RESUMO
Natural polysaccharides are among the renewable sources with great potential for replacing petroleum-derived chemicals as precursors to produce biodegradable films. This study aimed to prepare biopolymeric films using starch extracted from the periderm and cortex of cassava roots (waste from cassava root processing), locust bean galactomannan, and cellulose nanofibers also obtained from cassava waste. The films were prepared by casting, and their physicochemical, mechanical, and biodegradability properties were evaluated. The content of cellulose nanofibers varied from 0.5 to 2.5%. Although the addition of cellulose nanofibers did not alter the mechanical properties of the films, it significantly enhanced the vapor barrier of the films (0.055 g mm/m2 h kPa-2.5% nanofibers) and their respective stabilities in aqueous acidic and alkaline media. All prepared films were biodegradable, with complete degradation occurring within five days. The prepared films were deemed promising alternatives for minimizing environmental impacts caused by the disposal of petroleum-derived materials.
RESUMO
The production of volatile fatty acids (VFAs), intermediates in the anaerobic degradation process of organic matter from waste water, was evaluated in this work. A batch reactor was used to investigate the effect of temperature, and alkalinity in the production of VFAs, from the fermentation of industrial cassava waste water. Peak production of total volatile fatty acids (TVFAs) was observed in the first two days of acidogenesis. A central composite design was performed, and the highest yield (3400â mgâ L(-1) of TVFA) was obtained with 30°C and 3â gâ L(-1) of sodium bicarbonate. The peak of VFA was in 45â h (pH 5.9) with a predominance of acetic (63%) and butyric acid (22%), followed by propionic acid (12%). Decreases in amounts of cyanide (12.9%) and chemical oxygen demand (21.6%) were observed, in addition to the production of biogas (0.53â cm(3)â h(-1)). The process was validated experimentally and 3400â gâ L(-1) of TVFA were obtained with a low relative standard deviation.
Assuntos
Ácidos Graxos Voláteis/metabolismo , Manihot/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis/análise , Fermentação , Concentração de Íons de Hidrogênio , TemperaturaRESUMO
Statistics based optimization, Plackett-Burman design (PBD) and response surface methodology (RSM) were employed to screen and optimize the media components for the production of naringinase from Aspergillus brasiliensis MTCC 1344, using solid state fermentation. Cassava waste (CW) was used as both the solid support and carbon source for the growth of A. brasiliensis. Based on the positive influence of the Pareto chart obtained from PBD on naringinase activity, three media components--maltose, peptone and calcium chloride were screened. Box-Behnken design (BBD) was employed using these three factors at three levels, for further optimization, and the second order polynomial equation was derived, based on the experimental data. Derringer's desired function methodology showed that the concentrations of maltose (7.74 g/L), peptone (4.19 g/L) and calcium chloride (7.63 mM) were the optimal levels for maximal naringinase activity (889.91 U/mg) which were validated through experiments.
Assuntos
Aspergillus/metabolismo , Meios de Cultura , Fermentação , Complexos Multienzimáticos/biossíntese , beta-Glucosidase/biossíntese , Algoritmos , Meios de Cultura/química , Ativação Enzimática , Modelos Estatísticos , Reprodutibilidade dos TestesRESUMO
background: Lactic acid (LA) is a carboxylic acid widely used as preservative, acidulant, and/or flavouring in food industry; it is also used as a raw material for the production of lactate ester, propylene glycol, 2,3-pentanedione, propanoic acid, acrylic acid and acetaldehyde. In recent years, the demand for LA production has dramatically increased due to its application as a monomer for poly-lactic acid synthesis, a biodegradable polymer used as a plastic in many industrial applications. LA can be produced either by fermentation or chemical synthesis; the former route has received considerable interest, due to environmental concerns and the limited nature of petrochemical feedstocks; thus, 90% of LA produced worldwide is obtained by fermentation, this process comprises the bioconversion of a sugar solution (carbohydrates) into LA in the presence of a microorganism. Objectives: This work is aimed at studying the effect of pH control and culture media composition on the LA production using renewable sources from the agroindustry sector. Methods: A Lactobacillus brevis strain is used to perform lab scale experiments under aerobic and anaerobic conditions, using three different culture media compositions: a high nutritional content medium (MRS), as a reference, a low nutritional content medium with glucose as the only carbon source (GM), and a potential low nutritional content medium with cassava flour as carbon source (HY1). results: The higher LA production is accomplished under anaerobic conditions, 17.6 ± 0.1, 12.6 ± 0.2 y 13.6 ± 0.2 g LA/L, for MRS, GM and HY1 medium, respectively. The effect of pH on LA biosynthesis in a 5L bioreactor is also studied using the HY1 medium. For a fermentation time of 120 h, the highest LA concentration obtained was 24.3 ± 0.7g LA/L, productivity 0.20 g/L/h, YP/S 0.32g LA/g syrup, at pH 6.5...