-2 agonists are valuable tools to explore the physiological roles of caspase-2-mediated cell death and a base for developing small-molecule drugs for relevant diseases.

2.
Front Oncol ; 14: 1237378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390263

RESUMO

Amplification of MYCN is observed in high-risk neuroblastomas (NBs) and is associated with a poor prognosis. MYCN expression is directly regulated by multiple transcription factors, including OCT4, MYCN, CTCF, and p53 in NB. Our previous study showed that inhibition of p53 binding at the MYCN locus induces NB cell death. However, it remains unclear whether inhibition of alternative transcription factor induces NB cell death. In this study, we revealed that the inhibition of OCT4 binding at the MYCN locus, a critical site for the human-specific OCT4-MYCN positive feedback loop, induces caspase-2-mediated cell death in MYCN-amplified NB. We used the CRISPR/deactivated Cas9 (dCas9) technology to specifically inhibit transcription factors from binding to the MYCN locus in the MYCN-amplified NB cell lines CHP134 and IMR32. In both cell lines, the inhibition of OCT4 binding at the MYCN locus reduced MYCN expression, thereby suppressing MYCN-target genes. After inhibition of OCT4 binding, differentially downregulated transcripts were associated with high-open reading frame (ORF) dominance score, which is associated with the translation efficiency of transcripts. These transcripts were enriched in splicing factors, including MYCN-target genes such as HNRNPA1 and PTBP1. Furthermore, transcripts with a high-ORF dominance score were significantly associated with genes whose high expression is associated with a poor prognosis in NB. Because the ORF dominance score correlates with the translation efficiency of transcripts, our findings suggest that MYCN maintains the expression of transcripts with high translation efficiency, contributing to a poor prognosis in NB. In conclusion, the inhibition of OCT4 binding at the MYCN locus resulted in reduced MYCN activity, which in turn led to the downregulation of high-ORF dominance transcripts and subsequently induced caspase-2-mediated cell death in MYCN-amplified NB cells. Therefore, disruption of the OCT4 binding at the MYCN locus may serve as an effective therapeutic strategy for MYCN-amplified NB.

3.
Biology (Basel) ; 13(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248479

RESUMO

Caspases are a family of proteins involved in cell death. Although several caspase members have been well characterized, caspase-2 remains enigmatic. Caspase-2 has been implicated in several phenotypes, but there has been no consensus in the field about its upstream activating signals or its downstream protein targets. In addition, the unique ability of caspase-2 to form a disulfide-bonded dimer has not been studied in depth. Herein, we investigate the disulfide bond in the context of inducible dimerization, showing that disulfide bond formation is dimerization dependent. We also explore and review several stimuli published in the caspase-2 field, test ferroptosis-inducing stimuli, and study in vivo infection models. We hypothesize that the disulfide bond will ultimately prove to be essential for the evolved function of caspase-2. Proving this will require the discovery of cell death phenotypes where caspase-2 is definitively essential.

4.
Trends Mol Med ; 29(12): 996-1013, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37716905

RESUMO

The PIDDosome is a multiprotein complex that includes p53-induced protein with a death domain 1 (PIDD1), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and caspase-2, the activation of which is driven by PIDDosome assembly. In addition to the key role of the PIDDosome in the regulation of cell differentiation, tissue homeostasis, and organogenesis and regeneration, caspase-2, RAIDD and PIDD1 engagement in neuronal development was shown. Here, we focus on the involvement of PIDDosome components in neurodegenerative disorders, including retinal neuropathies, different types of brain damage, and Alzheimer's disease (AD), Huntington's disease (HD), and Lewy body disease. We also discuss pathogenic variants of PIDD1, RAIDD, and caspase-2 that are associated with intellectual, behavioral, and psychological abnormalities, together with prospective PIDDosome inhibition strategies and their potential clinical application.


Assuntos
Proteína Adaptadora de Sinalização CRADD , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Humanos , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/genética , Caspase 2/metabolismo , Estudos Prospectivos , Apoptose/fisiologia
5.
Neurobiol Dis ; 182: 106126, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086756

RESUMO

Intraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2. In addition, we show that the previously described cleavage site at D421 is also efficiently processed by caspase-2, and both sites are cleaved in human brain samples. Caspase-2-generated Tau fragments show increased aggregation potential in vitro, but do not accumulate in vivo after AAV-mediated overexpression in mouse hippocampus. Interestingly, we observe that steady-state protein levels of caspase-2 generated Tau fragments are low in our in vivo model despite strong RNA expression, suggesting efficient clearance. Consistent with this hypothesis, we find that caspase-2 cleavage significantly improves the recognition of Tau by the ubiquitin E3 ligase CHIP, leading to increased ubiquitination and faster degradation of Tau fragments. Taken together our data thus suggest that CHIP-induced ubiquitination is of particular importance for the clearance of caspase-2 generated Tau fragments in vitro and in vivo.


Assuntos
Caspase 2 , Proteínas tau , Humanos , Masculino , Feminino , Animais , Camundongos , Modelos Animais de Doenças , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo , Caspase 2/metabolismo , Encéfalo/metabolismo , Imunoprecipitação da Cromatina , Ubiquitinação
6.
Biochem Biophys Res Commun ; 645: 147-153, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36689811

RESUMO

PIDDosome formation followed by caspase-2 activation is critical for genotoxic stress-induced apoptotic cell death. Failure of proper caspase-2 activation causes a neurodevelopmental disorder and intellectual disability. R815W, R862W, and Q863stop mutations in p53-induced protein with a death domain (PIDD), a component of the PIDDosome, also lead to this disorder. However, the molecular mechanisms underlying this pathogenesis remain elusive. In this study, we analyzed the molecular mechanisms underlying the pathogenesis of the PIDD DD pathogenic variants R815W, R862W, and Q863stop. We determined that these mutations prevented the interaction between PIDD and RIP-associated Ich-1/Ced-3 homologous protein with a death domain (RAIDD), a molecule that mediates PIDDosome formation. The disruption of this interaction affects PIDDosome formation and caspase-2 activation.


Assuntos
Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Transtornos do Neurodesenvolvimento , Humanos , Apoptose/genética , Caspase 2/genética , Caspase 2/metabolismo , Proteína Adaptadora de Sinalização CRADD/genética , Proteína Adaptadora de Sinalização CRADD/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Transtornos do Neurodesenvolvimento/genética
7.
Cell Metab ; 34(10): 1548-1560.e6, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36041455

RESUMO

Sterol deficiency triggers SCAP-mediated SREBP activation, whereas hypernutrition together with ER stress activates SREBP1/2 via caspase-2. Whether these pathways interact and how they are selectively activated by different dietary cues are unknown. Here, we reveal regulatory crosstalk between the two pathways that controls the transition from hepatosteatosis to steatohepatitis. Hepatic ER stress elicited by NASH-inducing diets activates IRE1 and induces expression of the PIDDosome subunits caspase-2, RAIDD, and PIDD1, along with INSIG2, an inhibitor of SCAP-dependent SREBP activation. PIDDosome assembly activates caspase-2 and sustains IRE1 activation. PIDDosome ablation or IRE1 inhibition blunt steatohepatitis and diminish INSIG2 expression. Conversely, while inhibiting simple steatosis, SCAP ablation amplifies IRE1 and PIDDosome activation and liver damage in NASH-diet-fed animals, effects linked to ER disruption and preventable by IRE1 inhibition. Thus, the PIDDosome and SCAP pathways antagonistically modulate nutrient-induced hepatic ER stress to control non-linear transition from simple steatosis to hepatitis, a key step in NASH pathogenesis.


Assuntos
Caspase 2 , Hepatopatia Gordurosa não Alcoólica , Animais , Caspase 2/metabolismo , Dieta , Frutose/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Esteróis/metabolismo
8.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887026

RESUMO

Fusion protein technologies to facilitate soluble expression, detection, or subsequent affinity purification in Escherichia coli are widely used but may also be associated with negative consequences. Although commonly employed solubility tags have a positive influence on titers, their large molecular mass inherently results in stochiometric losses of product yield. Furthermore, the introduction of affinity tags, especially the polyhistidine tag, has been associated with undesirable changes in expression levels. Fusion tags are also known to influence the functionality of the protein of interest due to conformational changes. Therefore, particularly for biopharmaceutical applications, the removal of the fusion tag is a requirement to ensure the safety and efficacy of the therapeutic protein. The design of suitable fusion tags enabling the efficient manufacturing of the recombinant protein remains a challenge. Here, we evaluated several N-terminal fusion tag combinations and their influence on product titer and cell growth to find an ideal design for a generic fusion tag. For enhancing soluble expression, a negatively charged peptide tag derived from the T7 bacteriophage was combined with affinity tags and a caspase-2 cleavage site applicable for CASPase-based fusiON (CASPON) platform technology. The effects of each combinatorial tag element were investigated in an integrated manner using human fibroblast growth factor 2 as a model protein in fed-batch lab-scale bioreactor cultivations. To confirm the generic applicability for manufacturing, seven additional pharmaceutically relevant proteins were produced using the best performing tag of this study, named CASPON-tag, and tag removal was demonstrated.


Assuntos
Escherichia coli , Fusão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade
9.
Arch Pharm (Weinheim) ; 355(9): e2200095, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35642311

RESUMO

Since the discovery of the caspase-2 (Casp2)-mediated ∆tau314 cleavage product and its associated impact on tauopathies such as Alzheimer's disease, the design of selective Casp2 inhibitors has become a focus in medicinal chemistry research. In the search for new lead structures with respect to Casp2 selectivity and drug-likeness, we have taken an approach by looking more closely at the specific sites of Casp2-mediated proteolysis. Using seven selected protein cleavage sequences, we synthesized a peptide series of 53 novel molecules and studied them using in vitro pharmacology, molecular modeling, and crystallography. Regarding Casp2 selectivity, AcITV(Dab)D-CHO (23) and AcITV(Dap)D-CHO (26) demonstrated the best selectivity (1-6-fold), although these trends were only moderate. However, some analogous tetrapeptides, most notably AcDKVD-CHO (45), showed significantly increased Casp3 selectivities (>100-fold). Tetra- and tripeptides display decreased or no Casp2 affinity, supporting the assumption that a motif of five amino acids is required for efficient Casp2 inhibition. Overall, the results provide a reasonable basis for the development of both selective Casp2 and Casp3 inhibitors.


Assuntos
Caspase 2 , Caspase 2/metabolismo , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Proteólise , Relação Estrutura-Atividade
10.
ACS Chem Neurosci ; 13(10): 1549-1557, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522720

RESUMO

Synaptic and cognitive deficits mediated by a severe reduction in excitatory neurotransmission caused by a disproportionate accumulation of the neuronal protein tau in dendritic spines is a fundamental mechanism that has been found repeatedly in models of tauopathies, including Alzheimer's disease, Lewy body dementia, frontotemporal dementia, and traumatic brain injury. Synapses thus damaged may contribute to dementia, among the most feared cause of debilitation in the elderly, and currently there are no treatments to repair them. Caspase-2 (Casp2) is an essential component of this pathological cascade. Although it is believed that Casp2 exerts its effects by hydrolyzing tau at aspartate-314, forming Δtau314, it is also possible that a noncatalytic mechanism is involved because catalytically dead Casp2 is biologically active in at least one relevant cellular pathway, that is, autophagy. To decipher whether the pathological effects of Casp2 on synaptic function are due to its catalytic or noncatalytic properties, we discovered and characterized a new Casp2 inhibitor, compound 1 [pKi (Casp2) = 8.12], which is 123-fold selective versus Casp3 and >2000-fold selective versus Casp1, Casp6, Casp7, and Casp9. In an in vitro assay based on Casp2-mediated cleavage of tau, compound 1 blocked the production of Δtau314. Importantly, compound 1 prevented tau from accumulating excessively in dendritic spines and rescued excitatory neurotransmission in cultured primary rat hippocampal neurons expressing the P301S tau variant linked to FTDP-17, a familial tauopathy. These results support the further development of small-molecule Casp2 inhibitors to treat synaptic deficits in tauopathies.


Assuntos
Demência Frontotemporal , Tauopatias , Animais , Caspase 2/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Ratos , Transmissão Sináptica , Tauopatias/metabolismo , Proteínas tau/metabolismo
11.
Mol Med Rep ; 25(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981821

RESUMO

Long non­coding RNA (lncRNA) is considered a crucial modulator of the initiation and progression of several diseases. However, the roles of lncRNA in sepsis have yet to be fully elucidated. Thus, the aim of the present study was to investigate the effects of the lncRNA GDP­mannose 4,6­dehydratase antisense 1 (GMDS­AS1) and its target in order to understand its role in the pathogenesis of sepsis. An in vitro sepsis model was established by lipopolysaccharide (LPS) induction. Reverse transcription­quantitative PCR analysis was applied to detect the expression of inflammatory cytokines and the levels of GMDS­AS1, microRNA (miR)­96­5p and caspase­2 (CASP2). Flow cytometry was used to quantify the rate of apoptosis. In addition, the interaction between miR­96­5p and CASP2 was verified using a luciferase reporter assay. Western blot analysis was performed to assess the protein levels of CASP2 following alterations in GMDS­AS1 and miR­96­5p expression using transfection. The levels of interleukin (IL)­6, tumor necrosis factor­α and IL­1ß were increased by LPS treatment in THP­1 cells, whereas miR­96­5p expression was downregulated. miR­96­5p overexpression inhibited LPS­induced inflammatory responses and apoptosis. In addition, GMDS­AS1 expression increased, and upregulation of GMDS­AS1 inhibited, the expression of miR­96­5p in the in vitro sepsis model. Moreover, CASP2 was confirmed to be a direct target of miR­96­5p. Therefore, the lncRNA GMDS­AS1 regulated inflammatory responses and apoptosis by modulating CASP2 and sponging miR­96­5p in LPS­induced THP­1 cells. In summary, the findings of the present study demonstrated that lncRNA GMDS­AS1 could promote the development of sepsis by targeting miR­96­5p/CASP2, indicating that the GMDS­AS1/miR­96­5p/CASP2 axis may be a new therapeutic target and potential research direction for sepsis therapy.


Assuntos
Caspase 2/metabolismo , Cisteína Endopeptidases/metabolismo , Hidroliases/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose/genética , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Hidroliases/genética , Interleucina-1beta/genética , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , Modelos Biológicos , RNA Longo não Codificante/genética , Sepse/induzido quimicamente , Sepse/genética , Transdução de Sinais/genética , Células THP-1 , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
12.
Neural Regen Res ; 17(1): 163-169, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100452

RESUMO

Studies have shown that downregulation of nuclear-enriched autosomal transcript 1 (Neat1) may adversely affect the recovery of nerve function and the increased loss of hippocampal neurons in mice. Whether Neat1 has protective or inhibitory effects on neuronal cell apoptosis after secondary brain injury remains unclear. Therefore, the effects of Neat1 on neuronal apoptosis were observed. C57BL/6 primary neurons were obtained from the cortices of newborn mice and cultured in vitro, and an oxygen and glucose deprivation cell model was established to simulate the secondary brain injury that occurs after traumatic brain injury in vitro. The level of Neat1 expression in neuronal cells was regulated by constructing a recombinant adenovirus to infect neurons, and the effects of Neat1 expression on neuronal apoptosis after oxygen and glucose deprivation were observed. The experiment was divided into four groups: the control group, without any treatment, received normal culture; the oxygen and glucose deprivation group were subjected to the oxygen and glucose deprivation model protocol; the Neat1 overexpression and Neat1 downregulation groups were treated with Neat1 expression intervention techniques and were subjected to the in oxygen and glucose deprivation protocol. The protein expression levels of neurons p53-induced death domain protein 1 (PIDD1, a pro-apoptotic protein), caspase-2 (an apoptotic priming protein), cytochrome C (a pro-apoptotic protein), and cleaved caspase-3 (an apoptotic executive protein) were measured in each group using the western blot assay. To observe changes in the intracellular distribution of cytochrome C, the expression levels of cytochrome C in the cytoplasm and mitochondria of neurons from each group were detected by western blot assay. Differences in the cell viability and apoptosis rate between groups were detected by cell-counting kit 8 assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, respectively. The results showed that the apoptosis rate, PIDD1, caspase-2, and cleaved caspase-3 expression levels significantly decreased, and cell viability significantly improved in the Neat1 overexpression group compared with the oxygen and glucose deprivation group; however, Neat1 downregulation reversed these changes. Compared with the Neat1 downregulation group, the cytosolic cytochrome C level in the Neat1 overexpression group significantly decreased, and the mitochondrial cytochrome C level significantly increased. These data indicate that Neat1 upregulation can reduce the release of cytochrome C from the mitochondria to the cytoplasm by inhibiting the PIDD1-caspase-2 pathway, reducing the activation of caspase-3, and preventing neuronal apoptosis after oxygen and glucose deprivation, which might reduce secondary brain injury after traumatic brain injury. All experiments were approved by the Animal Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, China, on December 19, 2020 (approval No. 2020-895).

13.
Biochem Soc Trans ; 50(1): 33-45, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34940803

RESUMO

Caspases are a family of cysteine aspartyl proteases mostly involved in the execution of apoptotic cell death and in regulating inflammation. This article focuses primarily on the evolutionarily conserved function of caspases in apoptosis. We summarise which caspases are involved in apoptosis, how they are activated and regulated, and what substrates they target for cleavage to orchestrate programmed cell death by apoptosis.


Assuntos
Apoptose , Caspases , Apoptose/fisiologia , Caspases/metabolismo , Humanos , Inflamação
14.
Dev Comp Immunol ; 125: 104217, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34358576

RESUMO

Caspase 2 is widely studied for its function in the regulation of apoptosis in mammals. Despite the fundamental role of apoptosis during the anti-viral immune response, the relationship between Caspase 2 and virus infection has not been extensively explored in invertebrates. Also, whether or not miRNAs involve this process remains unclear. To address this issue, the miRNA-mediated regulation of Caspase 2 in mud crab (Scylla paramamosain) (Sp-Caspase 2) was characterized in this study. Sp-Caspase 2 contains an open reading frame (ORF) of 969 bp encoding 322 deduced amino acids and possesses a conserved CASc domain. The results suggested that Sp-Caspase 2 could suppress white spot syndrome virus infection via apoptosis induction. The further data showed that Sp-Caspase 2 was directly targeted by miR-2 in mud crab. Silencing or overexpression of miR-2 could affect apoptosis and WSSV replication through the regulation of Sp-Caspase 2 expression. Taken together, these results demonstrated the crucial role of the miR-2-Caspase 2 pathway in the innate immunity of mud crabs and revealed a novel mechanism in the anti-viral immune response in marine invertebrates.


Assuntos
Braquiúros/imunologia , Sequência de Aminoácidos , Animais , Apoptose , Proteínas de Artrópodes/genética , Caspase 2/metabolismo , Caspases/metabolismo , Cisteína Endopeptidases , Perfilação da Expressão Gênica , Hemócitos/imunologia , Imunidade Inata , MicroRNAs/metabolismo , Filogenia , Viroses/imunologia , Vírus da Síndrome da Mancha Branca 1/fisiologia
15.
Biochem Pharmacol ; 190: 114624, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052187

RESUMO

Non-alcoholic steatohepatitis (NASH) has evolved as the most common and devastating chronic liver disease. This study aimed to explore the underlined mechanism for the therapeutic potentials of bone marrow mesenchymal stem cells (BM-MSCs) and their derived exosomes (BM-MSCs-Exo) in an experimental model of high fat diet (HFD) induced NASH. Rats were fed with HFD for 12 weeks. At the seventh week, BM-MSCs were given at a dose of 1x106 cell i.v., per rat. A total of three doses of BM-MSCs were given per each rat in six weeks. BM-MSCs-Exo were given at a dose of 15, 30 and 120 µg/kg i.v., twice per week for six weeks. Perfect homing to the liver was detected. Beneficial effects were reported to BM-MSCs or BM-MSCs-Exo cotreatment; where the highest anti-steatotic effects were attributed to BM-MSCs-Exo (120 µg/kg) showing significant downregulation of fatty acid synthesis (SREB1, 2, ACC), downregulation in lipid uptake (CD36); accompanied by significant upregulation in fatty acid oxidation (PPARα, CPT1). These events were associated with abrogation of hepatic steatosis and ballooning in HFD-induced NASH. BM-MSCs or BM-MSCs-Exo cotreatment exerted significant anti-apoptotic effects mediated by significant decrease in Bax/Bcl2 ratio. Besides, significant increase in mitochondrial mitophagy genes (Parkin, PINK1, ULK1, BNIP3L, ATG5, ATG7, ATG12) were detected in BM-MSCs or BM-MSCs-Exo cotreated groups. These findings are thought to be modulated through upregulation of miRNA-96-5p which leads to downregulation of its downstream target caspase-2. Being a critical player in NASH development, caspase-2 targeting by miRNA-96-5p could be a promising therapeutic modality to treat NASH.


Assuntos
Cisteína Endopeptidases/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Animais , Biomarcadores , Cisteína Endopeptidases/genética , Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias , Metabolismo dos Lipídeos , Fígado/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/genética , Mitocôndrias , Mitofagia , Compostos Orgânicos/química , Ratos , Ratos Sprague-Dawley , Tetraspanina 30/genética , Tetraspanina 30/metabolismo
16.
Front Microbiol ; 12: 684953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046026

RESUMO

Enterovirus 71 (EV71) is the major causative pathogen of hand, foot, and mouth disease. The lack of understanding of the virus's pathogenesis hinders the development of anti-virus drugs and the control of EV71 infection. Our previous studies have demonstrated that both mitochondria and endoplasmic reticulum (ER) were altered significantly in EV71 infected cells, but the mechanism is still unclear. In this study, we investigated the effects of EV71 infection on the expression of INF2, a key regulator factor in ER-Mitochondria communication and mitochondrial fission. We found that INF2 was cleaved in EV71 infected RD cells. The INF2 cleavage occurred at Aspartic 1,051 of INF2 and is mediated by activated caspases, predominantly by activated caspase-2. The subcellular localization of INF2 and caspase-2 was significantly altered in infected cells. We speculate that caspase-2-mediated INF2 cleavage is involved in forming viral replication organelles (ROs) and is a positive feedback regulatory mechanism of mitochondrial disorders caused by EV71 infection.

17.
Cells ; 10(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808656

RESUMO

Alternative splicing (AS) is an important posttranscriptional regulatory process. Damaged or unnecessary cells need to be removed though apoptosis to maintain physiological processes. Caspase-2 pre-mRNA produces pro-apoptotic long mRNA and anti-apoptotic short mRNA isoforms through AS. How AS of Caspase-2 is regulated remains unclear. In the present study, we identified a novel regulatory protein SRSF9 for AS of Caspase-2 cassette exon 9. Knock-down (KD) of SRSF9 increased inclusion of cassette exon and on the other hand, overexpression of SRSF9 decreased inclusion of this exon. Deletion mutagenesis demonstrated that exon 9, parts of intron 9, exon 8 and exon 10 were not required for the role of SRSF9 in Caspase-2 AS. However, deletion and substitution mutation analysis revealed that AGGAG sequence located at exon 10 provided functional target for SRSF9. In addition, RNA-pulldown mediated immunoblotting analysis showed that SRSF9 interacted with this sequence. Gene ontology analysis of RNA-seq from SRSF9 KD cells demonstrates that SRSF9 could regulate AS of a subset of apoptosis related genes. Collectively, our results reveal a basis for regulation of Caspase-2 AS.


Assuntos
Caspase 2/metabolismo , Éxons/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Caspase 2/genética , Linhagem Celular Tumoral , Humanos , Precursores de RNA/genética , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Transcrição/metabolismo
18.
Trends Cell Biol ; 31(9): 712-720, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33752921

RESUMO

Genomic instability underlies genesis and the development of various types of cancer. During tumorigenesis, cancer initiating cells assume a set of features, which allow them to survive and proliferate. Different mutations and chromosomal alterations promote a selection of the most aggressive cancer clones that worsen the prognosis of the disease. Despite that caspase-2 was described as a protease fulfilling an initiator and an effector function in apoptosis, it has recently been discovered to play an important role in the maintenance of genomic integrity and normal chromosome configuration. This protein is able to stabilize p53 and affect the level of transcription factors, which activates cell response to oxidative stress. Here we focus on the discussion on the mechanism(s) of how caspase-2 regulates genomic stability and decreases tumorigenesis.


Assuntos
Caspase 2 , Instabilidade Genômica , Neoplasias , Aneuploidia , Caspase 2/genética , Cisteína Endopeptidases , Humanos , Mutação , Neoplasias/genética
19.
Biochem Biophys Res Commun ; 547: 118-124, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33610039

RESUMO

During apoptosis, myosin light chain phosphorylation induced by ROCK 1, activated by caspase 3-mediated cleavage, results in the formation of membrane blebs. Additionally, actin-myosin-based contraction induced by the activation of ROCK is involved in the apoptotic nuclear disintegration. In previous studies, it was reported that ROCK 1 was only cleaved by caspase 3 in cell death and caspase 7 was involved in truncation of ROCK 1 in in-vitro cell-free conditions. Here we reported that caspase 2 is involved in the truncation of ROCK 1 directly as well as caspase 3 and caspase 7. Utilizing caspase 3-deficient MCF-7, MDA-MB-231 and HeLa cells, we demonstrated that caspase 2 produced an active fragment of approximately 130 kDa of ROCK 1 in cell death. The cleaved active fragment of ROCK 1 is also responsible for the formation of membrane blebbing in cell death. Interestingly, caspase 2-mediated cleavage of ROCK 1 might occur in the region where caspase 3 truncates ROCK 1. Moreover, the presence of an active cleaved form of ROCK 1 in the nuclei implies that this fragment might play a role in the disruption of nuclear integrity. Taken together, it was determined that caspase 2 has a role in the truncation of ROCK 1 in cell death, and a new activation mechanism has been defined for ROCK 1.


Assuntos
Caspases/metabolismo , Neoplasias/metabolismo , Quinases Associadas a rho/metabolismo , Antineoplásicos/farmacologia , Caspase 2/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Células HeLa , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteólise , Quinases Associadas a rho/química
20.
J Recept Signal Transduct Res ; 41(1): 6-14, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32605511

RESUMO

Acute myocardial infarction (AMI) represents a severe coronary heart disease with relatively high rate of mortality and usually can lead to the damage of the myocardial tissues. Reperfusion of the ischemic myocardial tissues can minimize AMI-induced damage. As far as we know, the molecular mechanisms underlying ischemia/reperfusion (I/R)-induced injury remains elusive. This study was undertaken to explore the role of miR-1247-3p in regulating myocardial I/R injury. The hypoxia/reoxygenation (H/R)-treated H9c2 cells showed a decreased cell viability and mitochondrial membrane potential with an increase in the apoptosis; furthermore, miR-1247-3p was down-regulated in these cells. MiR-1247-3p overexpression attenuated H/R-induced H9c2 cell injury; while miR-1247-3p knockdown in H9c2 cells exhibited similar effects being observed in H/R-treated cells. The bioinformatics prediction revealed Bcl-2-like protein 11 (BCL2L11) and caspase-2 were two potential targets for miR-1247-3p, and functional assays confirmed that miR-1247-3p targeted both BCL2L11 and caspase-2 3' untranslated regions, which lead to the repressed expression of these genes. Silencing of BCL2L11 and caspase-2 both, respectively, counteracted the H9c2 cell injury caused by H/R treatment. Moreover, BCL2L11 and caspase-2 overexpression, respectively, impaired the protective effects of miR-1247-3p overexpression on H/R-treated H9c2 cells. The data in the present investigation revealed that miR-1247-3p restoration exhibited protective effects on H/R-induced cardiomyocyte injury through targeting BCL2L11 and caspase-2, implying that miR-1247-3p along with caspase-2/BCL2L11 signaling may provide novel sight for a better understating of I/R-induced myocardial damage. The role of miR-1247-3p might be further confirmed in animal models and clinical studies.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Caspase 2/genética , MicroRNAs/genética , Miocárdio/metabolismo , Traumatismo por Reperfusão/genética , Animais , Apoptose/genética , Hipóxia Celular/genética , Sobrevivência Celular/genética , Regulação da Expressão Gênica/genética , Humanos , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Substâncias Protetoras/farmacologia , Ratos , Traumatismo por Reperfusão/patologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...