RESUMO
Recent proliferation of GPS technology has transformed animal movement research. Yet, time-series data from this recent technology rarely span beyond a decade, constraining longitudinal research. Long-term field sites hold valuable historic animal location records, including hand-drawn maps and semantic descriptions. Here, we introduce a generalised workflow for converting such records into reliable location data to estimate home ranges, using 30 years of sleep-site data from 11 white-faced capuchin (Cebus imitator) groups in Costa Rica. Our findings illustrate that historic sleep locations can reliably recover home range size and geometry. We showcase the opportunity our approach presents to resolve open questions that can only be addressed with very long-term data, examining how home ranges are affected by climate cycles and demographic change. We urge researchers to translate historical records into usable movement data before this knowledge is lost; it is essential to understanding how animals are responding to our changing world.
Assuntos
Cebus , Mudança Climática , Animais , Costa Rica , Cebus/fisiologia , Comportamento de Retorno ao Território Vital , Sistemas de Informação Geográfica , Dinâmica Populacional , DemografiaRESUMO
On 5 February 2021, we observed the first instance of female-committed infanticide followed by cannibalism in a long-studied (> 35 years) population of wild white-faced capuchins (Cebus imitator) in the Santa Rosa Sector of the Área de Conservación Guanacaste, Costa Rica. The events leading up to and including the infanticide and cannibalism were observed and documented ad libitum, with segments digitally recorded, and a post-mortem necropsy performed. Here we detail our observations and evaluate the events within the framework of leading adaptive explanations. The infanticide may have been proximately motivated by resource competition or group instability. The circumstances of the observed infanticide provided support for the resource competition, adoption avoidance, and social status hypotheses of infanticide, but not for the exploitation hypothesis, as neither the perpetrator nor her kin consumed the deceased infant. The subsequent cannibalism was performed by juveniles who observed the infanticide and may have been stimulated by social facilitation and their prior experience of meat consumption as omnivores. To our knowledge, cannibalism has been documented only once before in C. imitator, in an adjacent study group, with the two cases sharing key similarities in the context of occurrence and manner of consumption. These observations add to our growing knowledge of the evolutionary significance of infanticide and its importance as a reproductive strategy in nonhuman primates.
Assuntos
Canibalismo , Cebus capucinus , Animais , Costa Rica , Feminino , Infanticídio , ReproduçãoRESUMO
The apicomplexan parasite Toxoplasma gondii (T. gondii) has been found in more than 350 species of homoeothermic vertebrates in diverse climates and geographic areas. In most animals, T. gondii produces mild or asymptomatic infection. However, acute and hyperacute toxoplasmosis is associated with high mortality rates observed in Neotropical primates (NP) in captivity. These primates are distributed in 20 countries across the Americas, and although infection has been reported in certain countries and species, toxoplasmosis in the wild and its impact on NP population survival is unknown. Differences among species in exposure rates and disease susceptibility may be due in part to differences in host behavior and ecology. Four species of NP are found in Costa Rica, i.e., howler (Alouatta palliata), spider (Ateles geoffroyi), capuchin (Cebus imitator), and squirrel monkeys (Saimiri oerstedii). This study reports NP exposure to T. gondii using the modified agglutination test in 245 serum samples of NP (198 wild and 47 from captivity) from Costa Rica. Associations of serostatus with environmental (forest cover, annual mean temperature), anthropogenic (human population density), and biological (sex) variables in howler and capuchin monkeys were evaluated. The seroprevalence among wild NP was 11.6% (95% CI = 7.7-17.34), compared with 60% in captive monkeys (95% CI = 44.27-73.63), with significant differences between species (X 2 = 20.072; df = 3, p = 0.000164), suggesting an effect of behavior and ecology. In general, antibody titers were low for wild NP (<1:128) and high for captive NP (>1:8192), suggesting higher exposure due to management factors and increased life span in captivity. Seropositivity in howler monkeys was positively related to forest cover and inversely related to annual rainfall. For capuchins, annual rainfall was inversely related to seropositivity. Surveillance of T. gondii exposure in NP in captivity and in the wild is required to understand drivers of the infection and develop novel strategies to protect them.
RESUMO
Across the globe, primates are threatened by human activities. This is especially true for species found in tropical dry forests, which remain largely unprotected. Our ability to predict primate abundance in the face of human activity depends on different species' sensitivities as well as on the characteristics of the forest itself. We studied plant and primate distribution and abundance in the Taboga Forest, a 516-ha tropical dry forest surrounded by agricultural fields in northwestern Costa Rica. We found that the density of white-faced capuchins (Cebus capucinus) at Taboga is 2-6 times higher than reported for other long-term white-faced capuchin sites. Using plant transects, we also found relatively high species richness, diversity, and equitability compared with other tropical dry forests. Edge transects (i.e., within 100 m from the forest boundary) differed from interior transects in two ways: (a) tree species associated with dry forest succession were well-established in the edge and (b) canopy cover in the edge was maintained year-round, while the interior forest was deciduous. Sighting rates for capuchins were higher near water sources but did not vary between the edge and interior forest. For comparison, we also found the same to be true for the only other primate in the Taboga Forest, mantled howler monkeys (Alouatta palliata). Year-round access to water might explain why some primate species can flourish even alongside anthropogenic disturbance. Forest fragments like Taboga may support high densities of some species because they provide a mosaic of habitats and key resources that buffer adverse ecological conditions.