Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38950166

RESUMO

The relationship between the Programmed Death-Ligand 1 (PD-L1)/Programmed Death-1 (PD-1) pathway, lung inflammation, and clinical outcomes in acute respiratory distress syndrome (ARDS) is poorly understood. We sought to determine whether PD-L1/PD-1 in the lung or blood is associated with ARDS and associated severity. We measured soluble PD-L1 (sPD-L1) in plasma and lower respiratory tract samples (ARDS1 (n = 59) and ARDS2 (n = 78)) or plasma samples alone (ARDS3 (n = 149)) collected from subjects with ARDS and tested for associations with mortality using multiple regression. We used mass cytometry to measure PD-L1/PD-1 expression and intracellular cytokine staining in cells isolated from bronchoalveolar lavage fluid (BALF) (n = 18) and blood (n = 16) from critically-ill subjects with or without ARDS enrolled from a fourth cohort. Higher plasma levels of sPD-L1 were associated with mortality in ARDS1, ARDS2, and ARDS3. In contrast, higher levels of sPD-L1 in the lung were either not associated with mortality (ARDS2) or were associated with survival (ARDS1). Alveolar PD-1POS T cells had more intracellular cytokine staining compared with PD-1NEG T cells. Subjects without ARDS had a higher ratio of PD-L1POS alveolar macrophages to PD-1POS T cells compared with subjects with ARDS. We conclude that sPD-L1 may have divergent cellular sources and/or functions in the alveolar vs. blood compartments given distinct associations with mortality. Alveolar leukocyte subsets defined by PD-L1/PD-1 cell-surface expression have distinct cytokine secretion profiles, and the relative proportions of these subsets are associated with ARDS.

2.
Tissue Eng Part A ; 30(7-8): 299-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318841

RESUMO

Immune checkpoint signaling, such as programmed cell death protein-1 (PD-1), is a key target for immunotherapy due to its role in dampening immune responses. PD-1 signaling in T cells is regulated by complex physicochemical and mechanical cues. However, how these mechanical forces are integrated with biochemical responses remains poorly understood. Our previous work demonstrated that the use of an immobilizing polyethylene glycol (PEG) linker on synthetic microgels for the presentation of a chimeric form of PD-L1, SA-PD-L1, lead to local regulatory responses capable of abrogating allograft rejection in a model of cell-based transplantation. We herein provide evidence that enhanced immune regulating function can be obtained when presentation of SA-PD-L1 is achieved through a longer more flexible PEG chain. Presentation of SA-PD-L1 through a linker of high molecular weight, and thus longer length (10 kDa, 60 nm in length), led to enhance conversion of naive T cells into T regulatory cells (Tregs) in vitro. In addition, using a subcutaneous implant model and protein tethered through three different linker sizes (6, 30, and 60 nm) to the surface of PEG hydrogels, we demonstrated that longer linkers promoted PD-1 immunomodulatory role in vivo through three main functions: (1) augmenting immune cell recruitment at the transplant site; (2) promoting the accumulation of naive Tregs expressing migratory markers; and (3) dampening CD8+ cytolytic molecule production while augmenting expression of exhaustion phenotypes locally. Notably, accumulation of Treg cells at the implant site persisted for over 30 days postimplantation, an effect not observed when protein was presented with the shorter version of the linkers (6 and 30 nm). Collectively, these studies reveal a facile approach by which PD-L1 function can be modulated through external tuning of synthetic presenting linkers. Impact statement Recently, there has been a growing interest in immune checkpoint molecules as potential targets for tolerance induction, including programmed cell death protein-1 (PD-1). However, how the mechanics of ligand binding to PD-1 receptor affect downstream activation signaling pathways remains unresolved. By taking advantage of the effect of polyethylene glycol chain length on molecule kinetics in an aqueous solution, we herein show that PD-L1 function can be amplified by adjusting the length of the grafting linker. Our results uncover a potential facile mechanism that can be exploited to advance the role of immune checkpoint ligands, in particular PD-L1, in tolerance induction for immunosuppression-free cell-based therapies.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T Reguladores/metabolismo , Imunidade , Proteínas Reguladoras de Apoptose
3.
Biomark Res ; 12(1): 7, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229100

RESUMO

As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.

4.
Curr Med Chem ; 30(28): 3215-3237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35986535

RESUMO

Immune checkpoints are vital molecules and pathways of the immune system with defined roles of controlling immune responses from being destructive to the healthy cells in the body. They include inhibitory receptors and ligands, which check the recognition of most cancers by the immune system. This happens when proteins on the surface of T cells called immune checkpoint proteins identify partner proteins on the cancer cells and bind to them, sending brake signals to the T cells to evade immune attack. However, drugs called immune checkpoint inhibitors block checkpoint proteins from binding to their partner proteins, thereby inhibiting the brake signals from being sent to T cells. This eventually allows the T cells to destroy cancer cells and arbitrate robust tumor regression. Many such inhibitors have already been approved and are in various developmental stages. The well-illustrated inhibitory checkpoints include the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1 (PD-L1). Though many molecules blocking these checkpoints have shown promise in treating many malignancies, such treatment options have limited success in terms of the immune response in most patients. Against this backdrop, exploring new pathways and next-generation inhibitors becomes imperative for developing more responsive and effective immune checkpoint therapy. Owing to the complex biology and unexplored ambiguities in the mechanistic aspects of immune checkpoint pathways, analysis of the activity profile of new drugs is the subject of strenuous investigation. We herein report the recent progress in developing new inhibitory pathways and potential therapeutics and delineate the developments based on their merit. Further, the ensuing challenges towards developing efficacious checkpoint therapies and the impending opportunities are also discussed.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linfócitos T
5.
Biomark Res ; 10(1): 89, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476317

RESUMO

Toll-like receptors (TLRs) are a large family of proteins that are expressed in immune cells and various tumor cells. TLR7/8 are located in the intracellular endosomes, participate in tumor immune surveillance and play different roles in tumor growth. Activation of TLRs 7 and 8 triggers induction of a Th1 type innate immune response in the highly sophisticated process of innate immunity signaling with the recent research advances involving the small molecule activation of TLR 7 and 8. The wide range of expression and clinical significance of TLR7/TLR8 in different kinds of cancers have been extensively explored. TLR7/TLR8 can be used as novel diagnostic biomarkers, progression and prognostic indicators, and immunotherapeutic targets for various tumors. Although the mechanism of action of TLR7/8 in cancer immunotherapy is still incomplete, TLRs on T cells are involved in the regulation of T cell function and serve as co-stimulatory molecules and activate T cell immunity. TLR agonists can activate T cell-mediated antitumor responses with both innate and adaptive immune responses to improve tumor therapy. Recently, novel drugs of TLR7 or TLR8 agonists with different scaffolds have been developed. These agonists lead to the induction of certain cytokines and chemokines that can be applied to the treatment of some diseases and can be used as good adjutants for vaccines. Furthermore, TLR7/8 agonists as potential therapeutics for tumor-targeted immunotherapy have been developed. In this review, we summarize the recent advances in the development of immunotherapy strategies targeting TLR7/8 in patients with various cancers and chronic hepatitis B.

6.
J Hematol Oncol ; 15(1): 167, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384978

RESUMO

A novel recombinant SIRPα-Fc fusion protein, IMM01, was constructed and produced using an in-house developed CHO-K1 cell expression system, and the anti-tumor mechanism of IMM01 targeting the CD47-SIRPα pathway was explored. The phagocytosis and in vitro anti-tumor activity of IMM01 were evaluated by antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC) assays. In vivo mouse tumor model studies were used to explore therapeutic efficacy as well as the mechanism of action. An in vitro binding assay revealed that IMM01 has a strong binding affinity to CD47 with an EC50 of 0.4967 nM. IMM01 can induce strong ADCP and moderate ADCC, but not CDC. IMM01-induced strong phagocytosis against tumor cells was attributed to dual activities of blocking the "don't eat me" signal and activating the "eat me" signal, and IMM01 exhibits strong and robust in vivo anti-tumor activities either as monotherapy on hematological malignancies, or in combination therapy with PD-L1 monoclonal antibody (mAb), PD-1 mAb, and HER-2 mAb on solid tumors. Finally, IMM01 demonstrated a favorable safety profile with no human RBC binding activity or hemagglutination induction. IMM01 inhibits the growth of tumor cells by the following three possible mechanisms: (1) directly activating macrophages to phagocytize tumor cells; (2) activated macrophages degrade phagocytized tumor cells and present tumor antigens to T cells through MHC molecules to activate T cells; (3) activated macrophages can convert "cold tumors" into "hot tumors" and increase the infiltration of immune cells through chemotaxis by secreting some cytokines and chemokines.


Assuntos
Antígeno CD47 , Neoplasias , Fagocitose , Animais , Camundongos , Neoplasias/tratamento farmacológico , Transdução de Sinais , Proteínas Recombinantes de Fusão/farmacologia , Receptores Imunológicos
7.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080360

RESUMO

Background: Targeting the CD47/SIRPα signaling pathway represents a novel approach to enhance anti-tumor immunity. However, the crystal structure of the CD47/SIRPα has not been fully studied. This study aims to analyze the structure interface of the complex of CD47 and IMM01, a novel recombinant SIRPα-Fc fusion protein. Methods: IMM01-Fab/CD47 complex was crystalized, and diffraction images were collected. The complex structure was determined by molecular replacement using the program PHASER with the CD47-SIRPαv2 structure (PDB code 2JJT) as a search model. The model was manually built using the COOT program and refined using TLS parameters in REFMAC from the CCP4 program suite. Results: Crystallization and structure determination analysis of the interface of IMM01/CD47 structure demonstrated CD47 surface buried by IMM01. Comparison with the literature structure (PDB ID 2JJT) showed that the interactions of IMM01/CD47 structure are the same. All the hydrogen bonds that appear in the literature structure are also present in the IMM01/CD47 structure. These common hydrogen bonds are stable under different crystal packing styles, suggesting that these hydrogen bonds are important for protein binding. In the structure of human CD47 in complex with human SIRPα, except SER66, the amino acids that form hydrogen bonds are all conserved. Furthermore, comparing with the structure of PDB ID 2JJT, the salt bridge interaction from IMM01/CD47 structure are very similar, except the salt bridge bond between LYS53 in IMM01 and GLU106 in CD47, which only occurs between the B and D chains. However, as the side chain conformation of LYS53 in chain A is slightly different, the salt bridge bond is absent between the A and C chains. At this site between chain A and chain C, there are a salt bridge bond between LYS53 (A) and GLU104 (C) and a salt bridge bond between HIS56 (A) and GLU106 (C) instead. According to the sequence alignment results of SIRPα, SIRPß and SIRPγ in the literature of PDB ID 2JJT, except ASP100, the amino acids that form common salt bridge bonds are all conserved. Conclusion: Our data demonstrated crystal structure of the IMM01/CD47 complex and provides a structural basis for the structural binding interface and future clinical applications.


Assuntos
Aminoácidos , Antígenos de Diferenciação , Antígeno CD47 , Receptores Imunológicos , Aminoácidos/química , Antígenos de Diferenciação/química , Antígeno CD47/química , Humanos , Fagocitose , Ligação Proteica , Receptores Imunológicos/química , Proteínas Recombinantes de Fusão/química
8.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012478

RESUMO

E4F1 is essential for early embryonic mouse development and for controlling the balance between proliferation and survival of actively dividing cells. We previously reported that E4F1 is essential for the survival of murine p53-deficient cancer cells by controlling the expression of genes involved in mitochondria functions and metabolism, and in cell-cycle checkpoints, including CHEK1, a major component of the DNA damage and replication stress responses. Here, combining ChIP-Seq and RNA-Seq approaches, we identified the transcriptional program directly controlled by E4F1 in Human Triple-Negative Breast Cancer cells (TNBC). E4F1 binds and regulates a limited list of direct target genes (57 genes) in these cells, including the human CHEK1 gene and, surprisingly, also two other genes encoding post-transcriptional regulators of the ATM/ATR-CHK1 axis, namely, the TTT complex component TTI2 and the phosphatase PPP5C, that are essential for the folding and stability, and the signaling of ATM/ATR kinases, respectively. Importantly, E4F1 also binds the promoter of these genes in vivo in Primary Derived Xenograft (PDX) of human TNBC. Consequently, the protein levels and signaling of CHK1 but also of ATM/ATR kinases are strongly downregulated in E4F1-depleted TNBC cells resulting in a deficiency of the DNA damage and replicative stress response in these cells. The E4F1-depleted cells fail to arrest into S-phase upon treatment with the replication-stalling agent Gemcitabine, and are highly sensitized to this drug, as well as to other DNA-damaging agents, such as Cisplatin. Altogether, our data indicate that in breast cancer cells the ATM/ATR-CHK1 signaling pathway and DNA damage-stress response are tightly controlled at the transcriptional and post-transcriptional level by E4F1.


Assuntos
Proteínas Repressoras , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Ubiquitina-Proteína Ligases , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L14-L26, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608267

RESUMO

Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both "cytokine storm" and "immune suppression." However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited. We sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. We enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive (n = 204) or -negative (n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-10, and IL-17A were not significantly different between the two groups. In SARS-CoV-2-positive patients, higher plasma levels of sPD-L1 and TNF-α were associated with fewer ventilator-free days (VFDs) and higher mortality rates (Bonferroni P value < 0.05). Lymphocyte chemoattractants such as CCL17 were associated with more severe respiratory failure in SARS-CoV-2-positive patients, but less severe respiratory failure in SARS-CoV-2-negative patients (P value for interaction < 0.01). Circulating T cells and monocytes from SARS-CoV-2-positive subjects were hyporesponsive to in vitro stimulation compared with SARS-CoV-2-negative subjects. Critically ill SARS-CoV-2-positive patients exhibit an immune signature of high interferon-induced lymphocyte chemoattractants (e.g., CXCL10 and CCL17) and immune cell hyporesponsiveness when directly compared with SARS-CoV-2-negative patients. This suggests a specific role for T-cell migration coupled with an immune-checkpoint regulatory response in COVID-19-related critical illness.


Assuntos
COVID-19 , Insuficiência Respiratória , Antígeno B7-H1 , Quimiocinas , Estado Terminal , Humanos , Estudos Prospectivos , SARS-CoV-2 , Fator de Necrose Tumoral alfa
10.
Cell Mol Immunol ; 18(6): 1503-1511, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005952

RESUMO

Modulation of T-cell responses has played a key role in treating cancers and autoimmune diseases. Therefore, understanding how different receptors on T cells impact functional outcomes is crucial. The influence of B7-H7 (HHLA2) and CD28H (TMIGD2) on T-cell activation remains controversial. Here we examined global transcriptomic changes in human T cells induced by B7-H7. Stimulation through TCR with OKT3 and B7-H7 resulted in modest fold changes in the expression of select genes; however, these fold changes were significantly lower than those induced by OKT3 and B7-1 stimulation. The transcriptional changes induced by OKT3 and B7-H7 were insufficient to provide functional stimulation as measured by evaluating T-cell proliferation and cytokine production. Interestingly, B7-H7 was coinhibitory when simultaneously combined with TCR and CD28 stimulation. This inhibitory activity was comparable to that observed with PD-L1. Finally, in physiological assays using T cells and APCs, blockade of B7-H7 enhanced T-cell activation and proliferation, demonstrating that this ligand acts as a break signal. Our work defines that the transcriptomic changes induced by B7-H7 are insufficient to support full costimulation with TCR signaling and, instead, B7-H7 inhibits T-cell activation and proliferation in the presence of TCR and CD28 signaling.


Assuntos
Antígenos CD28/metabolismo , Imunoglobulinas/metabolismo , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Teste de Cultura Mista de Linfócitos , Modelos Biológicos , Ligação Proteica
11.
Diagnostics (Basel) ; 10(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751195

RESUMO

Recent data have suggested that PD-1 and PD-L1 are involved in osteosarcoma (OS) pathogenesis; however, their contributions are not well-established. Here, the PD-1/PD-L1 expression was evaluated in (OS) cases. Preoperative needle biopsy specimens were obtained from 16 patients with OS. Immunostaining for CD4, CD8, PD-1, and PD-L1 was performed on pathological specimens. Clinical parameters, including age, tumor size, preoperative alkaline phosphatase (ALP) level, standardized uptake value (SUV)-max level, and survival rate, were compared between PD-1/PD-L1-positive and -negative groups. CD4-, CD8-, PD-1-, and PD-L1-positive rates among all specimens were 75%, 75%, 18.7%, and 62.5%, respectively. The rates of co-expression of CD4 and CD8 with PD-L1 were 56.2% and 50%, respectively. Tumors were significantly larger in PD-L1-negative cases than in PD-L1-positive cases. Age, size and ALP and SUV-max levels did not differ significantly between PD-1/PD-L1-positive and -negative cases. The 3-year survival rates did not differ significantly between PD-1-positive and -negative cases or between PD-L1-positive and -negative cases. However, the occurrence of cancer-related events, including recurrence, metastasis, and death was associated with the PD-1-negative and PD-L1-positive status. The PD-1/PD-L1 checkpoint is likely involved in the immune microenvironment in OS and may be involved in the occurrence of cancer-related events.

12.
Cancer Biother Radiopharm ; 35(3): 190-198, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31928422

RESUMO

Background: Natural killer (NK) cells are essential to innate immunity and participate in cancer immune surveillance. Heterophilic interactions between carcinoembryonic antigen (CEA) on tumor cells and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) on NK cells inhibit NK cell cytotoxicity against tumor cells. NEO-201 is a humanized IgG1 monoclonal antibody that recognizes members of CEACAM family, expressed specifically on a variety of human carcinoma cell lines and tumor tissues. This investigation was designed to determine whether the binding of NEO-201 with CEACAM5 on tumor cells can block the CEACAM5/CEACAM1 interaction to restore antitumor cytotoxicity of NK cells. Materials and Methods: In vitro functional assays, using various human tumor cell lines as target cells and NK-92 cells as effectors, were conducted to assess the ability of NEO-201 to block the interaction between CEACAM5 on tumor cells and CEACAM1 on NK cells to enhance the in vitro killing of tumor cells by NK-92. NK-92 cells were used as a model of direct NK killing of tumor cells because they lack antibody-dependent cellular cytotoxicity activity. Results: Expression profiling revealed that various human carcinoma cell lines expressed different levels of CEACAM5+ and NEO-201+ cells. Addition of NEO-201 significantly enhanced NK-92 cell cytotoxicity against highly CEACAM5+/NEO-201+ expressing tumor cells, suggesting that its activity is correlated with the level of CEACAM5+/NEO-201+ expression. Conclusions: These findings demonstrate that NEO-201 can block the interaction between CEACAM5 on tumor cells and CEACAM1 on NK cells to reverse CEACAM1-dependent inhibition of NK cytotoxicity.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno Carcinoembrionário/genética , Carcinoma/tratamento farmacológico , Células Matadoras Naturais/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Carcinoma/genética , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/genética , Humanos , Camundongos
13.
J Drug Target ; 27(1): 67-74, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30183478

RESUMO

Recent advances in immunotherapy are raising hope to treat clear cell renal cell carcinoma (ccRCC) with PD-L1 inhibitors, but only a small portion of patients are PD-L1 positive. The heterogeneous expression pattern of PD-L1 in patient population suggests that PD-L1 expression is under the control of diverse regulatory mechanisms. Although recent studies have identified numerous novel PD-L1 regulators, reports on microRNAs which modulate PD-L1 expression are much scarce. In this study, we confirmed that PD-L1 expression was up-regulated in ccRCC compared to paired normal tissues. Using miRDB and miRTarBase, 11 microRNAs were predicted to target PD-L1. After measuring the microRNA panel with TaqMan assays, we found that microRNA-497-5p down-regulation was associated with PD-L1 up-regulation. In TCGA-KIRC dataset, microRNA-497-5p down-regulation was also associated with PD-L1 up-regulation as well as shorter survival. We further validated that PD-L1 was a direct target of microRNA-497-5p in two RCC cell lines. In addition, microRNA-497-5p inhibited cell proliferation, clone formation and migration, while promoted apoptosis in in-vitro assays. Our study reveals a novel regulatory mechanism of PD-L1 expression and the potential of miR-497-5p as therapeutic target and biomarker deserves further investigation.


Assuntos
Antígeno B7-H1/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , MicroRNAs/genética , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Taxa de Sobrevida , Regulação para Cima
14.
Biochem Biophys Res Commun ; 509(2): 379-383, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30594395

RESUMO

RecQL4 has been shown to be involved in DNA replication and repair, but its role in DNA damage checkpoint pathway has not been reported. Here, we show that RecQL4 plays an important role in the activation of ataxia telangiectasia mutated (ATM)-dependent checkpoint pathway in human cells. Cells depleted with RecQL4 or Rothmund-Thomson syndrome cells showed significant impairment in the activation of ATM and the downstream effector proteins such as checkpoint kinase 2 and p53 after DNA damage. This defect was recovered with the expression of wild type RecQL4 but not any mutant RecQL4 proteins with defective helicase activities. While RecQL4 failed to show any direct interaction with ATM, it stably interacted with the Mre11-Rad50-Nbs1 complex that is essential for the activation of ATM and was localized on the DNA damage foci. Thus, our results suggest that the helicase activity of RecQL4 plays an important role in the activation of ATM-dependent checkpoint pathway against DNA double strand breaks in human cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA , DNA/genética , RecQ Helicases/genética , Síndrome de Rothmund-Thomson/genética , Hidrolases Anidrido Ácido , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Teste de Complementação Genética , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , RecQ Helicases/deficiência , Síndrome de Rothmund-Thomson/metabolismo , Síndrome de Rothmund-Thomson/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Oncotarget ; 9(45): 27797-27808, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963238

RESUMO

Blockade of programmed cell death protein 1 (PD-1) immune checkpoint receptor signaling is an established standard treatment for many types of cancer and indications are expanding. Successful clinical trials using monoclonal antibodies targeting PD-1 signaling have boosted preclinical research, encouraging development of novel therapeutics. Standardized assays to evaluate their bioactivity, however, remain restricted. The robust bioassays available all lack antigen-specificity. Here, we developed an antigen-specific, short-term and high-throughput T cell assay with versatile readout possibilities. A genetically modified T cell receptor (TCR)-deficient T cell line was stably transduced with PD-1. Transfection with messenger RNA encoding a TCR of interest and subsequent overnight stimulation with antigen-presenting cells, results in eGFP-positive and granzyme B-producing T cells for single cell or bulk analysis. Control antigen-presenting cells induced reproducible high antigen-specific eGFP and granzyme B expression. Upon PD-1 interaction, ligand-positive antigen-presenting immune or tumor cells elicited significantly lower eGFP and granzyme B expression, which could be restored by anti-PD-(L)1 blocking antibodies. This convenient cell-based assay shows a valuable tool for translational and clinical research on antigen-specific checkpoint-targeted therapy approaches.

16.
Front Oncol ; 8: 71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623256

RESUMO

Angiosarcoma is a vascular malignancy associated with a poor prognosis and chemotherapy resistance. The tumor immune microenvironment of angiosarcoma has not been characterized. We investigated the expression of programmed death-ligand 1 (PD-L1) and programmed death 1 (PD-1) in angiosarcoma and correlated these findings with vascular endothelial growth factor (VEGF)-related gene expression and survival. Using archived formalin-fixed paraffin-embedded tissues of primary and metastatic angiosarcoma specimens, we characterized the immunohistochemical (IHC) expression of PD-L1 and PD-1. In addition, we extracted RNA from each tumor and quantified the expression of VEGF-related genes, and then tested if these genes were associated with PD-L1 and PD-1 expression and clinical outcomes. Retrospective review identified 27 angiosarcoma specimens collected between 1994 and 2012. IHC expression of tumor PD-L1, tumor-infiltrating immune cell PD-L1, and tumor-infiltrating immune cell PD-1 expression was identified in 5 (19%), 9 (33%), and 1 (4%) specimens, respectively. Expression of PD-L1 and PD-1 was not associated with VEGF-related gene expression or survival. PD-L1 tumor and tumor-infiltrating immune cells expression was identified in a large proportion of patients. Though neither was associated with VEGF-related gene expression or prognosis, targeting PD-1/PD-L1 may be of benefit for a significant proportion of angiosarcomas that do not respond to surgery, chemotherapy, or radiation.

17.
Invest New Drugs ; 36(4): 571-580, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29504068

RESUMO

We investigated the anti-tumour effects and the underlying molecular mechanisms of a new oral histone deacetylase inhibitor (HDACi), chidamide, in NK/T cell lymphoma (NKTCL), a rare and highly aggressive non-Hodgkin lymphoma with poor outcomes. SNT-8 and SNK-10 NKTCL cell lines were exposed to different concentrations of chidamide for the indicated time. The treated cells were analysed for cell proliferation, cell cycle progression, and cell apoptosis. Proteins in the AKT/mTOR and MAPK signalling pathways and the DNA damage response (DDR) cell cycle checkpoint pathway were measured by Western blotting. Chidamide inhibited cell proliferation in a dose- and time-dependent manner, arrested cell cycle progression at the G0/G1 phase, and induced apoptosis in the NKTCL cell lines. In addition, we found that chidamide suppressed the phosphorylation levels of proteins in the AKT/mTOR and MAPK signalling pathways and activated the DDR cell cycle checkpoint pathway, that is, the ATM-Chk2-p53-p21 pathway. Expression of EBV genes was also assessed by Real-Time PCR. Chidamide induced EBV lytic-phase gene expression in EBV-positive NKTCL. Our results provide evidence that chidamide shows antitumour effects by inhibiting the AKT/mTOR and MAPK signalling pathways and activating the ATM-Chk2-p53-p21 signalling pathway in vitro.


Assuntos
Aminopiridinas/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Linfoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fase G1/efeitos dos fármacos , Humanos , Células Matadoras Naturais/metabolismo , Linfoma/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
18.
Oncoimmunology ; 7(2): e1392427, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308323

RESUMO

The immune environment of primary tumor is associated with the clinical response and benefit of immunotherapy. This study aims to investigate the intratumoral immune profile and its clinical relevance in advanced head and neck squamous cell carcinoma (HNSCC). Gene expression profiles of 401 HNSCCs at stage III-IVB from two cohorts (The Cancer Genome Atlas, TCGA, n = 203; the Leipzig Head and Neck Group, LHNG, n = 198) were involved in this analysis. Based on the global immune-related genes, four gene expression subtypes (C1-4) were identified in HNSCCs. Overall, subtypes C2 and C3 showed upregulation of immune profiles and increased tumor lymphocyte infiltration, exhibiting an enhanced immune microenvironment (EIME). However, the two EIME subtypes revealed differences in immune markers and clinical features. Subtype C2 showed higher expression of macrophage signature, whereas subtype C3 was more associated with B cell infiltration. T cell and NK cell infiltration was not different between C2 and C3 subtypes. The subtype C2 tumors were characterized by inflammation compared with subtype C3. Although the checkpoint receptors PD1 and CTLA4 expressed equally between the EIME subtypes, their ligands (PD-L1/PD-L2, CD86/CD80) were significantly upregulated in subtype C2 compared with C3. HPV-positive tumors were predominantly enriched in subtype C3 but not in C2. Furthermore, patients in subtype C2 had a worse outcome than those in C3. In summary, two immune-enhanced subtypes with different immune characteristics and clinical features were identified in advanced HNSCC. The different immune microenvironments among HNSCC subgroups may provide new insights into the strategy of immunotherapy.

19.
Curr Drug Targets ; 18(3): 315-331, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-25981611

RESUMO

Intrinsic immune responses to acute leukemia are inhibited by a variety of mechanisms, such as aberrant antigen expression by leukemia cells, secretion of immunosuppressive cytokines and expression of inhibitory enzymes in the tumor microenvironment, expansion of immunoregulatory cells, and activation of immune checkpoint pathways, all leading to T cell dysfunction and/or exhaustion. Leukemic cells, similar to other tumor cells, hijack these inhibitory pathways to evade immune recognition and destruction by cytotoxic T lymphocytes. Thus, blockade of immune checkpoints has emerged as a highly promising approach to augment innate anti-tumor immunity in order to treat malignancies. Most evidence for the clinical efficacy of this immunotherapeutic strategy has been seen in patients with metastatic melanoma, where anti-CTLA-4 and anti-PD-1 antibodies have recently revolutionized treatment of this lethal disease with otherwise limited treatment options. To meet the high demand for new treatment strategies in acute leukemia, clinical testing of these promising therapies is commencing. Herein, we review the biology of multiple inhibitory checkpoints (including CTLA-4, PD-1, TIM-3, LAG-3, BTLA, and CD200R) and their contribution to immune evasion by acute leukemias. In addition, we discuss the current state of preclinical and clinical studies of immune checkpoint inhibition in acute leukemia, which seek to harness the body's own immune system to fight leukemic cells.


Assuntos
Anticorpos/uso terapêutico , Antígenos de Diferenciação de Linfócitos T/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Anticorpos/farmacologia , Ensaios Clínicos como Assunto , Humanos , Imunomodulação , Imunoterapia , Leucemia Mieloide Aguda/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Evasão Tumoral/efeitos dos fármacos
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-661818

RESUMO

A damage is a general event in the life of cells and may lead to mutation,cancer,and cell/organ death. DNA damage occurring in different phases of cell cycle can activate different damage checkpoint pathways to halt the progress of cell cycle in order to provide time for DNA damage repair. If DNA damage cannot be repaired,cellular apoptosis may be induced. Therefore,DNA damage checkpoint is of great significance for cell survival after DNA damage. This article summarizes recent research on DNA damage responses, including DNA damage checkpoint, DNA damage repair, transcriptional response, and cell apoptosis. We focus on how the DNA damage checkpoint pathway is activated after DNA damage,as well as the functional mechanism of the DNA damage checkpoint pathway. The review aims to help readers understand the great significance of DNA damage checkpoint pathway, providing a theoretical basis for its application in radiotherapy and chemotherapy for cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...