Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
mSystems ; : e0060024, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888356

RESUMO

Locusta migratoria is an important phytophagous pest, and its gut microbial communities play an important role in cellulose degradation. In this study, the gut microbial and cellulose digestibility dynamics of Locusta migratoria were jointly analyzed using high-throughput sequencing and anthrone colorimetry. The results showed that the gut microbial diversity and cellulose digestibility across life stages were dynamically changing. The species richness of gut bacteria was significantly higher in eggs than in larvae and imago, the species richness and cellulose digestibility of gut bacteria were significantly higher in early larvae (first and second instars) than in late larvae (third to fifth instars), and the diversity of gut bacteria and cellulose digestibility were significantly higher in imago than in late larvae. There is a correlation between the dynamics of gut bacterial communities and cellulose digestibility. Enterobacter, Lactococcus, and Pseudomonas are the most abundant genera throughout all life stages. Six strains of highly efficient cellulolytic bacteria were screened, which were dominant gut bacteria. Carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) experiments revealed that Pseudomonas had the highest cellulase enzyme activity. This study provides a new way for the screening of cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors. IMPORTANCE: Cellulose is the most abundant and cheapest renewable resource in nature, but its degradation is difficult, so finding efficient cellulose degradation methods is an urgent challenge. Locusta migratoria is a large group of agricultural pests, and the large number of microorganisms that inhabit their intestinal tracts play an important role in cellulose degradation. We analyzed the dynamics of Locusta migratoria gut microbial communities and cellulose digestibility using a combination of high-throughput sequencing technology and anthrone colorimetry. The results revealed that the gut microbial diversity and cellulose digestibility were dynamically changed at different life stages. In addition, we explored the intestinal bacterial community of Locusta migratoria across life stages and its correlation with cellulose digestibility. The dominant bacterial genera at different life stages of Locusta migratoria were uncovered and their carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) were determined. This study provides a new avenue for screening cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors.

2.
Sci Rep ; 14(1): 13903, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886460

RESUMO

Rice straw breakdown is sluggish, which makes agricultural waste management difficult, however pretreatment procedures and cellulolytic fungi can address this issue. Through ITS sequencing, Chaetomium globosum C1, Aspergillus sp. F2, and Ascomycota sp. SM2 were identified from diverse sources. Ascomycota sp. SM2 exhibited the highest carboxymethyl cellulase (CMCase) activity (0.86 IU/mL) and filter-paper cellulase (FPase) activity (1.054 FPU/mL), while Aspergillus sp. F2 showed the highest CMCase activity (0.185 IU/mL) after various pretreatments of rice straw. These fungi thrived across a wide pH range, with Ascomycota sp. SM2 from pH 4 to 9, Aspergillus sp. F2, and Chaetomium globosum C1 thriving in alkaline conditions (pH 9). FTIR spectroscopy revealed significant structural changes in rice straw after enzymatic hydrolysis and solid-state fermentation, indicating lignin, cellulose, and hemicellulose degradation. Soil amendments with pretreated rice straw, cow manure, biochar, and these fungi increased root growth and soil nutrient availability, even under severe salt stress (up to 9.3 dS/m). The study emphasizes the need for a better understanding of Ascomycota sp. degradation capabilities and proposes that using cellulolytic fungus and pretreatment rice straw into soil amendments could mitigate salt-related difficulties and improve nutrient availability in salty soils.


Assuntos
Celulase , Oryza , Solo , Oryza/metabolismo , Solo/química , Celulase/metabolismo , Estresse Salino , Microbiologia do Solo , Celulose/metabolismo , Chaetomium/metabolismo , Aspergillus/metabolismo , Hidrólise , Concentração de Íons de Hidrogênio , Ascomicetos/metabolismo , Fermentação , Esterco/microbiologia , Carvão Vegetal
3.
Microorganisms ; 12(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38792808

RESUMO

Enzyme-production microorganisms typically occupy a dominant position in composting, where cellulolytic microorganisms actively engage in the breakdown of lignocellulose. Exploring strains with high yields of cellulose-degrading enzymes holds substantial significance for the industrial production of related enzymes and the advancement of clean bioenergy. This study was inclined to screen cellulolytic bacteria, conduct genome analysis, mine cellulase-related genes, and optimize cellulase production. The potential carboxymethylcellulose-hydrolyzing bacterial strain Z2.6 was isolated from the maturation phase of pig manure-based compost with algae residuals as the feedstock and identified as Bacillus velezensis. In the draft genome of strain Z2.6, 31 related cellulolytic genes were annotated by the CAZy database, and further validation by cloning documented the existence of an endo-1,4-ß-D-glucanase (EC 3.2.1.4) belonging to the GH5 family and a ß-glucosidase (EC 3.2.1.21) belonging to the GH1 family, which are predominant types of cellulases. Through the exploration of ten factors in fermentation medium with Plackett-Burman and Box-Behnken design methodologies, maximum cellulase activity was predicted to reach 2.98 U/mL theoretically. The optimal conditions achieving this response were determined as 1.09% CMC-Na, 2.30% salinity, and 1.23% tryptone. Validation under these specified conditions yielded a cellulose activity of 3.02 U/mL, demonstrating a 3.43-fold degree of optimization. In conclusion, this comprehensive study underscored the significant capabilities of strain Z2.6 in lignocellulolytic saccharification and its potentialities for future in-depth exploration in biomass conversion.

4.
J Adv Vet Anim Res ; 11(1): 1-8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38680814

RESUMO

Objective: To isolate and characterize cellulolytic rumen bacteria from the rumen of Sahiwal cattle using rumen bacterial inoculum to increase the nutritional value of rice bran used as broiler feed. Materials and Methods: The ruminal liquid was kept at an optimal pH of 6.9 and a redox potential of less than -300 mV while being incubated anaerobically at 39°C in a medium containing rumen fluid glucose cellobiose agar. By using the Hungate technique, the organisms were detected based on their morphological, physiological, biochemical, and molecular testing. Results: The findings revealed that the isolated Ruminococcus albus, and Ruminococcus flavifaciens were obligate anaerobic, generally Gram-positive, nonmotile cocci or rod, single or pair, occasionally short chain, producing yellow pigment when grown on cellulose, and having a clear zone around the colonies. Both isolate fermented sugars such as cellobiose, glucose, and lactose, as well as decomposed xylan. The results also showed that the isolates recognized as Ruminococcus spp., a cellulolytic rumen bacterium, were catalase-negative, indole-negative, and gelatin liquefaction-positive. Conclusion: Isolation and characterization of Ruminococcus spp. may be helpful for Bangladesh in reducing the cost of producing poultry feed and circumventing restrictions on rice bran use. We can also develop more efficient and long-lasting plans to enhance poultry performance and feed efficiency, as well as increase the nutritional value of rice bran used as broiler feed, by understanding how various Ruminococcus spp. function in this process.

5.
J Environ Manage ; 358: 120781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608570

RESUMO

Transforming global agricultural waste into eco-friendly products like industrial enzymes through bioconversion can help address sustainability challenges aligning with the United Nations' Sustainable Development Goals. Present study explored the production of high-yield food-grade cellulolytic enzymes from Trichoderma reesei MTCC 4876, using a novel media formulation with a combination of waste sorghum grass and cottonseed oil cake (3:1). Optimization of physical and environmental parameters, along with the screening and optimization of media components, led to an upscaled process in a novel 6-L solid-state fermentation (SSF)-packed bed reactor (PBR) with a substrate loading of 200 g. Saturated forced aeration proved crucial, resulting in high fungal biomass (31.15 ± 0.63 mg glucosamine/gm dry fermented substrate) and high yield cellulase (20.64 ± 0.36 FPU/g-ds) and xylanase (16,186 ± 912 IU/g-ds) production at an optimal airflow rate of 0.75 LPM. The PBR exhibited higher productivity than shake flasks for all the enzyme systems. Microfiltration and ultrafiltration of the crude cellulolytic extract achieved 94% and 71% recovery, respectively, with 13.54 FPU/mL activity in the cellulolytic enzyme concentrate. The concentrate displayed stability across wide pH and temperature ranges, with a half-life of 24.5-h at 50 °C. The cellulase concentrate, validated for food-grade safety, complies with permissible limits for potential pathogens, heavy metals, mycotoxins, and pesticide residue. It significantly improved apple juice clarity (94.37 T%) by reducing turbidity (21%) and viscosity (99%) while increasing total reducing sugar release by 63% compared with untreated juice. The study also highlighted the potential use of lignin-rich fermented end residue for fuel pellets within permissible SOx emission limits, offering sustainable biorefinery prospects. Utilizing agro wastes in a controlled bioreactor environment underscores the potential for efficient large-scale cellulase production, enabling integration into food-grade applications and presenting economic benefits to fruit juice industries.


Assuntos
Reatores Biológicos , Fermentação , Sucos de Frutas e Vegetais , Hypocreales , Sorghum , Sorghum/metabolismo , Sucos de Frutas e Vegetais/análise , Celulase/metabolismo , Malus
6.
Biotechnol Biofuels Bioprod ; 17(1): 39, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461298

RESUMO

BACKGROUND: The polysaccharides in lignocellulosic biomass hold potential for production of biofuels and biochemicals. However, achieving efficient conversion of this resource into fermentable sugars faces challenges, especially when operating at industrially relevant high solid loadings. While it is clear that combining classical hydrolytic enzymes and lytic polysaccharide monooxygenases (LPMOs) is necessary to achieve high saccharification yields, exactly how these enzymes synergize at high solid loadings remains unclear. RESULTS: An LPMO-poor cellulase cocktail, Celluclast 1.5 L, was spiked with one or both of two fungal LPMOs from Thermothielavioides terrestris and Thermoascus aurantiacus, TtAA9E and TaAA9A, respectively, to assess their impact on cellulose saccharification efficiency at high dry matter loading, using Avicel and steam-exploded wheat straw as substrates. The results demonstrate that LPMOs can mitigate the reduction in saccharification efficiency associated with high dry matter contents. The positive effect of LPMO inclusion depends on the type of feedstock and the type of LPMO and increases with the increasing dry matter content and reaction time. Furthermore, our results show that chelating free copper, which may leak out of the active site of inactivated LPMOs during saccharification, with EDTA prevents side reactions with in situ generated H2O2 and the reductant (ascorbic acid). CONCLUSIONS: This study shows that sustaining LPMO activity is vital for efficient cellulose solubilization at high substrate loadings. LPMO cleavage of cellulose at high dry matter loadings results in new chain ends and thus increased water accessibility leading to decrystallization of the substrate, all factors making the substrate more accessible to cellulase action. Additionally, this work highlights the importance of preventing LPMO inactivation and its potential detrimental impact on all enzymes in the reaction.

7.
Microbiol Spectr ; 12(4): e0326723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441475

RESUMO

Cellulolytic bacteria ferment dietary fiber into short-chain fatty acids, which play an important role in improving fiber utilization and maintaining intestinal health. Safe and effective cellulolytic bacteria are highly promising probiotic candidates. In this study, we isolated three strains of Bacillus cereus, which exhibited cellulolytic properties, from Kele pig feces. To assess the genetic basis of cellulose degradation by the isolates, whole-genome sequencing was used to detect functional genes associated with cellulose metabolism. Subsequently, we identified that the B. cereus CL2 strain was safe in mice by monitoring body weight changes, performing histopathologic evaluations, and determining routine blood indices. We next evaluated the biological characteristics of the CL2 strain in terms of its growth, tolerance, and antibiotic susceptibility, with a focus on its ability to produce short-chain fatty acids. Finally, the intestinal flora structure of the experimental animals was analyzed to assess the intestinal environment compatibility of the CL2 strain. In this study, we isolated a cellulolytic B. cereus CL2, which has multiple cellulolytic functional genes and favorable biological characteristics, from the feces of Kele pigs. Moreover, CL2 could produce a variety of short-chain fatty acids and does not significantly affect the diversity of the intestinal flora. In summary, the cellulolytic bacterium B. cereus CL2 is a promising strain for use as a commercial probiotic or in feed supplement. IMPORTANCE: Short-chain fatty acids are crucial constituents of the intestinal tract, playing an important and beneficial role in preserving the functional integrity of the intestinal barrier and modulating both immune responses and the structure of the intestinal flora. In the intestine, short-chain fatty acids are mainly produced by bacterial fermentation of cellulose. Therefore, we believe that safe and efficient cellulolytic bacteria have the potential to be novel probiotics. In this study, we systematically evaluated the safety and biological characteristics of the cellulolytic bacterium B. cereus CL2 and provide evidence for its use as a probiotic.


Assuntos
Bacillus cereus , Probióticos , Animais , Suínos , Camundongos , Bacillus cereus/genética , Ácidos Graxos Voláteis , Intestinos , Celulose
8.
J Gen Appl Microbiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538333

RESUMO

Cellulose is an abundant biomass on the planet. Various cellulases from environmental microbes have been explored for industrial use of cellulose. Marine fish intestine is of interest as one source of new enzymes. Here, we report the discovery of genes encoding two ß-glucosidases (Bgl3A and Bgl3B) and four endo-1,4-ß-glucanases (Cel5A, Cel8, Cel5B, and Cel9) as part of the genome sequence of a cellulolytic marine bacterium, Microbulbifer sp. Strain GL-2. Five of these six enzymes (excepting Cel5B) are presumed to localize to the periplasm or outer membrane. Transcriptional analysis demonstrated that all six genes were highly expressed in stationary phase. The transcription was induced by cello-oligosaccharides rather than by glucose, suggesting that the cellulases are produced primarily for nutrient acquisition following initial growth, facilitating the secondary growth phase. We cloned the genes encoding two of the endo-1,4-ß-glucanases, Cel5A and Cel8, and purified the corresponding recombinant enzymes following expression in Escherichia coli. The activity of Cel5A was observed across a wide range of temperatures (10-40 ˚C) and pHs (6-8). This pattern differed from those of Cel8 and the commercial cellulase Enthiron, both of which exhibit decreased activities below 30 ˚C and at alkaline pHs. These characteristics suggest that Cel5A might find use in industrial applications. Overall, our results reinforce the hypothesis that marine bacteria remain a possible source of novel cellulolytic activities.

9.
Int J Biol Macromol ; 263(Pt 2): 130415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403232

RESUMO

Microbial diversity from indigenous cultures has the potential to accelerate lignocellulose degradation through enzymes and make composting economically feasible. Therefore, this study is designed to boost cellulase output from a bacterial strain obtained from soil using a one-variable-at-a-time approach and response surface methodology. The bacteria recognized as Bacillus tequilensis (ON754229) produced the maximum cellulase at a temperature of 37 °C, pH -7.0, and incubation time of 72 h. A major contribution was anticipated by glucose (17 %) and ammonium sulfate (11 %) with cellulase activity of 0.56 U/mL in the optimized medium. The enzyme possessed activity of CMCase, FPase, and amylase of 0.589 µmol/min, 1.22 µmol/min, and 0.92 µmol/min respectively. SDS-PAGE showed a 65 kDa molecular weight of the enzyme capable of degrading cellulose, as confirmed by zymogram analysis. The enzyme showed relatively moderate thermo-stability towards neutral pH conditions possessing optimum conditions at pH 6.5 and temperature of 50 °C. The Km and Vmax values were 11.44 mM and 0.643 µmol/min respectively. The presence of MgSO4, ZnSO4, and Triton X- 100 increased the enzymatic reaction however AgNO3, EDTA, and HgCl2 altered the activation process. These results showed cellulase from B. tequilensis SB125 would be suitable for conventional industrial processes that convert biomass into biofuels.


Assuntos
Celulase , Celulases , Fermentação , Bactérias/metabolismo , Temperatura , Solo , Celulases/metabolismo , Celulase/química , Concentração de Íons de Hidrogênio
10.
MethodsX ; 12: 102550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38283762

RESUMO

Microorganisms are present everywhere and can influence a variety of processes. In agriculture and husbandry, the level of microbial activity can be crucial information, yet the methods for determining microbial activity are usually very long, complex, and costly. In this work, a novel and easy-to-use method, already in use for determining soil microbial activity, named Fertimetro was tested as a fast and cheap solution for measuring microbial activity in silages, in vitro rumen fluids, and manure and slurry. The method was adjusted for the specific conditions of the new testing environments. The results indicate that this method is adequate for measuring cellulolytic microbial activity in vitro rumen fluids, with a coefficient of repeatability (RT%) 92.2 at 24 h and 87.5 at 48 h, and also for cellulolytic microbial activity measures in manure RT% 39.0. While, due to the specific conditions in silages and slurry, this method is less adequate for measuring cellulolytic microbial activity in these environments. This work demonstrates that Fertimetro method can be used in different environments as an easy and cheaper alternative for measuring microbial activity, especially if the interest is only in quantifying the microbial activity and not in knowing the microbial species.1.Fertimetro is an easy-to-use and not costly method to evaluate microbial activity in different environments.2.This method is very adequate for measuring cellulolytic microbial activity in vitro rumen fluids and manure.

11.
Int J Biol Macromol ; 259(Pt 2): 129235, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211916

RESUMO

Three green non-enzymatic catalysis pretreatments (NECPs) including autohydrolysis, subcritical CO2-assisted seawater autohydrolysis, and inorganic salt catalysis were utilized to simultaneously produce xylo-oligosaccharides (XOS), glucose, and cellulolytic enzyme lignin (CEL) from sugarcane bagasse (SCB). The yield of XOS in all three NECPs was over 50 % with a competitive glucose yield of enzymatic hydrolysis. And the effects of different pretreatments on the chemical structure and composition of CEL samples were also investigated. The pretreatments significantly increased the thermal stability, yield, and purity of the CEL samples. Moreover, the net yield of lignin was 58.3 % with lignin purity was 98.9 % in the autohydrolysis system. Furthermore, there was a decrease in the molecular weight of CEL samples as the pretreatment intensity increased. And the original lignin structural units sustained less damage during the NECPs, due to the cleavage of the ß-O-4 bonds dominating lignin degradation. Meanwhile, these pretreatments increased the phenolic-OH in CEL samples, making the lignin more reactive, and enhancing its subsequent modification and utilization. Collectively, the described techniques have demonstrated practical significance for the coproduction of XOS and glucose, and lignin, providing a promising strategy for full utilization of biomass.


Assuntos
Lignina , Saccharum , Lignina/química , Celulose/química , Glucose/metabolismo , Biomassa , Saccharum/química , Oligossacarídeos/química , Hidrólise
12.
J Equine Vet Sci ; 133: 104993, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171452

RESUMO

Though generally safe, research continues to demonstrate negative side effects of antibiotic administration on the gastrointestinal (GIT) microbiota across species. In horses, antibiotic associated diarrhea (AAD) is a life-threatening condition linked to the GIT microbiota. This study tested the hypothesis that short term antibiotic administration to healthy horses would negatively impact the fecal microbiota as measured by their ability to digest nutrients and through fecal shedding of disease-associated-bacteria. Twenty-four horses were assigned to one of four treatment groups: control (CO); potassium penicillin/gentamicin sulfate (KPG); ceftiofur crystalline free acid (EX); trimethoprim/sulfamethoxazole (SMZ); and treated for 4 days. Fecal samples were collected before treatment began (S0), the day after treatment conclusion (S5), and at 10, 14, 21, and 28 days after initiating treatment. Horses had highly individualized responses to antibiotic administration. All horses receiving antibiotics experienced significantly softer stool compared to controls. Lactobacillus spp. were dramatically reduced in all antibiotic treated S5 samples. Horses receiving antibiotics were significantly more likely to test positive for C. difficile or C. perfringens on fecal qPCR. In conclusion, response to antibiotic administration displays high inter-individual variability, but shows changes to the functions of fecal microbiota that may depend on the antibiotic used.


Assuntos
Clostridioides difficile , Microbiota , Animais , Cavalos , Antibacterianos/efeitos adversos , Fezes/microbiologia , Bactérias
13.
Biotechnol Bioeng ; 121(4): 1298-1313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38047471

RESUMO

Bacteria from diverse genera, including Acetivibrio, Bacillus, Cellulosilyticum, Clostridium, Desulfotomaculum, Lachnoclostridium, Moorella, Ruminiclostridium, and Thermoanaerobacterium, have attracted significant attention due to their versatile metabolic capabilities encompassing acetogenic, cellulolytic, and C1-metabolic properties, and acetone-butanol-ethanol fermentation. Despite their biotechnological significance, a comprehensive understanding of clostridial physiology and evolution has remained elusive. This study reports an extensive comparative genomic analysis of 48 fully sequenced bacterial genomes from these genera. Our investigation, encompassing pan-genomic analysis, central carbon metabolism comparison, exploration of general genome features, and in-depth scrutiny of Cluster of Orthologous Groups genes, has established a holistic whole-genome-based phylogenetic framework. We have classified these strains into acetogenic, butanol-producing, cellulolytic, CO2-fixating, chemo(litho/organo)trophic, and heterotrophic categories, often exhibiting overlaps. Key outcomes include the identification of misclassified species and the revelation of insights into metabolic features, energy conservation, substrate utilization, stress responses, and regulatory mechanisms. These findings can provide guidance for the development of efficient microbial systems for sustainable bioenergy production. Furthermore, by addressing fundamental questions regarding genetic relationships, conserved genomic features, pivotal enzymes, and essential genes, this study has also contributed to our comprehension of clostridial biology, evolution, and their shared metabolic potential.


Assuntos
Bactérias Anaeróbias , Clostridium , Filogenia , Clostridium/metabolismo , Bactérias Anaeróbias/metabolismo , Fermentação , Genômica , Butanóis/metabolismo
14.
BMC Biotechnol ; 23(1): 51, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049781

RESUMO

BACKGROUND: Goat rumen microbial communities are perceived as one of the most potential biochemical reservoirs of multi-functional enzymes, which are applicable to enhance wide array of bioprocesses such as the hydrolysis of cellulose and hemi-cellulose into fermentable sugar for biofuel and other value-added biochemical production. Even though, the limited understanding of rumen microbial genetic diversity and the absence of effective screening culture methods have impeded the full utilization of these potential enzymes. In this study, we applied culture independent metagenomics sequencing approach to isolate, and identify microbial communities in goat rumen, meanwhile, clone and functionally characterize novel cellulase and xylanase genes in goat rumen bacterial communities. RESULTS: Bacterial DNA samples were extracted from goat rumen fluid. Three genomic libraries were sequenced using Illumina HiSeq 2000 for paired-end 100-bp (PE100) and Illumina HiSeq 2500 for paired-end 125-bp (PE125). A total of 435gb raw reads were generated. Taxonomic analysis using Graphlan revealed that Fibrobacter, Prevotella, and Ruminococcus are the most abundant genera of bacteria in goat rumen. SPAdes assembly and prodigal annotation were performed. The contigs were also annotated using the DOE-JGI pipeline. In total, 117,502 CAZymes, comprising endoglucanases, exoglucanases, beta-glucosidases, xylosidases, and xylanases, were detected in all three samples. Two genes with predicted cellulolytic/xylanolytic activities were cloned and expressed in E. coli BL21(DE3). The endoglucanases and xylanase enzymatic activities of the recombinant proteins were confirmed using substrate plate assay and dinitrosalicylic acid (DNS) analysis. The 3D structures of endoglucanase A and endo-1,4-beta xylanase was predicted using the Swiss Model. Based on the 3D structure analysis, the two enzymes isolated from goat's rumen metagenome are unique with only 56-59% similarities to those homologous proteins in protein data bank (PDB) meanwhile, the structures of the enzymes also displayed greater stability, and higher catalytic activity. CONCLUSIONS: In summary, this study provided the database resources of bacterial metagenomes from goat's rumen fluid, including gene sequences with annotated functions and methods for gene isolation and over-expression of cellulolytic enzymes; and a wealth of genes in the metabolic pathways affecting food and nutrition of ruminant animals.


Assuntos
Celulase , Celulases , Animais , Celulase/metabolismo , Metagenoma , Cabras/genética , Cabras/metabolismo , Cabras/microbiologia , Rúmen/metabolismo , Rúmen/microbiologia , Escherichia coli/genética , Bactérias , Celulases/genética , Celulose
15.
J Agric Food Chem ; 71(51): 20751-20761, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38065961

RESUMO

There are several methods to isolate near-native lignins, including milled-wood lignin, enzymatic lignin, cellulolytic enzyme lignin, and enzymatic mild-acidolysis lignin. Which one is the most representative of the native lignin? Herein, near-native lignins were isolated from different plant groups and structurally analyzed to determine how well these lignins represented their native lignin counterparts. Analytical methods were applied to understand the molecular weight, monomer composition, and distribution of interunit linkages in the structure of the lignins. The results indicated that either enzymatic lignin or cellulolytic enzyme lignin may be used to represent native lignin in softwoods and hardwoods. None of the lignins, however, appeared to represent native lignins in grasses (monocot plants) because of substantial syringyl/guaiacyl differences. Complicating the understanding of grass lignin structure, large amounts of hydroxycinnamates acylate their polysaccharides and, when released, are often conflated with actual lignin monomers.


Assuntos
Lignina , Plantas , Lignina/química , Poaceae , Madeira/química , Peso Molecular
16.
Extremophiles ; 28(1): 2, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950773

RESUMO

Lignocellulolytic enzymes are used in different industrial and environmental processes. The rigorous operating circumstances of these industries, however, might prevent these enzymes from performing as intended. On the other side, extremozymes are enzymes produced by extremophiles that can function in extremely acidic or basic; hot or cold; under high or low salinity conditions. These severe conditions might denature the normal enzymes that are produced by mesophilic microorganisms. The increased stability of these enzymes has been contributed to a number of conformational modifications in their structures. These modifications may result from a few amino acid substitutions, an improved hydrophobic core, the existence of extra ion pairs and salt bridges, an increase in compactness, or an increase in positively charged amino acids. These enzymes are the best option for industrial and bioremediation activities that must be carried out under difficult conditions due to their improved stability. The review, therefore, discusses lignocellulolytic extremozymes, their structure and mechanisms along with industrial and biotechnological applications.


Assuntos
Extremófilos , Biotecnologia , Ácidos , Aminoácidos
17.
Animals (Basel) ; 13(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37684982

RESUMO

The consumption of maternal feces (coprophagy) is commonly observed in healthy foals and is a proposed contributor to microbial colonization of the foal's gastrointestinal tract (GIT). This study investigated the role of coprophagy in the establishment of fibrolytic bacteria in the foal GIT. Nine thoroughbred mares were dosed with chromic oxide, an indigestible marker, as a method to detect the occurrence of coprophagy by their foals. Foal fecal samples were collected from 12 h to 21 d after birth to measure chromic oxide and neutral detergent fiber (NDF) and to enumerate cellulolytic bacteria using culture-based techniques. Milk yield was estimated at 7 and 14 d postpartum. Coprophagy was detected as early as 3 d after birth and detected in all foals by 7 d of age. There were strong relationships between coprophagy and cellulolytic bacteria and NDF in foal feces at 7 d of age (r = 0.9703 and r = 0.7878, respectively; p < 0.05). Fecal NDF and chromic oxide concentrations were negatively related to milk yield (r = -0.8144 and r = -0.6966, respectively; p < 0.05), suggesting milk availability affected the incidence of coprophagy. Based on the relationships identified, maternal feces are an important source of fiber and live microbes for the foal, contributing to the development of the microbial community.

18.
Microorganisms ; 11(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630525

RESUMO

Trichoderma reesei is a saprophytic fungus that produces large amounts of cellulases and is widely used for biotechnological applications. Cerato-platanins (CPs) are a family of proteins universally distributed among Dikarya fungi and have been implicated in various functions related to fungal physiology and interaction with the environment. In T. reesei, three CPs are encoded in the genome: Trire2_111449, Trire2_123955, and Trire2_82662. However, their function is not fully elucidated. In this study, we deleted the Trire2_123955 gene (named here as epl2) in the wild-type QM6aΔtmus53Δpyr4 (WT) strain and examined the behavior of the Δepl2 strain compared with WT grown for 72 h in 1% cellulose using RNA sequencing. Of the 9143 genes in the T. reesei genome, 760 were differentially expressed, including 260 only in WT, 214 only in Δepl2, and 286 in both. Genes involved in oxidative stress, oxidoreductase activity, antioxidant activity, and transport were upregulated in the Δepl2 mutant. Genes encoding cell wall synthesis were upregulated in the mutant strain during the late growth stage. The Δepl2 mutant accumulated chitin and glucan at higher levels than the parental strain and was more resistant to cell wall stressors. These results suggest a compensatory effect in cell wall remodeling due to the absence of EPL2 in T. reesei. This study is expected to contribute to a better understanding of the role of the EPL2 protein in T. reesei and improve its application in biotechnological fields.

19.
J Dairy Sci ; 106(11): 7548-7565, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532628

RESUMO

To maintain membrane homeostasis, ruminal bacteria synthesize branched-chain fatty acids (BCFA) or their derivatives (vinyl ethers) that are recovered during methylation procedures as branched-chain aldehydes (BCALD). Many strains of cellulolytic bacteria require 1 or more branched-chain volatile fatty acid (BCVFA). Therefore, the objective of this study was to investigate BCVFA incorporation into bacterial lipids under different dietary conditions. The study was an incomplete block design with 8 continuous culture fermenters used in 4 periods with treatments (n = 4) arranged as a 2 × 2 × 2 factorial. The factors were high (HF) or low forage (LF, 67 or 33% forage, 33:67 alfalfa:orchardgrass), without or with supplemental corn oil (CO; 3% dry matter, 1.5% linoleic fatty acid), and without or with 2.15 mmol/d (5 mg/d 13C each of isovalerate, isobutyrate, and 2-methylbutyrate). After methylation of bacterial pellets collected from each fermenter's effluent, fatty acids and fatty aldehydes were separated before analysis by gas chromatography and isotope ratio mass spectrometry. Supplementation of BCVFA did not influence biohydrogenation extent. Label was only recovered in branched-chain lipids. Lower forage inclusion decreased BCFA in bacterial fatty acid profile from 9.45% with HF to 7.06% with LF and decreased BCALD in bacterial aldehyde profile from 55.4% with HF to 51.4% with LF. Supplemental CO tended to decrease iso even-chain BCFA and decreased iso even-chain BCALD in their bacterial lipid profiles. The main 18:1 isomer was cis-9 18:1, which increased (P < 0.01) by 25% from CO (data not shown). Dose recovery in bacterial lipids was 43.3% lower with LF than HF. Supplemental CO decreased recovery in the HF diet but increased recovery with LF (diet × CO interaction). Recovery from anteiso odd-chain BCFA and BCALD was the greatest; therefore, 2-methylbutyrate was the BCVFA primer most used for branched-chain lipid synthesis. Recovery in iso odd-chain fatty acids (isovalerate as primer) was greater than label recovery in iso even-chain fatty acids (isobutyrate as primer). Fatty aldehydes were less than 6% of total bacterial lipids, but 26.0% of 13C recovered in lipids were recovered in BCALD because greater than 50% of aldehydes were branched-chain. Because BCFA and BCALD are important in the function and growth of bacteria, especially cellulolytics, BCVFA supplementation can support the rumen microbial consortium, increasing fiber degradation and efficiency of microbial protein synthesis.

20.
Arch Microbiol ; 205(8): 278, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420023

RESUMO

Hahella is a genus that has not been well-studied, with only two identified species. The potential of this genus to produce cellulases is yet to be fully explored. The present study isolated Hahella sp. CR1 from mangrove soil in Tanjung Piai National Park, Malaysia, and performed whole genome sequencing (WGS) using NovaSeq 6000. The final assembled genome consists of 62 contigs, 7,106,771 bp, a GC ratio of 53.5%, and encoded for 6,397 genes. The CR1 strain exhibited the highest similarity with Hahella sp. HN01 compared to other available genomes, where the ANI, dDDH, AAI, and POCP were 97.04%, 75.2%, 97.95%, and 91.0%, respectively. In addition, the CAZymes analysis identified 88 GTs, 54 GHs, 11 CEs, 7 AAs, 2 PLs, and 48 CBMs in the genome of strain CR1. Among these proteins, 11 are related to cellulose degradation. The cellulases produced from strain CR1 were characterized and demonstrated optimal activity at 60 ℃, pH 7.0, and 15% (w/v) sodium chloride. The enzyme was activated by K+, Fe2+, Mg2+, Co2+, and Tween 40. Furthermore, cellulases from strain CR1 improved the saccharification efficiency of a commercial cellulase blend on the tested agricultural wastes, including empty fruit bunch, coconut husk, and sugarcane bagasse. This study provides new insights into the cellulases produced by strain CR1 and their potential to be used in lignocellulosic biomass pre-treatment.


Assuntos
Celulase , Celulases , Saccharum , Celulases/genética , Celulases/metabolismo , Celulose/metabolismo , Biomassa , Saccharum/química , Celulase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...