Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Int Immunopharmacol ; 138: 112625, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996666

RESUMO

Glioblastoma (GBM) remains the most lethal primary brain tumor, characterized by dismal survival rates. Novel molecular targets are urgently required to enhance therapeutic outcomes. A combination of bioinformatics analysis and experimental validation was employed to investigate the role of EGFLAM in GBM. The Chinese Glioma Genome Atlas provided a platform for gene expression profiling, while siRNA-mediated knockdown and overexpression assays in GBM cell lines, alongside in vivo tumorigenesis models, facilitated functional validation. EGFLAM was found to be significantly overexpressed in GBM tissues, correlating with adverse prognostic factors and higher tumor grades, particularly in patients over the age of 41. Functional assays indicated that EGFLAM is vital for maintaining GBM cell proliferation, viability, and invasiveness. Knockdown of EGFLAM expression led to a marked decrease in tumorigenic capabilities. Proteomic interactions involving EGFLAM, such as with NUP205, were implicated in cell cycle regulation, providing insight into its oncogenic mechanism. In vivo studies further demonstrated that silencing EGFLAM expression could inhibit tumor growth, underscoring its therapeutic potential. The study identifies EGFLAM as a pivotal oncogenic factor in GBM, serving as both a prognostic biomarker and a viable therapeutic target. These findings lay the groundwork for future research into EGFLAM-targeted therapies, aiming to improve clinical outcomes for GBM patients.

2.
Curr Med Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988156

RESUMO

Neurokinin receptors are a family of G protein-coupled receptors that were first identified in the central and peripheral nervous systems. However these receptors were later found in other types of cells, therefore, new perspectives concerning their novel roles were described. Mammalian has three neurokinin receptors, among which neurokinin-1 receptors [NK1R] have been indicated to be involved in most, if not all, intracellular functions, primarily the regulation of cell proliferation. By interacting with its potent agonist, substance P [SP], NK1R can engage a variety of signaling pathways and serve as a platform for cells to proliferate by regulating the expression of the cell cycle-related genes. Furthermore, the activity of SP/NK1R is stimulated by various oncogenes, indicating the involvement of this pathway in human cancers. As a result, numerous NK1R antagonists have been investigated in oncology trials, and the promising anti-- cancer effect of these receptors has opened up new possibilities for incorporating these antagonists into cancer treatment. Considering these factors, gaining a deeper understanding of the SP/NK1R pathway could offer significant advantages for cancer patients. The more knowledge we acquire about this pathway, the greater the potential for exploiting it in the development of effective treatment strategies. Here, we present a comprehensive review of the current knowledge pertaining to the biological function of the SP/NK1R, with a specific emphasis on its recently discovered role in the regulation of cell proliferation. Moreover, we provide insights into the impact of this pathway in human cancers, along with an overview of the most significant NK1R antagonists currently utilized in cancer research studies.

3.
Oncol Res ; 32(7): 1231-1237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948023

RESUMO

Background: Despite the availability of chemotherapy drugs such as 5-fluorouracil (5-FU), the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects. This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines (AGS and EPG85-257). Materials and Methods: In this in vitro study, AGS and EPG85-257 cells were treated with different concentrations of celastrol, 5-FU, and their combination. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The synergistic effect of 5-FU and celastrol was studied using Compusyn software. The DNA content at different phases of the cell cycle and apoptosis rate was measured using flow cytometry. Results: Co-treatment with low concentrations (10% inhibitory concentration (IC10)) of celastrol and 5-FU significantly reduced IC50 (p < 0.05) so that 48 h after treatment, IC50 was calculated at 3.77 and 6.9 µM for celastrol, 20.7 and 11.6 µM for 5-FU, and 5.03 and 4.57 µM for their combination for AGS and EPG85-257 cells, respectively. The mean percentage of apoptosis for AGS cells treated with celastrol, 5-FU, and their combination was obtained 23.9, 41.2, and 61.9, and for EPG85-257 cells 5.65, 46.9, and 55.7, respectively. In addition, the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase. Conclusions: Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells, additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.


Assuntos
Apoptose , Proliferação de Células , Sinergismo Farmacológico , Fluoruracila , Triterpenos Pentacíclicos , Neoplasias Gástricas , Triterpenos , Humanos , Triterpenos Pentacíclicos/farmacologia , Fluoruracila/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Triterpenos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ciclo Celular/efeitos dos fármacos
4.
Transl Oncol ; 47: 102053, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986222

RESUMO

BACKGROUND: The CDK4/6 inhibitor abemaciclib is an FDA-approved agent and induces T-cell-mediated immunity. Previously, we confirmed the therapeutic potential of abemaciclib on mismatch repair-deficient (dMMR) tumors in mice. Here, we applied a prophylactic administration/dosage setting using two preclinical mouse models of dMMR-driven cancer. METHODS: Mlh1-/- and Msh2loxP/loxP mice received repeated prophylactic applications of abemaciclib mesylate (75 mg/kg bw, per oral) as monotherapy or were left untreated. Blood phenotyping and multiplex cytokine measurements were performed regularly. The tumor microenvironment was evaluated by immunofluorescence and Nanostring-based gene expression profiling. Numbers, size and immune composition and activity of extracellular vesicles (EVs) were studied at the endpoint. FINDINGS: Prophylactic abemaciclib-administration delayed tumor development and significantly prolonged overall survival in both mouse strains (Mlh1-/-: 50.0 wks vs. control: 33.9 wks; Msh2loxP/loxP;TgTg(Vil1-cre: 58.4 wks vs. control 44.4 wks). In Mlh1-/- mice, pro-inflammatory cytokines (IL-2, IL-6) significantly increased, whereas IL-10 and IL-17A decreased. Circulating and splenic exhausted and regulatory T cell numbers were significantly lower in the abemaciclib groups. Deeper analysis of late-onset tumors revealed activation of the Hedgehog and Notch signaling in Mlh1-/- mice, and activation of the MAPK pathway in Msh2loxP/loxP;TgTg(Vil1-cre mice. Still, arising tumors had fewer infiltrating myeloid-derived suppressor cells (vs. control). Notably, prophylactic abemaciclib-administration prevented secretion of procoagulant EVs but triggered release of immunomodulatory EVs in Mlh1-/- mice. INTERPRETATION: Prophylactic abemaciclib prolongs survival via global immunomodulation. Prophylactic use of abemaciclib should be considered further for individuals with inherited dMMR. FUNDING: This work was supported by grants from the German research foundation [DFG grant number: MA5799/2-2] and the Brigitte und Dr. Konstanze Wegener-Stiftung to CM.

5.
Genes (Basel) ; 15(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927683

RESUMO

Grapevine varieties from "Douro Superior" (NE Portugal) experience high temperatures, solar radiation, and water deficit during the summer. This summer's stressful growing conditions induce nucleic acids, lipids, and protein oxidation, which cause cellular, physiological, molecular, and biochemical changes. Cell cycle anomalies, mitosis delay, or cell death may occur at the cellular level, leading to reduced plant productivity. However, the foliar application of kaolin (KL) can mitigate the impact of abiotic stress by decreasing leaf temperature and enhancing antioxidant defence. Hence, this study hypothesised that KL-treated grapevine plants growing in NE Portugal would reveal, under summer stressful growing conditions, higher progression and stability of the leaf mitotic cell cycle than the untreated (control) plants. KL was applied after veraison for two years. Leaves, sampled 3 and 5 weeks later, were cytogenetically, molecularly, and biochemically analysed. Globally, integrating these multidisciplinary data confirmed the decreased leaf temperature and enhanced antioxidant defence of the KL-treated plants, accompanied by an improved regularity and completion of the leaf cell cycle relative to the control plants. Nevertheless, the KL efficacy was significantly influenced by the sampling date and/or variety. In sum, the achieved results confirmed the hypothesis initially proposed.


Assuntos
Caulim , Folhas de Planta , Vitis , Vitis/genética , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Caulim/farmacologia , Estações do Ano , Estresse Fisiológico/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Antioxidantes/farmacologia
6.
Bioorg Med Chem ; 109: 117792, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38897139

RESUMO

Cancer has been a leading cause of death over the last few decades in western countries as well as in Taiwan. However, traditional therapies are limited by the adverse effects of chemotherapy and radiotherapy, and tumor recurrence may occur. Therefore, it is critical to develop novel therapeutic drugs. In the field of HDAC inhibitor development, apart from the hydroxamic acid moiety, 2-aminobenzamide also functions as a zinc-binding domain, which is shown in well-known HDAC inhibitors such as Entinostat and Chidamide. With recent successful experiences in synthesizing 1-(phenylsulfonyl)indole-based compounds, in this study, we further combined two features of the above chemical compounds and generated indolyl benzamides. Compounds were screened in different cancer cell lines, and enzyme activity was examined to demonstrate their potential for anti-HDAC activity. Various biological functional assays evidenced that two of these compounds could suppress cancer growth and migration capacity, through regulating epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis mechanisms. Data from 3D cancer cells and the in vivo zebrafish model suggested the potential of these compounds in cancer therapy in the future.


Assuntos
Antineoplásicos , Apoptose , Ciclo Celular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal , Inibidores de Histona Desacetilases , Peixe-Zebra , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Humanos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Histona Desacetilases/metabolismo
7.
Biol Sex Differ ; 15(1): 35, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622740

RESUMO

BACKGROUND: The significant sex and gender differences that exist in cancer mechanisms, incidence, and survival, have yet to impact clinical practice. One barrier to translation is that cancer phenotypes cannot be segregated into distinct male versus female categories. Instead, within this convenient but contrived dichotomy, male and female cancer phenotypes are highly overlapping and vary between female- and male- skewed extremes. Thus, sex and gender-specific treatments are unrealistic, and our translational goal should be adaptation of treatment to the variable effects of sex and gender on targetable pathways. METHODS: To overcome this obstacle, we profiled the similarities in 8370 transcriptomes of 26 different adult and 4 different pediatric cancer types. We calculated the posterior probabilities of predicting patient sex and gender based on the observed sexes of similar samples in this map of transcriptome similarity. RESULTS: Transcriptomic index (TI) values were derived from posterior probabilities and allowed us to identify poles with local enrichments for male or female transcriptomes. TI supported deconvolution of transcriptomes into measures of patient-specific activity in sex and gender-biased, targetable pathways. It identified sex and gender-skewed extremes in mechanistic phenotypes like cell cycle signaling and immunity, and precisely positioned each patient's whole transcriptome on an axis of continuously varying sex and gender phenotypes. CONCLUSIONS: Cancer type, patient sex and gender, and TI value provides a novel and patient- specific mechanistic identifier that can be used for realistic sex and gender-adaptations of precision cancer treatment planning.


Some efforts to improve cancer therapy involve the idea of personalizing treatments to who a patient is and how their cancer operates. Personalizing treatment can involve straighforward features like a patient's age, family cancer history, personal disease and surgical histories, as well as more complex features like analysis of their specific cancer's mechanisms of growth and spread throughout the body. One glaring omission in common personalization schemes is the sex and gender of the patient. While patient sex and gender is known to substantially affect cancer rates and response to treatment, we do not yet use this information in treatment planning. There are multiple reasons for this but among them is that we tend to think about sex and gender as an either/or categorization. You are either a male/man or a female/woman. This is not accurate as there are many variables that contribute to who an individual is as a male/man or female/woman. This variability is a challenge to incorporating these features into personalized treatment planning. Here, we have developed a method to address this challenge. It is our great hope that this will enable the use of this critically important element of personalization in cancer treatment planning and improve survival rates for all patients.


Assuntos
Neoplasias , Adulto , Criança , Humanos , Masculino , Feminino , Fatores Sexuais , Neoplasias/genética , Neoplasias/terapia , Perfilação da Expressão Gênica , Transcriptoma
8.
Calcif Tissue Int ; 114(6): 625-637, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643416

RESUMO

Loss of p21 leads to increased bone formation post-injury; however, the mechanism(s) by which this occurs remains undetermined. E2f1 is downstream of p21 and as a transcription factor can act directly on gene expression; yet it is unknown if E2f1 plays a role in the osteogenic effects observed when p21 is differentially regulated. In this study we aimed to investigate the interplay between p21 and E2f1 and determine if the pro-regenerative osteogenic effects observed with the loss of p21 are E2f1 dependent. To accomplish this, we employed knockout p21 and E2f1 mice and additionally generated a p21/E2f1 double knockout. These mice underwent burr-hole injuries to their proximal tibiae and healing was assessed over 7 days via microCT imaging. We found that p21 and E2f1 play distinct roles in bone regeneration where the loss of p21 increased trabecular bone formation and loss of E2f1 increased cortical bone formation, yet loss of E2f1 led to poorer bone repair overall. Furthermore, when E2f1 was absent, either individually or simultaneously with p21, there was a dramatic decrease of the number of osteoblasts, osteoclasts, and chondrocytes at the site of injury compared to p21-/- and C57BL/6 mice. Together, these results suggest that E2f1 regulates the cell populations required for bone repair and has a distinct role in bone formation/repair compared to p21-/-E2f1-/-. These results highlight the possibility of cell cycle and/or p21/E2f1 being potential druggable targets that could be leveraged in clinical therapies to improve bone healing in pathologies such as osteoporosis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Fator de Transcrição E2F1 , Osteogênese , Animais , Camundongos , Regeneração Óssea/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese/fisiologia
9.
Front Microbiol ; 15: 1389074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605710

RESUMO

The co-protease activity in the RecA-ssDNA complex cleaves the autorepressor LexA, resulting in the derepression of a large number of genes under LexA control. This process is called the SOS response, and genes that are expressed in response to DNA damage are called SOS genes. The proteins encoded by the SOS genes are involved in both DNA repair and maintaining the functions of crucial cell division proteins (e.g., FtsZ) under check until the damaged DNA is presumably repaired. This mechanism of SOS response is the only known mechanism of DNA damage response and cell cycle regulation in bacteria. However, there are bacteria that do not obey this rule of DNA damage response and cell cycle regulation, yet they respond to DNA damage, repair it, and survive. That means such bacteria would have some alternate mechanism(s) of DNA damage response and cell cycle regulation beyond the canonical pathway of the SOS response. In this study, we present the perspectives that bacteria may have other mechanisms of DNA damage response and cell cycle regulation mediated by bacterial eukaryotic type Ser/Thr protein kinases as an alternate to the canonical SOS response and herewith elaborate on them with a well-studied example in the radioresistant bacterium Deinococcus radiodurans.

10.
Elife ; 132024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38275142

RESUMO

Organ formation requires precise regulation of cell cycle and morphogenetic events. Using the Drosophila embryonic salivary gland (SG) as a model, we uncover the role of the SP1/KLF transcription factor Huckebein (Hkb) in coordinating cell cycle regulation and morphogenesis. The hkb mutant SG exhibits defects in invagination positioning and organ size due to the abnormal death of SG cells. Normal SG development involves distal-to-proximal progression of endoreplication (endocycle), whereas hkb mutant SG cells undergo abnormal cell division, leading to cell death. Hkb represses the expression of key cell cycle and pro-apoptotic genes in the SG. Knockdown of cyclin E or cyclin-dependent kinase 1, or overexpression of fizzy-related rescues most of the morphogenetic defects observed in the hkb mutant SG. These results indicate that Hkb plays a critical role in controlling endoreplication by regulating the transcription of key cell cycle effectors to ensure proper organ formation.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Divisão Celular , Glândulas Salivares , Morfogênese/genética , Ciclo Celular/genética
11.
J Virol ; 97(11): e0079123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37916833

RESUMO

IMPORTANCE: Human adenoviruses (HAdVs) generally cause mild and self-limiting diseases of the upper respiratory and gastrointestinal tracts but pose a serious risk to immunocompromised patients and children. Moreover, they are widely used as vectors for vaccines and vector-based gene therapy approaches. It is therefore vital to thoroughly characterize HAdV gene products and especially HAdV virulence factors. Early region 1B 55 kDa protein (E1B-55K) is a multifunctional HAdV-encoded oncoprotein involved in various viral and cellular pathways that promote viral replication and cell transformation. We analyzed the E1B-55K dependency of SUMOylation, a post-translational protein modification, in infected cells using quantitative proteomics. We found that HAdV increases overall cellular SUMOylation and that this increased SUMOylation can target antiviral cellular pathways that impact HAdV replication. Moreover, we showed that E1B-55K orchestrates the SUMO-dependent degradation of certain cellular antiviral factors. These results once more emphasize the key role of E1B-55K in the regulation of viral and cellular proteins in productive HAdV infections.


Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , Fatores de Restrição Antivirais , Humanos , Adenoviridae/genética , Infecções por Adenoviridae/metabolismo , Adenovírus Humanos/fisiologia , Fatores de Restrição Antivirais/metabolismo , Sumoilação
12.
Differentiation ; 134: 31-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37839230

RESUMO

Adult male Sertoli cell-specific Connexin43 knockout mice (SCCx43KO) exhibit higher Sertoli cell (SC) numbers per seminiferous tubule compared to their wild type (WT) littermates. Thus, deletion of this testicular gap junction protein seems to affect the proliferative potential and differentiation of "younger" SC. Although SC have so far mostly been characterised as postmitotic cells that cease to divide and become an adult, terminally differentiated cell population at around puberty, there is rising evidence that there exist exceptions from this for a very long time accepted paradigm. Aim of this study was to investigate postnatal SC development and to figure out underlying causes for observed higher SC numbers in adult KO mice. Therefore, the amount of SC mitotic figures was compared, resulting in slightly more and prolonged detection of SC mitotic figures in KO mice compared to WT. SC counting per tubular cross section revealed significantly different time curves, and comparing proliferation rates using Bromodesoxyuridine and Sox9 showed higher proliferation rates in 8-day old KO mice. SC proliferation was further investigated by Ki67 immunohistochemistry. SC in KO mice displayed a delayed initiation of cell-cycle-inhibitor p27Kip1 synthesis and prolonged synthesis of the phosphorylated tumour suppressor pRb and proliferation marker Ki67. Thus, the higher SC numbers in adult male SCCx43KO mice may arise due to two different reasons: Firstly, in prepubertal KO mice, the proliferation rate of SC was higher. Secondly, there were differences in their ability to cease proliferation as shown by the delayed initiation of p27Kip1 synthesis and the prolonged production of phosphorylated pRb and Ki67. Immunohistochemical results indicating a prolonged period of SC proliferation in SCCx43KO were confirmed by detection of proliferating SC in 17-days-old KO mice. In conclusion, deletion of the testicular gap junction protein Cx43 might prevent normal SC maturation and might even alter also the proliferation potential of adult SC.


Assuntos
Conexina 43 , Células de Sertoli , Masculino , Animais , Camundongos , Conexina 43/genética , Conexina 43/metabolismo , Antígeno Ki-67/genética , Testículo , Camundongos Knockout , Conexinas/metabolismo , Proliferação de Células/genética , Espermatogênese
13.
Int J Biol Macromol ; 253(Pt 2): 126728, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37678689

RESUMO

Mediator, a universal eukaryotic coactivator, is a multiprotein complex to transduce information from the DNA-bound transcription factors to the RNA polymerase II transcriptional machinery. In this study, the biofunctions of a rice mediator subunit OsMED16 in leaf development and blast resistance were characterized. OsMED16 encodes a putative protein of 1170 amino acids, which is 393 bp shorted than the version in Rice Genome Annotation Project databases. Overexpression of OsMED16 plants exhibited wider leaves with larger and more numerous cells in lateral axis, and enhanced resistance to M. oryzae with hyperaccumulated salicylic acid. Further analysis revealed that OsMED16 interacts with OsE2Fa in nuclei, and the complex could directly regulate the transcriptional levels of several genes involved in cell cycle regulation and SA mediated blast resistance, such as OsCC52A1, OsCDKA1, OsCDKB2;2, OsICS1 and OsWRKY45. Altogether, this study proved that OsMED16 is a positive regulator of rice leaf development and blast resistance, and providing new insights into the crosstalk between cell cycle regulation and immunity.


Assuntos
Magnaporthe , Oryza , Oryza/metabolismo , Magnaporthe/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo Mediador/genética , Complexo Mediador/metabolismo , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Doenças das Plantas/genética , Resistência à Doença/genética
14.
Front Oncol ; 13: 1271492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692858

RESUMO

[This corrects the article DOI: 10.3389/fonc.2022.1009948.].

15.
EMBO Rep ; 24(10): e56530, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37694680

RESUMO

After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated and transcriptionally quiescent cells into early cleavage-stage blastomeres that are transcriptionally active and totipotent. This developmental transition is accompanied by cell cycle adaptation, such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in two-cell stage mouse embryos. Finally, Chk1 depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.

16.
Mol Cell ; 83(17): 3140-3154.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37572670

RESUMO

Peroxiredoxins (Prdxs) utilize reversibly oxidized cysteine residues to reduce peroxides and promote H2O2 signal transduction, including H2O2-induced activation of P38 MAPK. Prdxs form H2O2-induced disulfide complexes with many proteins, including multiple kinases involved in P38 MAPK signaling. Here, we show that a genetically encoded fusion between a Prdx and P38 MAPK is sufficient to hyperactivate the kinase in yeast and human cells by a mechanism that does not require the H2O2-sensing cysteine of the Prdx. We demonstrate that a P38-Prdx fusion protein compensates for loss of the yeast scaffold protein Mcs4 and MAP3K activity, driving yeast into mitosis. Based on our findings, we propose that the H2O2-induced formation of Prdx-MAPK disulfide complexes provides an alternative scaffold and signaling platform for MAPKK-MAPK signaling. The demonstration that formation of a complex with a Prdx is sufficient to modify the activity of a kinase has broad implications for peroxide-based signal transduction in eukaryotes.


Assuntos
Peroxirredoxinas , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Cisteína/metabolismo , Dissulfetos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Oxirredução , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
J Exp Clin Cancer Res ; 42(1): 189, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37507791

RESUMO

The 5th Workshop IRE on Translational Oncology was held in Rome (Italy) on 27-28 March at the IRCCS Regina Elena National Cancer Institute. This meeting entitled "The New World of RNA diagnostics and therapeutics" highlightes the significant progress in the RNA field made over the last years. Research moved from pure discovery towards the development of diagnostic biomarkers or RNA-base targeted therapies seeking validation in several clinical trials. Non-coding RNAs in particular have been the focus of this workshop due to their unique properties that make them attractive tools for the diagnosis and therapy of cancer.This report collected the presentations of many scientists from different institutions that discussed recent oncology research providing an excellent overview and representative examples for each possible application of RNA as biomarker, for therapy or to increase the number of patients that can benefit from precision oncology treatment.In particular, the meeting specifically emphasized two key features of RNA applications: RNA diagnostic (Blandino, Palcau, Sestito, Díaz Méndez, Cappelletto, Pulito, Monteonofrio, Calin, Sozzi, Cheong) and RNA therapeutics (Dinami, Marcia, Anastasiadou, Ryan, Fattore, Regazzo, Loria, Aharonov).


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Biomarcadores , Oncologia , Itália
18.
Cancers (Basel) ; 15(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444412

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a heterogeneous cancer associated with a poor prognosis in advanced stages. In India, it is the sixth most common cause of cancer-related mortality. In this study, we employed high-resolution mass spectrometry-based quantitative proteomics to characterize the differential protein expression pattern associated with ESCC. We identified several differentially expressed proteins including PDPN, TOP2A, POSTN and MMP2 that were overexpressed in ESCC. In addition, we identified downregulation of esophagus tissue-enriched proteins such as SLURP1, PADI1, CSTA, small proline-rich proteins such as SPRR3, SPRR2A, SPRR1A, KRT4, and KRT13, involved in squamous cell differentiation. We identified several overexpressed proteins mapped to the 3q24-29 chromosomal region, aligning with CNV alterations in this region reported in several published studies. Among these, we identified overexpression of SOX2, TP63, IGF2BP2 and RNF13 that are encoded by genes in the 3q26 region. Functional enrichment analysis revealed proteins involved in cell cycle pathways, DNA replication, spliceosome, and DNA repair pathways. We identified the overexpression of multiple proteins that play a major role in alleviating ER stress, including SYVN1 and SEL1L. The SYVN1/SEL1L complex is an essential part of the ER quality control machinery clearing misfolded proteins from the ER. SYVN1 is an E3 ubiquitin ligase that ubiquitinates ER-resident proteins. Interestingly, there are also other non-canonical substrates of SYVN1 which are known to play a crucial role in tumor progression. Thus, SYVN1 could be a potential therapeutic target in ESCC.

19.
ACS Appl Mater Interfaces ; 15(27): 32099-32109, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37386863

RESUMO

The regulation of the cell cycle has recently opened up a new research perspective for cancer treatment. So far, no effort has been made for temporal control of cell cycles using a photocleavable linker. Presented herein is the first report of regulation of disrupted cell cycles through the temporal release of a well-known cell cycle regulator α-lipoic acid (ALA), enabled by a newly designed NIR-active quinoxaline-based photoremovable protecting group (PRPG). The suitable quinoxaline-based photocage of ALA (tetraphenylethelene conjugated) has been formulated as fluorescent organic nanoparticles (FONs) and used effectively as a nano-DDS (drug delivery system) for better solubility and cellular internalization. Fascinatingly, the enhanced TP (two-photon) absorption cross section of the nano-DDS (503 GM) signifies its utility for biological applications. Using green light, we have successfully controlled the time span of cell cycles and cell growth of skin melanoma cell lines (B16F10) by the temporal release of ALA. Further, in silico studies and PDH activity assay supported the observed regulatory behavior of our nano-DDS with respect to photoirradiation. Overall, this approach expands the research path toward a futuristic photocontrolled toolbox for cell cycle regulation.


Assuntos
Nanopartículas , Pró-Fármacos , Ácido Tióctico , Sistemas de Liberação de Fármacos por Nanopartículas , Quinoxalinas/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Ciclo Celular
20.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G158-G173, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338119

RESUMO

Wnt signaling regulates gastric stem cell proliferation and differentiation. Although similar Wnt gradients exist within the corpus and antrum of the human stomach, there are striking differences in gland architecture and disease manifestation that suggest Wnt may differentially regulate progenitor cell function in each compartment. In this study, we tested sensitivities to Wnt activation in human gastric corpus and antral organoids to determine whether progenitor cells have region-specific differences in Wnt responsiveness. Human patient-matched corpus and antral organoids were grown in the presence of varying concentrations of the Wnt pathway activator CHIR99021 to assess regional sensitivity to Wnt signaling on growth and proliferation. Corpus organoids were further studied to understand how high Wnt affected cellular differentiation and progenitor cell function. A lower concentration of CHIR99021 stimulated peak growth in corpus organoids compared with patient-matched antral organoids. Supramaximal Wnt signaling levels in corpus organoids suppressed proliferation, altered morphology, reduced surface cell differentiation, and increased differentiation of deep glandular neck and chief cells. Surprisingly, corpus organoids grown in high CHIR99021 had enhanced organoid forming potential, indicating that progenitor cell function was maintained in these nonproliferative, deep glandular cell-enriched organoids. Passaging high-Wnt quiescent organoids into low Wnt rescued normal growth, morphology, and surface cell differentiation. Our findings suggest that human corpus progenitor cells have a lower threshold for optimal Wnt signaling than antral progenitor cells. We demonstrate that Wnt signaling in the corpus regulates a bimodal axis of differentiation, with high Wnt promoting deep glandular cell differentiation and suppressing proliferation while simultaneously promoting progenitor cell function.NEW & NOTEWORTHY This study demonstrates that human gastric corpus organoids have a lower Wnt signaling threshold to drive optimal growth relative to patient-matched antral organoids. Paradoxically, supramaximal Wnt levels suppress corpus organoid proliferation, yet promote differentiation toward deep glandular cell types while simultaneously enhancing progenitor cell function. These findings provide novel insights into how Wnt signaling differentially regulates homeostasis in the human gastric corpus and antrum and contextualizes patterns of Wnt activation diseases.


Assuntos
Estômago , Via de Sinalização Wnt , Humanos , Células-Tronco , Diferenciação Celular/fisiologia , Organoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...