Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
EMBO Rep ; 25(2): 506-523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225355

RESUMO

Transient receptor potential vanilloid (TRPV) channels play a critical role in calcium homeostasis, pain sensation, immunological response, and cancer progression. TRPV channels are blocked by ruthenium red (RR), a universal pore blocker for a wide array of cation channels. Here we use cryo-electron microscopy to reveal the molecular details of RR block in TRPV2 and TRPV5, members of the two TRPV subfamilies. In TRPV2 activated by 2-aminoethoxydiphenyl borate, RR is tightly coordinated in the open selectivity filter, blocking ion flow and preventing channel inactivation. In TRPV5 activated by phosphatidylinositol 4,5-bisphosphate, RR blocks the selectivity filter and closes the lower gate through an interaction with polar residues in the pore vestibule. Together, our results provide a detailed understanding of TRPV subfamily pore block, the dynamic nature of the selectivity filter and allosteric communication between the selectivity filter and lower gate.


Assuntos
Antineoplásicos , Canais de Potencial de Receptor Transitório , Canais de Cátion TRPV/genética , Rutênio Vermelho/farmacologia , Microscopia Crioeletrônica , Cálcio/metabolismo
2.
J Biol Chem ; 300(3): 105674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272234

RESUMO

In voltage-gated Na+ and K+ channels, the hydrophobicity of noncharged residues in the S4 helix has been shown to regulate the S4 movement underlying the process of voltage-sensing domain (VSD) activation. In voltage-gated proton channel Hv1, there is a bulky noncharged tryptophan residue located at the S4 transmembrane segment. This tryptophan remains entirely conserved across all Hv1 members but is not seen in other voltage-gated ion channels, indicating that the tryptophan contributes different roles in VSD activation. The conserved tryptophan of human voltage-gated proton channel Hv1 is Trp207 (W207). Here, we showed that W207 modifies human Hv1 voltage-dependent activation, and small residues replacement at position 207 strongly perturbs Hv1 channel opening and closing, and the size of the side chain instead of the hydrophobic group of W207 regulates the transition between closed and open states of the channel. We conclude that the large side chain of tryptophan controls the energy barrier during the Hv1 VSD transition.


Assuntos
Ativação do Canal Iônico , Canais Iônicos , Triptofano , Humanos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/metabolismo , Triptofano/genética , Triptofano/metabolismo , Domínios Proteicos/genética , Mutação
3.
J Control Release ; 351: 941-953, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36202151

RESUMO

Since magnetic micro/nano-materials can serve as multifunctional transducers for remote control of cell functions by applying diverse magnetic fields, magnetic cell manipulation provides a highly promising tool in biomedical research encompassing neuromodulation, tissue regeneration engineering and tumor cell destruction. Magnetotactic bacteria (MTB), which contain natural magnetic materials, can sensitively respond to external magnetic fields via their endogenous magnetosome chains. Here, we developed a technique for magnetotactic bacteria-based cell modulation and tumor suppression combined with a swing magnetic field. We enabled MTB cells to recognize and bind to mammalian tumor cells via functional modification with RGD peptides onto the surfaces of MTB cells, and RGD-modified MTB bacteria could interact with the targeted tumor cells effectively. The magnetic torque, which was due to the interaction of the long magnetosome chain inside the MTB bacterial cell and the applied swing magnetic field, could result in obvious swing magnetic behaviors of the modified MTB bacteria bound to tumor cell surfaces and thus subsequently exert a sustained magnetomechanical oscillation on the tumor cell surfaces, which could induce a significant activation of Ca2+ ion influx in vitro and tumor growth inhibition in vivo. These findings suggest that MTB cells mediated magnetomechanical stimulation, which is remotely controlled by dynamic magnetic fields, as an effective way to regulate cell signaling and treat tumor growth, which will shed the light on further biomedical applications utilizing whole magnetotactic bacteria.


Assuntos
Magnetossomos , Animais , Magnetossomos/metabolismo , Bactérias Gram-Negativas , Bactérias/metabolismo , Magnetismo , Mamíferos
4.
Antioxidants (Basel) ; 11(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36290615

RESUMO

Luteolin (LUT) is a well-known flavonoid that exhibits a number of beneficial properties. Among these, it shows cardioprotective effects, as confirmed by numerous studies. However, its effect on mitochondrial potassium channels, the activation of which is related to cytoprotection, as well as on heart ischemia/reperfusion (I/R) damage prevention, has not yet been investigated. The large conductance calcium-regulated potassium channel (mitoBKCa) has been identified in both the mitochondria of the vascular endothelial cells, which plays a significant role in the functioning of the cardiovascular system under oxidative stress-related conditions, and in the mitochondria of cardiomyocytes, where it is deeply involved in cardiac protection against I/R injury. Therefore, the aim of this study was to explore the role of the mitoBKCa channel in luteolin-induced cytoprotection. A number of in vitro, in vivo, ex vivo and in silico studies have confirmed that luteolin activates this channel in the mitochondria of cardiomyocytes and endothelial cells, which in turn leads to the protection of the endothelium and a significant reduction in the extent of damage resulting from myocardial infarction, where this effect was partially abolished by the mitoBKCa channel blocker paxilline. In conclusion, these results suggest that luteolin has cardioprotective effects, at least in part, through the activation of the mitoBKCa channel, shedding light on a new putative mechanism of action.

5.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36015099

RESUMO

OBJECTIVE: Diosmetin is a flavonoid that is found in many important medicinal plants that have antihypertensive therapeutic potential. Diosmetin has been shown to have antiplatelet, anti-inflammatory and antioxidant properties, which suggests that it could be a potential candidate for use in antihypertensive therapy. METHODS: In vivo and in vitro methods were used for our investigation into the antihypertensive effects of diosmetin. RESULTS: Diosmetin significantly decreased the mean arterial pressure (MAP). The effects of diosmetin on the MAP and heart rate were more pronounced in hypertensive rats. To explore the involvement of the muscarinic receptors-linked NO pathway, Nω-nitro-L-arginine methyl ester (L-NAME) and atropine were pre-administered in vivo. The pretreatment with L-NAME did not significantly change the effects of diosmetin on the MAP by excluding the involvement of NO. Unlike L-NAME, the atropine pretreatment reduced the effects of diosmetin on the MAP, which demonstrated the role of the muscarinic receptors. In the in vitro study, diosmetin at lower concentrations produced endothelium-dependent and -independent (at higher concentrations) vasorelaxation, which was attenuated significantly by the presence of atropine and indomethacin but not L-NAME. Diosmetin was also tested for high K+-induced contractions. Diosmetin induced significant relaxation (similar to verapamil), which indicated its Ca2+ antagonistic effects. This was further confirmed by diosmetin shifting the CaCl2 CRCs toward the right due to its suppression of the maximum response. Diosmetin also suppressed phenylephrine peak formation, which indicated its antagonist effects on the release of Ca2+. Moreover, BaCl2 significantly inhibited the effects of diosmetin, followed by 4-AP and TEA, which suggested that the K+ channels had a role as well. CONCLUSIONS: The obtained data showed the Ca2+ channel antagonism, potassium channel activation and antimuscarinic receptor-linked vasodilatory effects of diosmetin, which demonstrated its antihypertensive potential.

6.
J Cell Sci ; 135(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833483

RESUMO

The chloride intracellular channel (CLIC) protein family displays the unique feature of altering its structure from a soluble form to a membrane-bound chloride channel. CLIC1, a member of this family, is found in the cytoplasm or in internal and plasma membranes, with membrane relocalisation linked to endothelial disfunction, tumour proliferation and metastasis. The molecular switch promoting CLIC1 activation remains under investigation. Here, cellular Cl- efflux assays and immunofluorescence microscopy studies have identified intracellular Zn2+ release as the trigger for CLIC1 activation and membrane insertion. Biophysical assays confirmed specific binding to Zn2+, inducing membrane association and enhancing Cl- efflux in a pH-dependent manner. Together, our results identify a two-step mechanism with Zn2+ binding as the molecular switch promoting CLIC1 membrane insertion, followed by pH-mediated activation of Cl- efflux.


Assuntos
Canais de Cloreto , Cloretos , Transporte Biológico , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Zinco/metabolismo
7.
J Biol Chem ; 298(6): 101998, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500647

RESUMO

Opening of two-pore domain K+ channels (K2Ps) is regulated by various external cues, such as pH, membrane tension, or temperature, which allosterically modulate the selectivity filter (SF) gate. However, how these cues cause conformational changes in the SF of some K2P channels remains unclear. Herein, we investigate the mechanisms by which extracellular pH affects gating in an alkaline-activated K2P channel, TALK1, using electrophysiology and molecular dynamics (MD) simulations. We show that R233, located at the N-terminal end of transmembrane segment 4, is the primary pHo sensor. This residue distally regulates the orientation of the carbonyl group at the S1 potassium-binding site through an interacting network composed of residues on transmembrane segment 4, the pore helix domain 1, and the SF. Moreover, in the presence of divalent cations, we found the acidic pH-activated R233E mutant recapitulates the network interactions of protonated R233. Intriguingly, our data further suggested stochastic coupling between R233 and the SF gate, which can be described by an allosteric gating model. We propose that this allosteric model could predict the hybrid pH sensitivity in heterodimeric channels with alkaline-activated and acidic-activated K2P subunits.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Domínios Poros em Tandem , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/fisiologia , Simulação de Dinâmica Molecular , Canais de Potássio de Domínios Poros em Tandem/metabolismo
8.
J Biol Chem ; 298(6): 102004, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504352

RESUMO

The epithelial sodium channel (ENaC) is a heterotrimer consisting of α-, ß-, and γ-subunits. Channel activation requires proteolytic release of inhibitory tracts from the extracellular domains of α-ENaC and γ-ENaC; however, the proteases involved in the removal of the γ-inhibitory tract remain unclear. In several epithelial tissues, ENaC is coexpressed with the transmembrane serine protease 2 (TMPRSS2). Here, we explored the effect of human TMPRSS2 on human αßγ-ENaC heterologously expressed in Xenopus laevis oocytes. We found that coexpression of TMPRSS2 stimulated ENaC-mediated whole-cell currents by approximately threefold, likely because of an increase in average channel open probability. Furthermore, TMPRSS2-dependent ENaC stimulation was not observed using a catalytically inactive TMPRSS2 mutant and was associated with fully cleaved γ-ENaC in the intracellular and cell surface protein fractions. This stimulatory effect of TMPRSS2 on ENaC was partially preserved when inhibiting its proteolytic activity at the cell surface using aprotinin but was abolished when the γ-inhibitory tract remained attached to its binding site following introduction of two cysteine residues (S155C-Q426C) to form a disulfide bridge. In addition, computer simulations and site-directed mutagenesis experiments indicated that TMPRSS2 can cleave γ-ENaC at sites both proximal and distal to the γ-inhibitory tract. This suggests a dual role of TMPRSS2 in the proteolytic release of the γ-inhibitory tract. Finally, we demonstrated that TMPRSS2 knockdown in cultured human airway epithelial cells (H441) reduced baseline proteolytic activation of endogenously expressed ENaC. Thus, we conclude that TMPRSS2 is likely to contribute to proteolytic ENaC activation in epithelial tissues in vivo.


Assuntos
Canais Epiteliais de Sódio , Oócitos , Serina Endopeptidases , Animais , Canais Epiteliais de Sódio/metabolismo , Humanos , Transporte de Íons/fisiologia , Oócitos/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Xenopus laevis/genética
9.
Biophys Rev ; 14(1): 209-219, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35340596

RESUMO

Piezo1 is a mechanically gated ion channel responsible for converting mechanical stimuli into electrical signals in mammals, playing critical roles in vascular development and blood pressure regulation. Dysfunction of Piezo1 has been linked to several disorders, including hereditary xerocytosis (gain-of-function) and generalised lymphatic dysplasia (loss-of-function), as well as a common polymorphism associated with protection against severe malaria. Despite the important physiological roles played by Piezo1, its recent discovery means that many aspects underlying its function are areas of active research. The recently elucidated cryo-EM structures of Piezo1 have paved the way for computational studies, specifically molecular dynamic simulations, to examine the protein's behaviour at an atomistic level. These studies provide valuable insights to Piezo1's interactions with surrounding membrane lipids, a small-molecule agonist named Yoda1, and Piezo1's activation mechanisms. In this review, we summarise and discuss recent papers which use computational techniques in combination with experimental approaches such as electrophysiology/mutagenesis studies to investigate Piezo1. We also discuss how to mitigate some shortcomings associated with using computational techniques to study Piezo1 and outline potential avenues of future research.

10.
Front Mol Biosci ; 9: 818682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265671

RESUMO

Canonical transient receptor potential channels (TRPC3) may play a pivotal role in the development and viability of dendritic arbor in Purkinje neurons. This is a novel postsynaptic channel for glutamatergic synaptic transmission. In the cerebellum, TRPC3 appears to regulate functions relating to motor coordination in a highly specific manner. Gain of TRPC3 function is linked to significant alterations in the density and connectivity of dendritic arbor in Purkinje neurons. TRPC3 signals downstream of class I metabotropic glutamate receptors (mGluR1). Moreover, diacylglycerol (DAG) can directly bind and activate TRPC3 molecules. Here, we investigate a key question: How can the activity of the TRPC3 channel be regulated in Purkinje neurons? We also explore how mGluR1 activation, Ca2+ influx, and DAG homeostasis in Purkinje neurons can be linked to TRPC3 activity modulation. Through systems biology approach, we show that TRPC3 activity can be modulated by a Purkinje cell (PC)-specific local signalosome. The assembly of this signalosome is coordinated by DAG generation after mGluR1 activation. Our results also suggest that purinergic receptor activation leads to the spatial and temporal organization of the TRPC3 signaling module and integration of its key effector molecules such as DAG, PKCγ, DGKγ, and Ca2+ into an organized local signalosome. This signaling machine can regulate the TRPC3 cycling between active, inactive, and desensitized states. Precise activity of the TRPC3 channel is essential for tightly regulating the Ca2+ entry into PCs and thus the balance of lipid and Ca2+ signaling in Purkinje neurons and hence their viability. Cell-type-specific understanding of mechanisms regulating TRPC3 channel activity could be key in identifying therapeutic targeting opportunities.

11.
J Biol Chem ; 298(4): 101826, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35300980

RESUMO

Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations.


Assuntos
Canais de Cátion TRPV , Ubiquitinação , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Humanos , Camundongos , Mutação , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Ubiquitina/metabolismo
12.
Heliyon ; 7(10): e08094, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34712851

RESUMO

OBJECTIVE: This study determines the efficacy and probable underlying mode of action to the folk usage of Euphorbia hirta, Fagonia indica and Capparis decidua in hypertension. METHODS: The aqueous-methanol extracts of E. hirta (EH.Cr), F. indica (FI.Cr) and C. decidua (CD.Cr) were tested for antihypertensive effects in rats using non-invasive and in-vasive blood pressure measuring apparatus. In-vitro assays were carried out using isolated rat aortae using PowerLab station. RESULTS: EH.Cr, FI.Cr and CD.Cr at 500 mg/kg (orally) caused a fall in the mean systolic blood pressure in arsenic-induced hypertensive and normotensive rats, similar to nifedipine. In rat aortae, EH.Cr, CD.Cr and FI.Cr reversed low (20 mM), high (80 mM) K+ and phenylephrine (P.E)-driven contractions, while F. indica partially inhibited high K+ contractions. In the presence of TEA, F. indica remained unable to relax low K+ contractions. EH.Cr and CD.Cr moved Ca++ concentrations response curves to the right, like nifedipine. All fractions of EH.Cr and CD.Cr except aqueous, pet-ether and chloroform fractions of FI.Cr displayed Ca++ antagonistic activity. FI.Cr, its ethyl acetate and aqueous fraction exhibited TEA-sensitive potassium channel activation. On baseline tension, test materials also produced phentolamine-sensitive vasospasm. CONCLUSION: E. hirta, F. indica and C. decidua possess antihypertensive activity in arsenic-induced hypertensive rats possibly mediated via endothelium-dependent vasorelaxation. In normotensive rats, E. hirta and C. decidua showed antihypertensive activities through endothelium-dependent and Ca++ antagonistic pathways, while F. indica exhibited potassium channel activation and Ca++ antagonistic like effects in its vasorelaxation. Additional weaker vasospastic effects were derived through α-adrenergic like pathways.

13.
J Biol Chem ; 297(4): 101125, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461094

RESUMO

Transient receptor potential canonical (TRPC) channels, as important membrane proteins regulating intracellular calcium (Ca2+i) signaling, are involved in a variety of physiological and pathological processes. Activation and regulation of TRPC are more dependent on membrane or intracellular signals. However, how extracellular signals regulate TRPC6 function remains to be further investigated. Here, we suggest that two distinct small molecules, M085 and GSK1702934A, directly activate TRPC6, both through a mechanism of stimulation of extracellular sites formed by the pore helix (PH) and transmembrane (TM) helix S6. In silico docking scanning of TRPC6 identified three extracellular sites that can bind small molecules, of which only mutations on residues of PH and S6 helix significantly reduced the apparent affinity of M085 and GSK1702934A and attenuated the maximal response of TRPC6 to these two chemicals by altering channel gating of TRPC6. Combing metadynamics, molecular dynamics simulations, and mutagenesis, we revealed that W679, E671, E672, and K675 in the PH and N701 and Y704 in the S6 helix constitute an orthosteric site for the recognition of these two agonists. The importance of this site was further confirmed by covalent modification of amino acid residing at the interface of the PH and S6 helix. Given that three structurally distinct agonists M085, GSK1702934A, and AM-0883, act at this site, as well as the occupancy of lipid molecules at this position found in other TRP subfamilies, it is suggested that the cavity formed by the PH and S6 has an important role in the regulation of TRP channel function by extracellular signals.


Assuntos
Sinalização do Cálcio , Ativação do Canal Iônico/efeitos dos fármacos , Simulação de Dinâmica Molecular , Canal de Cátion TRPC6/química , Canal de Cátion TRPC6/metabolismo , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Canal de Cátion TRPC6/genética
14.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33926963

RESUMO

Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Membrana/genética , Folhas de Planta/genética , Estômatos de Plantas/genética , Ácido Abscísico/metabolismo , Ânions/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/ultraestrutura , Brachypodium/genética , Brachypodium/ultraestrutura , Dióxido de Carbono/metabolismo , Microscopia Crioeletrônica , Transporte de Íons/genética , Proteínas de Membrana/ultraestrutura , Fosforilação/genética , Folhas de Planta/ultraestrutura , Estômatos de Plantas/ultraestrutura , Conformação Proteica , Transdução de Sinais/genética
15.
J Biol Chem ; 296: 100404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577799

RESUMO

Mice lacking connexin 30 (Cx30) display increased epithelial sodium channel (ENaC) activity in the distal nephron and develop salt-sensitive hypertension. This indicates a functional link between Cx30 and ENaC, which remains incompletely understood. Here, we explore the effect of Cx30 on ENaC function using the Xenopus laevis oocyte expression system. Coexpression of human Cx30 with human αßγENaC significantly reduced ENaC-mediated whole-cell currents. The size of the inhibitory effect on ENaC depended on the expression level of Cx30 and required Cx30 ion channel activity. ENaC inhibition by Cx30 was mainly due to reduced cell surface ENaC expression resulting from enhanced ENaC retrieval without discernible effects on proteolytic channel activation and single-channel properties. ENaC retrieval from the cell surface involves the interaction of the ubiquitin ligase Nedd4-2 with PPPxY-motifs in the C-termini of ENaC. Truncating the C- termini of ß- or γENaC significantly reduced the inhibitory effect of Cx30 on ENaC. In contrast, mutating the prolines belonging to the PPPxY-motif in γENaC or coexpressing a dominant-negative Xenopus Nedd4 (xNedd4-CS) did not significantly alter ENaC inhibition by Cx30. Importantly, the inhibitory effect of Cx30 on ENaC was significantly reduced by Pitstop-2, an inhibitor of clathrin-mediated endocytosis, or by mutating putative clathrin adaptor protein 2 (AP-2) recognition motifs (YxxФ) in the C termini of ß- or γ-ENaC. In conclusion, our findings suggest that Cx30 inhibits ENaC by promoting channel retrieval from the plasma membrane via clathrin-dependent endocytosis. Lack of this inhibition may contribute to increased ENaC activity and salt-sensitive hypertension in mice with Cx30 deficiency.


Assuntos
Clatrina/metabolismo , Conexina 30/farmacologia , Canais Epiteliais de Sódio/química , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Oócitos/fisiologia , Animais , Endocitose , Canais Epiteliais de Sódio/metabolismo , Humanos , Oócitos/citologia , Técnicas de Patch-Clamp/métodos , Transdução de Sinais , Xenopus laevis
16.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466526

RESUMO

The calcium-release-activated calcium (CRAC) channel, activated by the release of Ca2+ from the endoplasmic reticulum (ER), is critical for Ca2+ homeostasis and active signal transduction in a plethora of cell types. Spurred by the long-sought decryption of the molecular nature of the CRAC channel, considerable scientific effort has been devoted to gaining insights into functional and structural mechanisms underlying this signalling cascade. Key players in CRAC channel function are the Stromal interaction molecule 1 (STIM1) and Orai1. STIM1 proteins span through the membrane of the ER, are competent in sensing luminal Ca2+ concentration, and in turn, are responsible for relaying the signal of Ca2+ store-depletion to pore-forming Orai1 proteins in the plasma membrane. A direct interaction of STIM1 and Orai1 allows for the re-entry of Ca2+ from the extracellular space. Although much is already known about the structure, function, and interaction of STIM1 and Orai1, there is growing evidence that CRAC under physiological conditions is dependent on additional proteins to function properly. Several auxiliary proteins have been shown to regulate CRAC channel activity by means of direct interactions with STIM1 and/or Orai1, promoting or hindering Ca2+ influx in a mechanistically diverse manner. Various proteins have also been identified to exert a modulatory role on the CRAC signalling cascade although inherently lacking an affinity for both STIM1 and Orai1. Apart from ubiquitously expressed representatives, a subset of such regulatory mechanisms seems to allow for a cell-type-specific control of CRAC channel function, considering the rather restricted expression patterns of the specific proteins. Given the high functional and clinical relevance of both generic and cell-type-specific interacting networks, the following review shall provide a comprehensive summary of regulators of the multilayered CRAC channel signalling cascade. It also includes proteins expressed in a narrow spectrum of cells and tissues that are often disregarded in other reviews of similar topics.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Transdução de Sinais/fisiologia
17.
J Biol Chem ; 296: 100225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361157

RESUMO

Mechanotransduction is the process by which cells convert physical forces into electrochemical responses. On a molecular scale, these forces are detected by mechanically activated ion channels, which constitute the basis for hearing, touch, pain, cold, and heat sensation, among other physiological processes. Exciting high-resolution structural details of these channels are currently emerging that will eventually allow us to delineate the molecular determinants of gating and ion permeation. However, our structural-functional understanding across the family remains limited. Piezo1 is one of the largest and least understood of these channels, with various structurally identified features within its trimeric assembly. This study seeks to determine the modularity and function of Piezo1 channels by constructing deletion proteins guided by cryo EM structural knowledge. Our comprehensive functional study identified, for the first time, the minimal amino acid sequence of the full-length Piezo1 that can fold and function as the channel's pore domain between E2172 and the last residue E2547. While the addition of an anchor region has no effect on permeation properties. The Piezo1 pore domain is not pressure-sensitive and the appending of Piezo Repeat-A did not restore pressure-dependent gating, hence the sensing module must exist between residues 1 to 1952. Our efforts delineating the permeation and gating regions within this complex ion channel have implications in identifying small molecules that exclusively regulate the activity of the channel's pore module to influence mechanotransduction and downstream processes.


Assuntos
Ativação do Canal Iônico/genética , Canais Iônicos/química , Magnésio/química , Mecanotransdução Celular/genética , Potássio/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Transporte de Íons , Cinética , Magnésio/metabolismo , Camundongos , Modelos Moleculares , Mutação , Técnicas de Patch-Clamp , Potássio/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Sódio/química , Sódio/metabolismo
18.
Membranes (Basel) ; 10(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333945

RESUMO

Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.

19.
Cell Rep ; 33(13): 108570, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33378669

RESUMO

Calcium (Ca2+) is the primary stimulus for transmembrane protein 16 (TMEM16) Ca2+-activated chloride channels and phospholipid scramblases, which regulate important physiological processes ranging from smooth muscle contraction to blood coagulation and tumor progression. Binding of intracellular Ca2+ to two highly conserved orthosteric binding sites in transmembrane helices (TMs) 6-8 efficiently opens the permeation pathway formed by TMs 3-7. Recent structures of TMEM16K and TMEM16F scramblases revealed an additional Ca2+ binding site between TM2 and TM10, whose functional relevance remains unknown. Here, we report that Ca2+ binds with high affinity to the equivalent third Ca2+ site in TMEM16A to enhance channel activation. Our cadmium (Cd2+) metal bridging experiments reveal that the third Ca2+ site's conformational states can profoundly influence TMEM16A's opening. Our study thus confirms the existence of a third Ca2+ site in TMEM16A, defines its functional importance in channel gating, and provides insight into a long-range allosteric gating mechanism of TMEM16 channels and scramblases.


Assuntos
Anoctamina-1/fisiologia , Cálcio/metabolismo , Canais de Cloreto/fisiologia , Anoctamina-1/química , Sítios de Ligação , Cádmio/metabolismo , Membrana Celular/metabolismo , Eletrofisiologia/métodos , Células HEK293 , Humanos , Ativação do Canal Iônico , Transporte de Íons , Modelos Moleculares , Mutação , Proteínas de Transferência de Fosfolipídeos/fisiologia , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...