Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 2): 132266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777689

RESUMO

Bacterial cellulose (BC) represents a promising biomaterial, due to its unique and versatile properties. We report, herein, on purposely-designed structural modifications of BC that enhance its application as a wound dressing material. Chemical modification of the functional groups of BC was performed initially to introduce a hydrophobic/oleophilic character to its surface. Specifically, silanization was carried out in an aqueous medium using methyltrimethoxisilane (MTMS) as the silanizing agent, and aerogels were subsequently prepared by freeze-drying. The BC-MTMS aerogel obtained displayed a highly porous (99 %) and lightweight structure with an oil absorption capacity of up to 52 times its dry weight. The XRD pattern indicated that the characteristic crystallographic planes of the native BC were maintained after the silanization process. Thermal analysis showed that the thermal stability of the BC-MTMS aerogel increased, as compared to the pure BC aerogel (pBC). Moreover, the BC-MTMS aerogel was not cytotoxic to fibroblasts and keratinocytes. In the second step of the study, the incorporation of natural oils into the aerogel's matrix was found to endow antimicrobial and/or healing properties to BC-MTMS. Bourbon geranium (Pelargonium X ssp.) essential oil (GEO) was the only oil that exhibited antimicrobial activity against the tested microorganisms, whereas buriti (Mauritia flexuosa) vegetable oil (BVO) was non-cytotoxic to the cells. This study demonstrates that the characteristics of the BC structure can be modified, while preserving its intrinsic features, offering new possibilities for the development of BC-derived materials for specific applications in the biomedical field.


Assuntos
Celulose , Óleos Voláteis , Óleos de Plantas , Celulose/química , Celulose/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Géis/química , Cicatrização/efeitos dos fármacos , Fabaceae/química , Humanos , Fibroblastos/efeitos dos fármacos , Pelargonium/química , Silanos/química
2.
Carbohydr Polym ; 288: 119409, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35450659

RESUMO

The effective integration of multiple thermal functions into one material is highly attractive in personal thermal management, taking the complex application environment into consideration. Herein, a multifunctional Janus cellulosic composite encompassing superior electrical heating, energy storage, thermal insulation, and infrared camouflage performance was firstly developed by integrating Janus cellulose nanofibers (CNF) aerogel, polypyrrole (PPy), and polyethylene glycol (PEG). In practice, the active heating-thermal regulation layer (PPy@CNFphilic-PEG) of multifunctional Janus cellulosic composite is faced inward to provide heating on-demand through the joint action of the electrically conductive PPy and thermally regulative PEG. The outward-facing hydrophobic aerogel layer (CNFphobic) serves as the thermal insulator, which simultaneously enables infrared camouflage by reducing heat loss to the environment via infrared radiation. This work presents an effective and facile strategy toward multifunctional Janus materials for efficient personal thermal management, showing great promise for potential applications, such as thermal comfort, infrared camouflage, and security protection.


Assuntos
Nanofibras , Polímeros , Celulose/química , Condutividade Elétrica , Nanofibras/química , Polímeros/química , Pirróis/química
3.
Carbohydr Polym ; 250: 116927, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049841

RESUMO

Biodegradable aerogels may help to develop eco-friendly technological pathways to increase the efficiency of chemical processes. In the present work, we describe the preparation of a novel bacterial cellulose aerogel oxidized by TEMPO, nanofibrillated in a blender, and silanized with methyltrimethoxysilane, resulting in four different types of aerogel. The aerogels produced from the double-functionalized cellulose suspension (BCOXNS) were compared to other non-oxidized (BCN and BCNS) and non-silanized (BCOXN) aerogels All aerogels were very light (density 10-14 kg.m-3) and very porous (porosity >99 %). The aerogels of BCOXNS showed better mechanical properties (tension of 13.0 kPa, modulus of elasticity of 39.4 kPa) and hydrophobicity, and could absorb organic solvents of different polarities. The BCOXNS could be recycled at least 7 times after absorbing organic solvents while retaining an absorption capacity of 83 %. This material can be used as a standard for the further development of aerogels based on bacterial biopolymers.


Assuntos
Bactérias/química , Biopolímeros/química , Celulose/química , Óxidos N-Cíclicos/química , Géis/química , Solventes/química , Antioxidantes/química , Porosidade , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA