Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
Cureus ; 16(5): e60407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38883108

RESUMO

BACKGROUND: Nanotechnology enables precise manipulation of matter at the molecular level, with nanoparticles offering diverse applications in medicine and beyond. Green synthesis methods, utilizing natural sources like plant extracts, are favored for their eco-friendliness. Zinc oxide (ZnO) nanoparticles are recognized for their ability to combat microbes and reduce inflammation, which holds promise for biomedical applications. Catharanthus roseus, renowned for its medicinal properties, warrants further exploration in oral health management due to its anti-inflammatory and antioxidant attributes. AIM: The current study aimed to synthesize Catharanthus roseus-mediated ZnO nanoparticles and to evaluate their anti-inflammatory and antioxidant activity. MATERIALS AND METHODS: Catharanthus roseus powder (1 g) was dissolved in distilled water (100 ml), heated at 60°C for 15-20 minutes, and filtered to obtain 20 ml extract. ZnO nanoparticles were synthesized by adding 0.594 g ZnO powder to 50 ml water, mixed with plant extract, and stirred for 72 hours, and the resulting solution was centrifuged. Nanoparticles were collected and analyzed for Fourier-transform infrared spectroscopy (FTIR) using Bruker's Alpha II FTIR spectrometer (Bruker, Billerica, Massachusetts, United States), antioxidant, and anti-inflammatory activities. RESULTS: FTIR analysis revealed characteristic peaks indicative of functional groups present in Catharanthus roseus-mediated ZnO nanoparticles, including O-H, N-O, C-O, C=C, and C≡C-H. Anti-inflammatory activity evaluation showed inhibition ranging from 48% to 89%, with the maximum inhibition at 50 µL concentration. Similarly, antioxidant activity ranged from 62% to 88%, with the maximum inhibition also seen at 50 µL concentration. CONCLUSION: Both assays effectively showcased the superior anti-inflammatory and antioxidant activity of the Catharanthus roseus-incorporated ZnO nanoparticles extract compared to the control. This suggests their potential as a viable therapeutic agent for further evaluation.

2.
Fungal Biol ; 128(4): 1876-1884, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876540

RESUMO

The endophytic fungus Chaetomium nigricolor culture filtrate's hexane extract was used to identify a cytotoxic very long-chain fatty acid. Based on multiple spectroscopic investigations, the structure of the compound was predicted to be an unsaturated fatty acid, Nonacosenoic acid (NA). Using the MTT assay, the compound's cytotoxic potential was evaluated against MCF-7, A-431, U-251, and HEK-293 T cells. The compound was moderately cytotoxic to breast carcinoma cell line, MCF-7 cells and negligibly cytotoxic to non-cancerous cell line HEK-293 T cells. The compound exhibited mild cytotoxic activity against A-431 and U-251 cells. The compound also induced ROS generation and mitochondrial depolarization in MCF-7 cells when assessed via the NBT and JC-1 assays, respectively. This is the first report on the production of nonacosenoic acid from the endophytic fungus Chaetomium nigricolor and the assessment of its bioactivity.


Assuntos
Chaetomium , Endófitos , Ácidos Graxos Insaturados , Chaetomium/química , Humanos , Endófitos/química , Endófitos/metabolismo , Endófitos/isolamento & purificação , Ácidos Graxos Insaturados/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Caules de Planta/microbiologia , Caules de Planta/química , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular
3.
Plant Direct ; 8(6): e596, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38855128

RESUMO

Agrobacterium-mediated transient expression methods are widely used to study gene function in both model and non-model plants. Using a dual-luciferase assay, we quantified the effect of Agrobacterium-infiltration parameters on the transient transformation efficiency of Catharanthus roseus seedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre- and post-infiltration dark incubation and is less sensitive to the Agrobacterium growth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven- to eight-fold while a dark incubation pre- and post-infiltration increased transformation efficiency by five- to 13-fold. Agrobacterium in exponential compared with stationary phase increased transformation efficiency by two-fold. Finally, we quantified the variation in our Agrobacterium-infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6-fold in raw firefly luciferase (FLUC) and raw Renilla luciferase (RLUC) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation of Agrobacterium infiltration in C. roseus seedlings will facilitate the study of this important medicinal plant and will expand the application of Agrobacterium-mediated transformation methods in other plant species.

4.
J Fungi (Basel) ; 10(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786707

RESUMO

Talaromyces sp. DC2 is an endophytic fungus that was isolated from the stem of Catharanthus roseus (L.) G. Don in Hanoi, Vietnam and is capable of producing vinca alkaloids. This study utilizes the PacBio Sequel technology to completely sequence the whole genome of Talaromyces sp. DC2The genome study revealed that DC2 contains a total of 34.58 Mb spanned by 156 contigs, with a GC content of 46.5%. The identification and prediction of functional protein-coding genes, tRNA, and rRNA were comprehensively predicted and highly annotated using various BLAST databases, including non-redundant (Nr) protein sequence, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Carbohydrate-Active Enzymes (CAZy) databases. The genome of DC2 has a total of 149, 227, 65, 153, 53, and 6 genes responsible for cellulose, hemicellulose, lignin, pectin, chitin, starch, and inulin degradation, respectively. The Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) analyses revealed that strain DC2 possesses 20 biosynthetic gene clusters responsible for producing secondary metabolites. The strain DC2 has also been found to harbor the DDC gene encoding aromatic L-amino acid decarboxylase enzyme. Conclusively, this study has provided a comprehensive understanding of the processes involved in secondary metabolites and the ability of the Talaromyces sp. DC2 strain to degrade plant cell walls.

5.
Chemosphere ; 359: 142369, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761825

RESUMO

The present article portrayed on the killing kinetic of human pathogenic bacteria using bioinspired mesoporous CuAl2O4 nanocomposites (NCs). The NCs was fabricated using leaf extract of medicinal plant Catharanthus roseus (CR) as a green reducer and stabilizer. As bio-fabricated material was calcined at 800 °C and characterized by several analytical techniques like X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-DRS), Energy Dispersive X-Ray Spectroscopy (EDS), X-Ray Photoelectron Spectroscopy (XPS), Raman, Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) to authenticate its structure, phase, chemical bonding, chemical state, size and morphology behaviors. XRD and TEM revealed a reduced crystallite and nanoscale sizes of biosynthesized NCs. Moreover, XRD study exposed a cubic-structure of material, while transmission electron microscopy rendered an average particles size in range 10-15 nm. However, BET profile advocates a mesoporous nature of the particles. An effective biological molecular docking modulation assessed by substituting natural inhibitor by bioinspired NCs, while the protein PDB ID 4Z8D FabH as a receptor site for the present investigation. After assessment of molecular docking examination, the antibacterial activity of bioinspired NCs were performed against Staphylococcus aureus, Bacillus subtillis, Klebsiella pneumoniae and Escherichia coli using agar-well method. The broth culture method was employed on different pathogenic strains by kinetic growth assays and colony forming unit.


Assuntos
Catharanthus , Nanocompostos , Extratos Vegetais , Catharanthus/química , Nanocompostos/química , Cinética , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Simulação de Acoplamento Molecular , Escherichia coli/efeitos dos fármacos , Difração de Raios X , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
6.
Plant Cell Rep ; 43(6): 141, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743349

RESUMO

KEY MESSAGE: A GLK homologue was identified and functionally characterized in Catharanthus roseus. Silencing CrGLK with VIGS or the chloroplast retrograde signaling inducer lincomycin increased terpenoid indole alkaloid biosynthesis. Catharanthus roseus is the sole source of the chemotherapeutic terpenoid indole alkaloids (TIAs) vinblastine and vincristine. TIA pathway genes, particularly genes in the vindoline pathway, are expressed at higher levels in immature versus mature leaves, but the molecular mechanisms responsible for this developmental regulation are unknown. We investigated the role of GOLDEN2-LIKE (GLK) transcription factors in contributing to this ontogenetic regulation since GLKs are active in seedlings upon light exposure and in the leaf's early development, but their activity is repressed as leaves age and senesce. We identified a GLK homologue in C. roseus and functionally characterized its role in regulating TIA biosynthesis, with a focus on the vindoline pathway, by transiently reducing its expression through two separate methods: virus-induced gene silencing (VIGS) and application of chloroplast retrograde signaling inducers, norflurazon and lincomycin. Reducing CrGLK levels with each method reduced chlorophyll accumulation and the expression of the light harvesting complex subunit (LHCB2.2), confirming its functional homology with GLKs in other plant species. In contrast, reducing CrGLK via VIGS or lincomycin increased TIA accumulation and TIA pathway gene expression, suggesting that CrGLK may repress TIA biosynthesis. However, norflurazon had no effect on TIA gene expression, indicating that reducing CrGLK alone is not sufficient to induce TIA biosynthesis. Future work is needed to clarify the specific molecular mechanisms leading to increased TIA biosynthesis with CrGLK silencing. This is the first identification and characterization of GLK in C. roseus and the first investigation of how chloroplast retrograde signaling might regulate TIA biosynthesis.


Assuntos
Catharanthus , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Plantas , Alcaloides de Triptamina e Secologanina , Fatores de Transcrição , Catharanthus/genética , Catharanthus/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Cloroplastos/metabolismo
7.
J Nat Med ; 78(3): 768-773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564155

RESUMO

A novel trimeric monoterpenoid indole alkaloid, vincarostine A (1) consisting of an aspidosperma-iboga-aspidosperma type skeleton, was isolated from the whole plant of Catharanthus roseus. The structure including absolute stereochemistry was elucidated on the basis of 2D NMR data and CD spectrum. Vincarostine A (1) showed anti-malarial activity.


Assuntos
Antimaláricos , Catharanthus , Alcaloides de Triptamina e Secologanina , Catharanthus/química , Antimaláricos/química , Antimaláricos/farmacologia , Estrutura Molecular , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/isolamento & purificação , Espectroscopia de Ressonância Magnética , Plasmodium falciparum/efeitos dos fármacos , Extratos Vegetais/química
8.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675411

RESUMO

The plant produced powerful secondary metabolites and showed strong antibacterial activities against food-spoiling bacterial pathogens. The present study aimed to evaluate antibacterial activities and to identify metabolites from the leaves and stems of Catharanthus roseus using NMR spectroscopy. The major metabolites likely to be observed in aqueous extraction were 2,3-butanediol, quinic acids, vindoline, chlorogenic acids, vindolinine, secologanin, and quercetin in the leaf and stem of the Catharanthus roseus. The aqueous extracts from the leaves and stems of this plant have been observed to be most effective against food spoilage bacterial strains, followed by methanol and hexane. However, leaf extract was observed to be most significant in terms of the content and potency of metabolites. The minimum inhibitory concentration (20 µg/mL) and bactericidal concentrations (35 g/mL) of leaf extract were observed to be significant as compared to the ampicillin. Molecular docking showed that chlorogenic acid and vindolinine strongly interacted with the bacterial penicillin-binding protein. The docking energies of chlorogenic acid and vindolinine also indicated that these could be used as food preservatives. Therefore, the observed metabolite could be utilized as a potent antibacterial compound for food preservation or to treat their illness, and further research is needed to perform.

9.
BMC Complement Med Ther ; 24(1): 139, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575897

RESUMO

BACKGROUND: Catharanthus roseus, a Madagascar native flowering plant, is known for its glossy leaves and vibrant flowers, and its medicinal significance due to its alkaloid compounds. As a source of vinblastine and vincristine used in chemotherapy, Catharanthus roseus is also employed in traditional medicine with its flower and stalks in dried form. Its toxicity can lead to various adverse effects. We report a case of Catharanthus roseus juice toxicity presenting as acute cholangitis, emphasizing the importance of healthcare providers obtaining detailed herbal supplement histories. CASE PRESENTATION: A 65-year-old woman presented with abdominal pain, fever, anorexia, and lower limb numbness. Initial diagnosis of acute cholangitis was considered, but imaging excluded common bile duct stones. Further investigation revealed a history of ingesting Catharanthus roseus juice for neck pain. Laboratory findings showed leukocytosis, elevated liver enzymes, and hyperbilirubinemia. The patient developed gastric ulcers, possibly due to alkaloids in Catharanthus roseus. No bacterial growth was noted in blood cultures. The patient recovered after discontinuing the herbal extract. CONCLUSIONS: Catharanthus roseus toxicity can manifest as fever, hepatotoxicity with cholestatic jaundice, and gastric ulcers, mimicking acute cholangitis. Awareness of herbal supplement use and potential toxicities is crucial for healthcare providers to ensure prompt diagnosis and appropriate management. This case emphasizes the need for public awareness regarding the possible toxicity of therapeutic herbs and the importance of comprehensive patient histories in healthcare settings.


Assuntos
Alcaloides , Catharanthus , Colangite , Úlcera Gástrica , Idoso , Humanos , Folhas de Planta , Feminino
10.
Heliyon ; 10(5): e27132, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449649

RESUMO

In Catharanthus roseus, vital plant hormones, namely methyl jasmonate (MeJA) and ethylene, serve as abiotic triggers, playing a crucial role in stimulating the production of specific secondary compounds with anticancer properties. Understanding how plants react to various stresses, stimuli, and the pathways involved in biosynthesis holds significant promise. The application of stressors like ethylene and MeJA induces the plant's defense mechanisms, leading to increased secondary metabolite production. To delve into the essential transcriptomic processes linked to hormonal responses, this study employed an integrated approach combining RNA-Seq data meta-analysis and system biology methodologies. Furthermore, the validity of the meta-analysis findings was confirmed using RT-qPCR. Within the meta-analysis, 903 genes exhibited differential expression (DEGs) when comparing normal conditions to those of the treatment. Subsequent analysis, encompassing gene ontology, KEGG, TF, and motifs, revealed that these DEGs were actively engaged in multiple biological processes, particularly in responding to various stresses and stimuli. Additionally, these genes were notably enriched in diverse biosynthetic pathways, including those related to TIAs, housing valuable medicinal compounds found in this plant. Furthermore, by conducting co-expression network analysis, we identified hub genes within modules associated with stress response and the production of TIAs. Most genes linked to the biosynthesis pathway of TIAs clustered within three specific modules. Noteworthy hub genes, including Helicase ATP-binding domain, hbdA, and ALP1 genes within the blue, turquoise, and green module networks, are presumed to play a role in the TIAs pathway. These identified candidate genes hold potential for forthcoming genetic and metabolic engineering initiatives aimed at augmenting the production of secondary metabolites and medicinal compounds within C. roseus.

11.
J Hazard Mater ; 470: 134130, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555668

RESUMO

Biogenic nanoparticle (NP), derived from plant sources, is gaining prominence as a viable, cost-effective, sustainable, and biocompatible alternative for mitigating the extensive environmental impact of arsenic on the interplay between plant-soil system. Herein, the impact of green synthesized zinc oxide nanoparticles (ZnONPs) was assessed on Catharanthus roseus root system-associated enzymes and their possible impact on microbiome niches (rhizocompartments) and overall plant performance under arsenic (As) gradients. The application of ZnONPs at different concentrations successfully modified the arsenic uptake in various plant parts, with the root arsenic levels increasing 1.5 and 1.4-fold after 25 and 50 days, respectively, at medium concentration compared to the control. Moreover, ZnONPs gradients regulated the various soil enzyme activities. Notably, urease and catalase activities showed an increase when exposed to low concentrations of ZnONPs, whereas saccharase and acid phosphatase displayed the opposite pattern, showing increased activities under medium concentration which possibly in turn influence the plant root system associated microflora. The use of nonmetric multidimensional scaling ordination revealed a significant differentiation (with a significance level of p < 0.05) in the structure of both bacterial and fungal communities under different treatment conditions across root associated niches. Bacterial and fungal phyla level analysis showed that Proteobacteria and Basidiomycota displayed a significant increase in relative abundance under medium ZnONPs concentration, as opposed to low and high concentrations, respectively. Similarly, in depth genera level analysis revealed that Burkholderia, Halomonas, Thelephora and Sebacina exhibited a notably high relative abundance in both the rhizosphere and rhizoplane (the former refers to the soil region influenced by root exudates, while the latter is the root surface itself) under medium concentrations of ZnONPs, respectively. These adjustments to the plant root-associated microcosm likely play a role in protecting the plant from oxidative stress by regulating the plant's antioxidant system and overall biomass.


Assuntos
Arsênio , Raízes de Plantas , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Arsênio/metabolismo , Arsênio/química , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Catharanthus/metabolismo , Catharanthus/efeitos dos fármacos , Química Verde , Nanopartículas Metálicas/química , Microbiota/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Rizosfera
12.
New Phytol ; 242(3): 1156-1171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513692

RESUMO

In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Monoterpenos/metabolismo , Catharanthus/metabolismo , Germinação , Sementes/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Diferenciação Celular , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Genes (Basel) ; 15(3)2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38540383

RESUMO

Many monoterpenoid indole alkaloids (MIAs) produced in Catharanthus roseus have demonstrated biological activities and clinical potential. However, their complex biosynthesis pathway in plants leads to low accumulation, limiting therapeutic applications. Efforts to elucidate the MIA biosynthetic regulatory mechanism have focused on improving accumulation levels. Previous studies revealed that jasmonic acid (JA), an important plant hormone, effectively promotes MIA accumulation by inducing the expression of MIA biosynthesis and transport genes. Nevertheless, excessive JA signaling can strongly inhibit plant growth, decreasing MIA productivity in C. roseus. Therefore, identifying key components balancing growth and MIA production in the JA signaling pathway is imperative for effective pharmaceutical production. Here, we identify a homolog of the jasmonate transporter 1, CrJAT1, through co-expression and phylogenetic analyses. Further investigation demonstrated that CrJAT1 can activate JA signaling to promote MIA accumulation without compromising growth. The potential role of CrJAT1 in redistributing intra/inter-cellular JA and JA-Ile may calibrate signaling to avoid inhibition, representing a promising molecular breeding target in C. roseus to optimize the balance between growth and specialized metabolism for improved MIA production.


Assuntos
Catharanthus , Ciclopentanos , Oxilipinas , Alcaloides de Triptamina e Secologanina , Monoterpenos/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Filogenia , Melhoramento Vegetal , Alcaloides de Triptamina e Secologanina/metabolismo , Transdução de Sinais
14.
Front Public Health ; 12: 1327611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525339

RESUMO

Rapid industrialization has led to an increase in cadmium pollution, a dangerously toxic heavy metal. Cadmium (Cd) is released into the environment through industrial processes and can contaminate air, water, and soil. This pollution poses a significant risk to human health and has become a pressing concern in many industrialized areas. Due to its extended half-life, it leads to a range of health problems, including hepato-nephritic toxicity, brain damage, and degenerative bone disorders. Intoxication alters various intracellular parameters, leading to inflammation, tissue injury, and oxidative stress within cells, which disrupts normal cellular functions and can eventually result in cell death. It has also been linked to the development of bone diseases such as osteoporosis. These adverse effects highlight the urgent need to address cadmium pollution and find effective solutions to mitigate its impact on human health. This article highlights the Cd-induced risks and the role of Catharanthus roseus (C. roseus) extract as a source of alternative medicine in alleviating the symptoms. Numerous herbal remedies often contain certain bioactive substances, such as polyphenols and alkaloids, which have the power to mitigate these adverse effects by acting as antioxidants and lowering oxidative cell damage. Research conducted in the field of alternative medicine has revealed its enormous potential to meet demands that may be effectively used in safeguarding humans and their environment. The point of this review is to investigate whether C. roseus extract, known for its bioactive substances, is being investigated for its potential to mitigate the harmful effects of cadmium on health. Further investigation is needed to fully understand its effectiveness. Moreover, it is important to explore the potential environmental benefits of using C. roseus extract to reduce the negative effects of Cd. This review conducted in the field of alternative medicine has revealed its enormous potential to meet demands that could have significant implications for both human health and environmental sustainability.


Assuntos
Cádmio , Catharanthus , Humanos , Cádmio/toxicidade , Catharanthus/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia
15.
Plant Methods ; 20(1): 26, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347628

RESUMO

BACKGROUND: Virus-induced gene silencing (VIGS) is widely used in plant functional genomics. However, the efficiency of VIGS in young plantlets varies across plant species. Additionally, VIGS is not optimized for many plant species, especially medicinal plants that produce valuable specialized metabolites. RESULTS: We evaluated the efficacy of five-day-old, etiolated seedlings of Catharanthus roseus (periwinkle) for VIGS. The seedlings were vacuum-infiltrated with Agrobacterium tumefaciens GV3101 cells carrying the tobacco rattle virus (TRV) vectors. The protoporphyrin IX magnesium chelatase subunit H (ChlH) gene, a key gene in chlorophyll biosynthesis, was used as the target for VIGS, and we observed yellow cotyledons 6 days after infiltration. As expected, the expression of CrChlH and the chlorophyll contents of the cotyledons were significantly decreased after VIGS. To validate the cotyledon based-VIGS method, we silenced the genes encoding several transcriptional regulators of the terpenoid indole alkaloid (TIA) biosynthesis in C. roseus, including two activators (CrGATA1 and CrMYC2) and two repressors (CrGBF1 and CrGBF2). Silencing CrGATA1 led to downregulation of the vindoline pathway genes (T3O, T3R, and DAT) and decreased vindoline contents in cotyledons. Silencing CrMYC2, followed by elicitation with methyl jasmonate (MeJA), resulted in the downregulation of ORCA2 and ORCA3. We also co-infiltrated C. roseus seedlings with TRV vectors that silence both CrGBF1 and CrGBF2 and overexpress CrMYC2, aiming to simultaneous silencing two repressors while overexpressing an activator. The simultaneous manipulation of repressors and activator resulted in significant upregulation of the TIA pathway genes. To demonstrate the broad application of the cotyledon-based VIGS method, we optimized the method for two other valuable medicinal plants, Glycyrrhiza inflata (licorice) and Artemisia annua (sweet wormwood). When TRV vectors carrying the fragments of the ChlH genes were infiltrated into the seedlings of these plants, we observed yellow cotyledons with decreased chlorophyll contents. CONCLUSIONS: The widely applicable cotyledon-based VIGS method is faster, more efficient, and easily accessible to additional treatments than the traditional VIGS method. It can be combined with transient gene overexpression to achieve simultaneous up- and down-regulation of desired genes in non-model plants. This method provides a powerful tool for functional genomics of medicinal plants, facilitating the discovery and production of valuable therapeutic compounds.

16.
J Nat Med ; 78(2): 382-392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347371

RESUMO

A new dimeric indole alkaloid, vincazalidine A consisting of an aspidosperma type and a modified iboga type with 1-azatricyclo ring system consisting of one azepane and two piperidine rings coupled with an oxazolidine ring was isolated from Catharanthus roseus, and the structure including absolute stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Vincazalidine A induced G2 arrest and subsequent apoptosis in human lung carcinoma cell line, A549 cells.


Assuntos
Alcaloides , Antineoplásicos , Aspidosperma , Catharanthus , Humanos , Catharanthus/química , Catharanthus/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Aspidosperma/química , Aspidosperma/metabolismo
17.
J Photochem Photobiol B ; 252: 112862, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330691

RESUMO

Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are important natural source for many drugs. Ultraviolet B (UVB) radiation have been proved to have regulatory effect towards biosynthesis of TIAs, which were meaningful for boost of TIA production. To decipher more comprehensive molecular characteristics in C. roseus under UVB radiation, integrated analysis of the nuclear proteome together with the transcriptome data under UVB radiation were performed. Expression of genes related to transmembrane transporters gradually increased during the prolonged exposure to UVB radiation. Some of known TIA transporters were affected by UVB. Abundance of proteins associated with spliceosome and nucleocytoplasmic transport increased. Homologs belonging to ORCA and CrWRKY transcription factors family increased at both transcriptomic and proteomic levels. At the same time, the numbers of differential alternative splicing events between UVB-radiated and white-light-treated plants continuously increased. These results suggest that the nucleus participated in early response of C. roseus under UVB radiation, where alternative splicing events occurred and might regulate multiple pathways. Furthermore, integrative omics analysis indicates that expression of enzymes at the terminal stages of seco-iridoid pathway decreased with the prolonged radiation exposure, potentially inhibiting further rise of TIA synthesis under extended UVB exposure.


Assuntos
Catharanthus , Transcriptoma , Catharanthus/genética , Catharanthus/metabolismo , Proteômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
18.
Microb Cell Fact ; 23(1): 15, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183118

RESUMO

Attenuation of camptothecin (CPT) productivity by fungi with preservation and subculturing is the challenge that halts fungi to be an industrial platform of CPT production. Thus, screening for novel endophytic fungal isolates with metabolic stability for CPT production was the objective. Catharanthus roseus is one of the medicinal plants with diverse bioactive metabolites that could have a plethora of novel endophytes with unique metabolites. Among the endophytes of C. roseus, Aspergillus terreus EFBL-NV OR131583.1 had the most CPT producing potency (90.2 µg/l), the chemical identity of the putative CPT was verified by HPLC, FT-IR, NMR and LC-MS/MS. The putative A. terreus CPT had the same molecular mass (349 m/z), and molecular fragmentation patterns of the authentic one, as revealed from the MS/MS analyses. The purified CPT had a strong activity against MCF7 (5.27 µM) and UO-31 (2.2 µM), with a potential inhibition to Topo II (IC50 value 0.52 nM) than Topo 1 (IC50 value 6.9 nM). The CPT displayed a high wound healing activity to UO-31 cells, stopping their metastasis, matrix formation and cell immigration. The purified CPT had a potential inducing activity to the cellular apoptosis of UO-31 by ~ 17 folds, as well as, arresting their cellular division at the S-phase, compared to the control cells. Upon Plackett-Burman design, the yield of CPT by A. terreus was increased by ~ 2.6 folds, compared to control. The yield of CPT by A. terreus was sequentially suppressed with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by 3rd month and 5th generation. However, the productivity of the attenuated A. terreus culture was completely restored by adding 1% surface sterilized leaves of C. roseus, and the CPT yield was increased over-the-first culture by ~ 3.2 folds (315.2 µg/l). The restoring of CPT productivity of A. terreus in response to indigenous microbiome of C. roseus, ensures the A. terreus-microbiome interactions, releasing a chemical signal that triggers the CPT productivity of A. terreus. This is the first reports exploring the potency of A. terreus, endophyte of C. roseus" to be a platform for industrial production of CPT, with an affordable sustainability with addition of C. roseus microbiome.


Assuntos
Catharanthus , Cromatografia Líquida , Endófitos , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Isomerases , Camptotecina/farmacologia , Ciclo Celular
19.
Plant Methods ; 20(1): 13, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245775

RESUMO

BACKGROUND: Phytoplasmas are parasitic plant pathogens that reside intracellularly within the sieve tube cells. Phytoplasmas induce various symptoms, including floral virescence, phyllody, leaf yellowing, and witches'-broom. Currently, it is challenging to culture phytoplasma in vitro. In the laboratory, phytoplasmas are generally maintained in alternative host plants, such as Catharanthus roseus. Grafting is used to transmit phytoplasmas among the alternative hosts. During the experiment, scions from infected plants are grafted onto healthy plants using a side grafting method. However, the practice has certain limitations, including its inability to be applied to small plants and its irregular disease incidence. RESULTS: Here, we demonstrate a new approach, penetration grafting, to overcome the limitations of side grafting. This grafting method allows phytoplasma to be efficiently and uniformly transmitted into the inoculated plants. No significant difference was observed in phytoplasma accumulation between both grafting techniques. However, penetration grafting allows rapid symptom development, saving waiting time and reducing space usage. CONCLUSIONS: This study provides a reliable and stable method for experiments that require grafting transmission.

20.
J Nat Med ; 78(1): 216-225, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37668823

RESUMO

A dimeric indole alkaloid, isovincathicine consisting of an aspidosperma type and modified iboga with C-7-C-20 connection type skeletons was first isolated from Catharanthus roseus, and the structure including stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Isovincathicine inhibited cell proliferation in A549 cells. We investigated the detailed mode of action of isovincathicine-induced inhibitory effects on cell proliferation in A549 cells. Flow cytometric analysis showed that isovincathicine-treated cells accumulated in the G2 phase after 24 h, and the percentage of cells showing cell death increased after 48 h. Western blotting also showed increased expression of BimEL, an apoptosis-related protein, and decreased expression of Mcl-1 and Bcl-xL. Isovincathicine was suggested to induce apoptosis in A549 cells by a mechanism is similar to that of vinblastine.


Assuntos
Catharanthus , Humanos , Catharanthus/química , Catharanthus/metabolismo , Células A549 , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...