Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(37): 49305-49317, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39239733

RESUMO

Organophosphate nerve agents (OPs) are widely used as pesticides and chemical agents and pose a threat to human health and life. At present, most personal protective equipment usually only serves as physical protection and does not have an effect of chemical detoxification. In this work, ultra lightweight graphene oxide aerogels (GAs) have been used as a multifunctional skeleton to integrate the metal-organic frameworks (MOFs) and molecularly imprinted polymers (MIPs) together for obtaining a high-performance hybrid material (MOFs/MIPs@GAs) on hydrolysis detoxification of OPs. As a porous three-dimensional material full of carboxyl groups, GAs can not only support excellent mass transfer performance but also provide a proper pH self-buffering catalytic reaction external environment for hydrolyzing OPs. The obtained MOFs/MIPs@GAs can catalyze dimethyl-4-nitrophenyl phosphate (DMNP) hydrolysis detoxification rapidly in pure water (kobs = 0.2227 min-1, t1/2 = 3.11 min). This ternary hybrid material with exceptional performance and practical applicability has vast application prospects for the development of protective equipment.

2.
Nanomicro Lett ; 16(1): 32, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999792

RESUMO

Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions, especially electrocatalytic hydrogen evolution reaction (HER). In recent years, deformable catalysts for HER have made great progress and would become a research hotspot. The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration. The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties. Here, firstly, we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro-nanostructures evolution in catalytic HER process. Secondly, a series of strategies to design highly active catalysts based on the mechanical flexibility of low-dimensional nanomaterials were summarized. Last but not least, we presented the challenges and prospects of the study of flexible and deformable micro-nanostructures of electrocatalysts, which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.

3.
ACS Appl Mater Interfaces ; 15(33): 40115-40132, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37556733

RESUMO

Designing an effective Pd-Pt catalytic material with excellent catalytic performance for perhydroacenaphthene (PHAN) dehydrogenation is a great challenge. In this work, in order to explore the crystal facet structure over the bimetallic Pd-Pt catalyst on the dehydrogenation performance of PHAN, the surface compositions of two kinds of Pd (Pt) atoms with different coverage on Pd modulated Pt (PdPt) and Pt modulated Pd (PtPd) catalysts were designed and studied by means of density functional theory (DFT). Through the investigation of the reaction path of PHAN dehydrogenation on PdMLPt(111) and PtMLPd(111) surfaces, it was found that PdMLPt(111) was advantageous to PHAN dehydrogenation (Ea = 2.317 eV). This was attributed to a lower energy barrier, more stable dehydrogenation products, and the fact that Pd doping brought Pt(111) close to the Fermi level. Apparently, Pd modulated Pt catalyst has a broad application prospect in the dehydrogenation of PHAN. In the process of optimizing the PdPt morphology, a method for selecting the minimum active unit of PdPt catalysts with different ratios was proposed, that is, the most stable active unit: rhombus structure was determined according to the surface formation energy. Moreover, we correlated the relationship among the number of H atoms removed, adsorption energy, surface charge, activation energy, reaction energy, and surface coverage, and obtained the important parameters to predict the performance of PdPt catalyst in PHAN dehydrogenation system: surface charge and d-band center. Finally, the essential correlativity among Pd-Pt surface characteristics, catalytic PHAN activity, and adsorption energy was constructed; that is, the relationship model among d-band center, H atom, and product C12H8 adsorption energy was established. This work opens a new simultaneous path to improve the catalytic performance of Pd-Pt-based catalytic materials for PHAN dehydrogenation, which can be achieved by regulating the rhombic active units of Pt modulated by Pd.

4.
Nanomaterials (Basel) ; 13(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513160

RESUMO

Lithium-sulfur technology is a strong candidate for the future generation of batteries due to its high specific capacity (1675 mAh g-1), low cost, and environmental impact. In this work, we propose a facile and solvent-free microwave synthesis for a composite material based on doped (sulfur and nitrogen) reduced graphene oxide embedded with zinc sulfide nanoparticles (SN-rGO/ZnS) to improve the battery performance. The chemical-physical characterization (XRD, XPS, FESEM, TGA) confirmed the effectiveness of the microwave approach in synthesizing the composite materials and their ability to be loaded with sulfur. The materials were then thoroughly characterized from an electrochemical point of view (cyclic voltammetry, galvanostatic cycling, Tafel plot, electrochemical impedance spectroscopy, and Li2S deposition test); the SN-rGO/ZnS/S8 cathode showed a strong affinity towards polysulfides, thus reducing their loss by diffusion and improving redox kinetics, allowing for faster LiPSs conversion. In terms of performance, the composite-based cathode increased the specific capacity at high rate (1 C) from 517 to 648 mAh g-1. At the same time, more stable behavior was observed at 0.5 C with capacity retention at the 750th cycle, where it was raised from 32.5% to 48.2%, thus confirming the beneficial effect of the heteroatomic doping process and the presence of zinc sulfide nanoparticles.

5.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984012

RESUMO

The immobilization of homogeneous catalysts has always been a hot issue in the field of catalysis. In this paper, in an attempt to immobilize the homogeneous [Ni(Me6Tren)X]X (X = I, Br, Cl)-type catalyst with porous organic polymer (POP), the heterogeneous catalyst PBTP-Me6Tren(Ni) (POP-Ni) was designed and constructed by quaternization of the porous bromomethyl benzene polymer (PBTP) with tri[2-(dimethylamino)ethyl]amine (Me6Tren) followed by coordination of the Ni(II) Lewis acidic center. Evaluation of the performance of the POP-Ni catalyst found it was able to catalyze the CO2 cycloaddition with epichlorohydrin in N,N-dimethylformamide (DMF), affording 97.5% yield with 99% selectivity of chloropropylene carbonate under ambient conditions (80 °C, CO2 balloon). The excellent catalytic performance of POP-Ni could be attributed to its porous properties, the intramolecular synergy between Lewis acid Ni(II) and nucleophilic Br anion, and the efficient adsorption of CO2 by the multiamines Me6Tren. In addition, POP-Ni can be conveniently recovered through simple centrifugation, and up to 91.8% yield can be obtained on the sixth run. This research provided a facile approach to multifunctional POP-supported Ni(II) catalysts and may find promising application for sustainable and green synthesis of cyclic carbonates.

6.
ACS Appl Mater Interfaces ; 14(7): 9763-9780, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35147410

RESUMO

Designing an effective Pd-based catalytic material with higher stability and catalytic performance for direct oxidative esterification is a great challenge. In this work, a systematic study on the activation mechanism of H2O on the different crystal facets of monometallic Pd, bimetallic Pd-Pb(Bi), and trimetallic Pd-Pb-Bi catalysts was first performed, which showed that the (111) crystal facet of Pd-Pb-Bi had stronger stability of resistance toward deactivation induced by H2O. Further, a detailed direct oxidative esterification mechanism on the screened crystal facet was investigated, where Pd-Pb-Bi catalytic materials showed higher stability and intrinsic catalytic performance for direct oxidation esterification, which was attributed to a dimer Pd-active unit and the synergistic effect of Pb and Bi compared to that of Pd-Pb(Bi) and Pd and also applied to other aldehydes with electron-donating groups producing corresponding esters. Meanwhile, the essential relationship between structures of Pd-based catalytic materials and catalytic performance for direct oxidation esterification was obtained. This work opens up a new simultaneous path for improving the stability of resistance toward deactivation and catalytic performance for direct oxidative esterification of Pd-based catalytic materials, which can be realized by regulating the surface-active unit with dimer Pd adsorbed more O-preadsorbed using Pb and Bi promoters.

7.
Sci Total Environ ; 825: 153992, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35192815

RESUMO

This paper aims to provide insights on mechanochemistry as a green and versatile tool to synthesize advanced materials for water remediation. In particular, mechanochemical methodologies for preparation of reagents and catalysts for the removal of organic pollutants are reviewed and discussed, focusing on those materials that, directly or indirectly, induce redox reactions in the contaminants (i.e., photo-, persulfate-, ozone-, and Fenton-catalysts, as well as redox reagents). Methods reported in the literature include surface reactivity enhancement for single-component materials, as well as multi-component material design to obtain synergistic effects in catalytic efficiency and/or reactivity. It was also amply demonstrated that mechanochemical surface activation or the incorporation of catalytic/reactive components boost the generation of reactive species in water by accelerating charge transfer, increasing superficial active sites, and developing pollutant absorption. Finally, indications for potential future developments in this field are debated.


Assuntos
Poluentes Ambientais , Água , Catálise , Descontaminação , Indicadores e Reagentes , Oxirredução
8.
ACS Nano ; 15(10): 15687-15699, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34473481

RESUMO

Spatial partitioning of chemical processes is an important attribute of many biological systems, the effect of which is reflected in the high efficiency of enzymes found within otherwise chaotic cellular environments. Barriers, often provided through the formation of compartments or phase segregation, gate the access of macromolecules and small molecules within the cell and provide an added level of metabolic control. Taking inspiration from nature, we have designed virus-like particles (VLPs) as nanoreactor compartments that sequester enzyme catalysts and have used these as building blocks to construct 3D protein macromolecular framework (PMF) materials, which are structurally characterized using small-angle X-ray scattering (SAXS). The highly charged PMFs form a separate phase in suspension, and by tuning the ionic strength, we show positively charged molecules preferentially partition into the PMF, while negatively charged molecules are excluded. This molecular partitioning was exploited to tune the catalytic activity of enzymes enclosed within the individual particles in the PMF, the results of which showed that positively charged substrates had turnover rates that were 8500× faster than their negatively charged counterparts. Moreover, the catalytic PMF led to cooperative behavior resulting in charge dependent trends opposite to those observed with individual P22 nanoreactor particles.


Assuntos
Espalhamento a Baixo Ângulo , Catálise , Substâncias Macromoleculares , Concentração Osmolar , Difração de Raios X
9.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068386

RESUMO

(1) Background: Properties and descriptors are two forms of molecular in silico representations. Properties can be further divided into functional, e.g., catalyst or drug activity, and material, e.g., X-ray crystal data. Millions of real measured functional property records are available for drugs or drug candidates in online databases. In contrast, there is not a single database that registers a real conversion, TON or TOF data for catalysts. All of the data are molecular descriptors or material properties, which are mainly of a calculation origin. (2) Results: Here, we explain the reason for this. We reviewed the data handling and sharing problems in the design and discovery of catalyst candidates particularly, material informatics and catalyst design, structural coding, data collection and validation, infrastructure for catalyst design and the online databases for catalyst design. (3) Conclusions: Material design requires a property prediction step. This can only be achieved based on the registered real property measurement. In reality, in catalyst design and discovery, we can observe either a severe functional property deficit or even property famine.


Assuntos
Desenho de Fármacos , Nanotecnologia , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Catálise , Bases de Dados Factuais , Teste de Materiais
10.
Artigo em Inglês | MEDLINE | ID: mdl-30633631

RESUMO

CuO-CeO2 catalysts supported on material synthesized from red mud and rice husk ash (CuO-CeO2/ZRM) were prepared by co-impregnation method. The role of CeO2 additive in the improvement of physicochemical properties and catalytic activity of CuO-CeO2/ZRM catalysts were emphasized. Several techniques, including Brunauer-Emmett-Teller Nitrogen physisorption measurements, X-ray powder diffraction, hydrogen temperature programed reduction, scanning electron microscopy and transmission electron microscopy (TEM) were used to investigate the properties of catalysts. Crystallite size calculated by Scherrer' equation was 17.4 - 21.8 nm. Modification of 5 wt% CuO/ZRM catalyst with CeO2 had reduced the size of the nanoparticles leading to a significant enhancement of the catalytic activity in p-xylene deep oxidation at temperature range of 275 - 400 °C. The 5 wt% CuO/ZRM sample promoted by 3 wt% of nanoparticle CeO2 with the average size of 17.5 nm and BET surface area of 31.3 m2 g-1 exhibited the best activity for p-xylene deep oxidation. In this sample, the conversion of p-xylene reaches to 90% at 350 °C.


Assuntos
Cério/química , Cobre/química , Nanopartículas/química , Oryza/química , Xilenos/análise , Zeolitas/química , Catálise , Oxirredução , Tamanho da Partícula , Caules de Planta/química , Propriedades de Superfície , Temperatura
11.
ACS Nano ; 12(4): 3541-3550, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29558117

RESUMO

Bottom-up construction of mesoscale materials using biologically derived nanoscale building blocks enables engineering of desired physical properties using green production methods. Virus-like particles (VLPs) are exceptional building blocks due to their monodispersed sizes, geometric shapes, production ease, proteinaceous composition, and our ability to independently functionalize the interior and exterior interfaces. Here a VLP, derived from bacteriophage P22, is used as a building block for the fabrication of a protein macromolecular framework (PMF), a tightly linked 3D network of functional protein cages that exhibit long-range order and catalytic activity. Assembly of PMFs was electrostatically templated, using amine-terminated dendrimers, then locked into place with a ditopic cementing protein that binds to P22. Long-range order is preserved on removal of the dendrimer, leaving a framework material composed completely of protein. Encapsulation of ß-glucosidase enzymes inside of P22 VLPs results in formation of stable, condensed-phase materials with high local concentration of enzymes generating catalytically active PMFs.

12.
ACS Appl Mater Interfaces ; 9(30): 25387-25396, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28703007

RESUMO

Taking inspiration from biology's effectiveness in functionalizing protein-based nanocages for chemical processes, we describe here a rational design of an artificial metalloenzyme for oxidations with the bacterial chaperonin GroEL, a nanocage for protein folding in nature, by supramolecular anchoring of catalytically active hemin in its hydrophobic central cavity. The promiscuity of the chaperonin cavity is an essential element of this design, which can mimic the hydrophobic binding pocket in natural metalloenzymes to accept cofactor and substrate without requiring specific ligand-protein interactions. The success of this approach is manifested in the efficient loading of multiple monomeric hemin cofactors to the GroEL cavity by detergent dialysis and good catalytic oxidation properties of the resulting biohybrid in tandem with those of the clean oxidant of H2O2. Investigation of the mechanism of hemin-GroEL-catalyzed oxidation of two-model substrates reveals that the kinetic behavior of the complex follows a ping-pong mechanism in both cases. Through comparison with horseradish peroxidase, the oxidative activity and stability of hemin-GroEL were observed to be similar to those found in natural peroxidases. Adenosine 5'-triphosphate (ATP)-regulated partial dissociation of the biohybrid, as assessed by the reduction of its catalytic activity with the addition of the nucleotide, raises the prospect that ATP may be used to recycle the chaperonin scaffold. Moreover, hemin-GroEL can be applied to the chromogenic detection of H2O2, which (or peroxide in general) is commonly contained in industrial wastes. Considering the rich chemistry of free metalloporphyrins and the ease of production of GroEL and its supramolecular complex with hemin, this work should seed the creation of many new artificial metalloenzymes with diverse reactivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA