Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Gels ; 10(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38920906

RESUMO

In the field of stone conservation, the removal of iron stains is one of the most challenging issues due to the stability and low solubility of the ferrous species. In the present paper, three different chitosan-based hydrogels added with acetic, oxalic or citric acids are applied on different lithotypes, i.e., granite, travertine and marble, widely diffused in monumental heritages, and artificially stained by deposition of a rust dispersion. The reducing power of carboxylic acids is combined with the good chelating properties of chitosan to effectively remove rust from stone surfaces. As evidenced by colorimetry on three samples of each lithotype and confirmed by 1H-NMR relaxometry and SEM/EDS analyses, the chitosan-oxalic acid hydrogel shows the best performance and a single application of 24 h is enough to get a good restoration of the stone original features. Lastly, the chitosan-oxalic acid hydrogel performs well when a rusted iron grid is placed directly on the lithic surfaces to simulate a more realistic pollution. Current work in progress is devoted to finding better formulations for marble, which is the most challenging to clean or, with a different approach, to developing protective agents to prevent rust deposition.

2.
Environ Sci Technol ; 58(27): 11970-11987, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38913808

RESUMO

Enhanced rock weathering (EW) is an emerging atmospheric carbon dioxide removal (CDR) strategy being scaled up by the commercial sector. Here, we combine multiomics analyses of belowground microbiomes, laboratory-based dissolution studies, and incubation investigations of soils from field EW trials to build the case for manipulating iron chelators in soil to increase EW efficiency and lower costs. Microbial siderophores are high-affinity, highly selective iron (Fe) chelators that enhance the uptake of Fe from soil minerals into cells. Applying RNA-seq metatranscriptomics and shotgun metagenomics to soils and basalt grains from EW field trials revealed that microbial communities on basalt grains significantly upregulate siderophore biosynthesis gene expression relative to microbiomes of the surrounding soil. Separate in vitro laboratory incubation studies showed that micromolar solutions of siderophores and high-affinity synthetic chelator (ethylenediamine-N,N'-bis-2-hydroxyphenylacetic acid, EDDHA) accelerate EW to increase CDR rates. Building on these findings, we develop a potential biotechnology pathway for accelerating EW using the synthetic Fe-chelator EDDHA that is commonly used in agronomy to alleviate the Fe deficiency in high pH soils. Incubation of EW field trial soils with potassium-EDDHA solutions increased potential CDR rates by up to 2.5-fold by promoting the abiotic dissolution of basalt and upregulating microbial siderophore production to further accelerate weathering reactions. Moreover, EDDHA may alleviate potential Fe limitation of crops due to rising soil pH with EW over time. Initial cost-benefit analysis suggests potassium-EDDHA could lower EW-CDR costs by up to U.S. $77 t CO2 ha-1 to improve EW's competitiveness relative to other CDR strategies.


Assuntos
Dióxido de Carbono , Solo , Solo/química , Quelantes de Ferro , Ferro/metabolismo , Sideróforos , Microbiologia do Solo
3.
J Environ Manage ; 363: 121350, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850901

RESUMO

Conventional methods of metal recovery involving solvents have raised environmental concerns. To address these concerns and promote sustainable resource recovery, we explored the use of deep eutectic solvents (DES) and chelating agents (CA) as more environmentally friendly alternatives. Goethite and blast oxide slag dust (BOS-D) from heap piles at their respective sites and characterised via ICP-MS. The greatest extraction of critical metals was from goethite, removing 38% of all metals compared to 21% from the blast oxide slag. Among the tested CA, nitrilotriacetic acid (NTA) was the most effective, while for DES, choline chloride ethylene glycol (ChCl-EG) demonstrated superior performance in extracting metals from both blast oxide slag dust and goethite. The study further highlighted the selectivity for transition metals and metalloids was influenced by the carboxyl groups of DES. Alkaline metals and rare earth lanthanides extractions were favoured with DES due to improved mass transfer and increased denticity, respectively. In comparison to ethylenediaminetetraacetic acid (EDTA), typically used for metal extraction, CA and DES showed comparable extraction efficiency for Fe, Cu, Pb, Li, Al, Mn, and Ni. Using these greener chelators and solvents for metal extraction show significant promise in enhancing the sustainability of solvometallurgy. Additional conditions e.g., temperature and agitation combined with a cascading leaching process could further enhance metal extraction potential.


Assuntos
Quelantes , Ácido Edético , Metais , Quelantes/química , Ácido Edético/química , Metais/química , Solventes Eutéticos Profundos/química , Solventes/química
4.
Water Res ; 257: 121649, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718655

RESUMO

In this study, the distribution and toxicity of nanoscale zero valent iron (nZVI) and nZVIs coated with citric acid and sodium tripolyphosphate (CA-nZVI and STPP-nZVI) in mice were investigated. nZVIs were primarily found in the livers and spleens, followed by the lungs, hearts, and kidneys. Histologic analysis revealed no significant histopathologic abnormalities or lesions in all organs except the liver at 14th d gavage. nZVIs did not have a noticeable impact on the body weight of the mice or the weight of their organs. Compared with the control group, there were no significant changes in hematology indexes in the nZVIs groups. However, the nZVIs groups exhibited varying levels of elevation in alanine aminotransferase, aspartate aminotransferase, and creatinine, suggesting liver and kidney inflammation in mice. The up-regulation of Nuclear Factor erythroid 2-Related Factor 2 and Heme oxygenase 1 in the nZVIs groups may be a response to nZVIs-induced oxidative stress. Immunohistochemical analysis confirmed the inflammatory response induced by the three nZVI groups. Chelating agents did not have a significant impact on the distribution or toxicity of nZVIs in mice. This study contributes to a comprehensive and detailed insight into nZVI toxicity in the environmental field.


Assuntos
Ferro , Animais , Camundongos , Ferro/química , Distribuição Tecidual , Fígado/efeitos dos fármacos , Quelantes/química , Rim/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Masculino , Heme Oxigenase-1/metabolismo , Baço/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo
5.
Heliyon ; 10(10): e31424, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818153

RESUMO

Greenly synthesized nanoparticles have garnered attention due to their low environmental footprint, but impurities limit their applications. A novel semi-organic method for synthesizing silver nanoparticles (AgNPs) using bio-based chelating fuels (Beta vulgaris subsp., Spinacia oleracea, and Ipomoea batatas) reduces the undesirable impurities. The study also showcases the impact of bio-based chelating fuel on various characteristics of AgNPs in comparison to synthetic chelating fuel. The antimicrobial efficacy of the synthesized AgNPs in conjunction with honey was also assessed against E. coli. The XRD analysis showed cubic structure of AgNPs. The FESEM and TEM analysis showed that the well-connected spherical-shaped AgNPs (∼3-120 nm diameter) while EDS confirmed the presence of Ag in all samples. The TEM analysis also revealed layers of carbonates in AgNPs synthesized using bio-based chelating fuels. XPS investigation confirmed the absence of any prominent impurities in prepared samples and AgNPs have not experienced oxidation on their surface. However, notable surface charging effects due to the uneven conductivity of the particles were observed. The broth dilution method showed that all mixtures containing AgNPs in combination with honey exhibited a significant bacterial growth reduction over a period of 120 h. The highest growth reduction of ∼75 % is obtained for the mixture having AgNPs (Ipomoea batatas) while the least growth reduction of ∼51 % is obtained for the mixture having AgNPs (Beta vulgaris subsp.). The findings affirm that AgNPs can be successfully synthesized using bio-based chelating fuels with negligible ecological consequences and devoid of contaminants. Moreover, the synthesized AgNPs can be employed in conjunction with honey for antibacterial purposes.

6.
Foods ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731755

RESUMO

Protein-protein and protein-mineral interactions can result in defects, such as sedimentation and age gelation, during the storage of high-protein beverages. It is well known that age gelation can be delayed by adding cyclic polyphosphates such as sodium hexametaphosphate (SHMP). This study aims to assess the influence of different phosphate chain lengths of SHMP on the physicochemical properties of high-protein dispersions. The effect of adding different SHMP concentrations at 0%, 0.15%, and 0.25% (w/w) before and after heating of 6%, 8%, and 10% (w/w) milk protein concentrate dispersions was studied. The phosphate chain lengths of SHMPs used in this study were 16.47, 13.31, and 9.88, and they were classified as long-, medium-, and short-chain SHMPs, respectively. Apparent viscosity, particle size, heat coagulation time (HCT), color, and turbidity were evaluated. It was observed that the addition of SHMP (0.15% and 0.25%) increased the apparent viscosity of MPC dispersions. However, the chain length and the concentration of the added SHMP had no significant (p > 0.05) effect on the apparent viscosity after heating the dispersions. The HCT of a dispersion containing 6%, 8%, and 10% protein with no SHMP added was 15.28, 15.61, and 11.35 min, respectively. The addition of SHMP at both levels (0.15% and 0.25%) significantly increased the HCT. Protein dispersions (6%, 8%, and 10%) containing 0.25% short-chain SHMP had the highest HCT at 19.29, 19.61, and 16.09 min, respectively. Therefore, the chain length and concentration of added SHMP significantly affected the HCT of unheated protein dispersion (p < 0.05).

7.
Foods ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540843

RESUMO

Polysaccharides are functional foods or drugs that can be used to alleviate heavy metal poisoning by cadmium, lead, mercury, and arsenic. Industries generate substantial quantities of toxic heavy metal wastes, such as wastewater discharges, paints, electronic waste, batteries, pigments, and plastics, into the environment that pose a risk to human health. Therefore, it is imperative to eliminate accumulated heavy metal ions from the body and the environment. Heavy metal toxicity can lead to decreased energy levels and impair the functioning of vital organs, such as the brain, lungs, kidneys, liver, and blood. Prolonged exposure can result in progressive physical, muscular, and neurological degeneration that resembles conditions such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and muscular dystrophy. Polysaccharides operate through mechanisms such as chelation, antioxidant defense, immunomodulation, and tissue repair. Polysaccharides involved in heavy metal removal include methionine and cysteine, together with N-acetylcysteine, an acetylated form of cysteine, S-adenosylmethionine, a metabolite of methionine, α-lipoic acid, and the tripeptide glutathione (GSH). These compounds effectively bind with harmful heavy metals to create a stable complex and defend biological targets from metal ions, thus decreasing their harmful effects and causing them to be excreted from the body. This review also highlights the importance of polysaccharides' ability to mitigate oxidative stress, enhance immune responses, and support tissue repair processes. Polysaccharides are ubiquitous in nature and take part in diverse processes, making them potential natural therapies for heavy metal-related diseases. This review discusses the effectiveness of natural polysaccharides and the mechanisms that allow them to bind with heavy metals to alleviate their effects from the body and the environment. Polysaccharides have inherent features that enable them to function as pharmacological agents and regulate the immune response.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38320436

RESUMO

This study investigated the purification of bromelain obtained from pineapple fruit using a new adsorbent for immobilized metal ion affinity chromatography (IMAC), with chlorophyll obtained from plant leaves as a chelating agent. The purification of bromelain was evaluated in batches from the crude extract of pineapple pulp (EXT), and the extract precipitated with 50 % ammonium sulfate (EXT.PR), the imidazole buffer (200 mM, pH 7.2) being analyzed and sodium acetate buffer, pH 5.0 + 1.0 NaCl as elution solutions. All methods tested could separate forms of bromelain with molecular weights between ±21 to 25 kDa. Although the technique using EXT.PR stood out in terms of purity, presenting a purification factor of around 3.09 ± 0.31 for elution with imidazole and 4.23 ± 0.12 for acetate buffer solution. In contrast, the EXT methods obtained values between 2.44 ± 0.23 and 3.21 ± 0.74 for elution with imidazole and acetate buffer, respectively, for purification from EXT.PR has lower yield values (around 5 %) than EXT (around 15 %). The number of steps tends to reduce yield and increase process costs, so the purification process in a monolithic bed coupled to the chromatographic system using the crude extract was evaluated. The final product obtained had a purification factor of 6, with a specific enzymatic activity of 59.61 ± 0.00 U·mg-1 and a yield of around 39 %, with only one band observed in the SDS-PAGE electrophoresis analysis, indicating that the matrix produced can separate specific proteins from the total fraction in the raw material. The IMAC matrix immobilized with chlorophyll proved promising and viable for application in protease purification processes.


Assuntos
Ananas , Bromelaínas , Acetatos , Ananas/química , Bromelaínas/isolamento & purificação , Cromatografia de Afinidade/métodos , Imidazóis , Extratos Vegetais/química
9.
CNS Neurosci Ther ; 30(2): e14607, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334258

RESUMO

INTRODUCTION: Several studies have reported iron accumulation in the basal ganglia to be associated with the development of Parkinson's Disease (PD). Recently, a few trials have examined the efficacy of using the iron-chelating agent Deferiprone (DFP) for patients with PD. We conducted this meta-analysis to summarize and synthesize evidence from published randomized controlled trials about the efficacy of DFP for PD patients. METHODS: A comprehensive literature search of four electronic databases was performed, spanning until February 2023. Relevant RCTs were selected, and their data were extracted and analyzed using the RevMan software. The primary outcome was the change in the Unified Parkinson's Disease Rating Scale (UPDRS-III). RESULTS: Three RCTs with 431 patients were included in this analysis. DFP did not significantly improve UPDRS-III score compared to placebo (Standardized mean difference -0.06, 95% CI [-0.69, 0.58], low certainty evidence). However, it significantly reduced iron accumulation in the substantia nigra, putamen, and caudate as measured by T2*-weighted MRI (with high certainty evidence). CONCLUSION: Current evidence does not support the use of DFP in PD patients. Future disease-modification trials with better population selection, adjustment for concomitant medications, and long-term follow up are recommended.


Assuntos
Doença de Parkinson , Humanos , Deferiprona/uso terapêutico , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Quelantes de Ferro/uso terapêutico , Ferro , Substância Negra
10.
Small ; 20(26): e2309965, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247206

RESUMO

As the feature size of integrated circuits continues to decrease, ruthenium (Ru) has been suggested as the successor to traditional Ta/TaN bilayers for barrier layer materials due to its unique properties. This research delves into the effects of ammonium nitrilotriacetate (NTA(NH4)3) on the chemical mechanical polishing (CMP) performance of Ru in H2O2-based slurry. The removal rate (RR) of Ru surged from 47 to 890 Å min-1, marking an increase of about 17 times. The essence of this mechanism lies in the triple synergistic effects of NTA(NH4)3 in promoting ruthenium (Ru) removal: 1) The interaction between NH 4 + ${\mathrm{NH}}_{\mathrm{4}}^{\mathrm{+}}$ from NTA(NH4)3 and SiO2 abrasives; 2) The chelating action of [(NH4)N(CH2COO)3]2- from NTA(NH4)3 on Ru and its oxides; 3) The ammoniation and chelation of Ru and its oxides by NH 4 + ${\mathrm{NH}}_{\mathrm{4}}^{\mathrm{+}}$ from NTA(NH4)3, which enhance the dissolution and corrosion of oxidized Ru, making its removal during the barrier layer CMP process more efficient through mechanical means. This research introduces a synergistic approach for the effective removal of Ru, shedding light on potential applications of CMP in the field of the integrated circuits.

11.
Sci Total Environ ; 914: 169986, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211865

RESUMO

Landfill treatment of municipal solid waste incineration fly ash (MSWI FA) after stabilization is the primary disposal technology. However, only few studies have assessed the stability of MSWI-FA-chelated products in different landfill scenarios. In this study, three commonly used dithiocarbamate (DTC)-based organic chelating agents (CAs) (TS-300, SDD, and PD) were selected to stabilize heavy metals (HMs) in MSWI FA. In addition, the leaching toxicity and environmental risks of the chelated products were assessed in different disposal environments. The results demonstrate that the HM leaching concentrations of the chelated products met the concentration limits of the sanitary landfill standard (GB16889-2008; mixed Landfill Scenario) for the three CAs at a low additive level (0.3 %). However, in the compartmentalized landfill scenario (the leaching agent was acid rain), the leaching of HMs from the chelated products met the standard when TS-300, SDD, and PD were added at 1.5 %, 6.0 %, and 8.0 %, respectively. Additionally, Pb, Zn, and Cd in the chelated products from the 1.5 %-TS-300 and 6.0 %-SDD groups met the leaching limits within the pH ranges 6-12 and 7-12, 6-12 and 7-12, and 8-12 and 8-12, respectively. This was primarily due of TS-300's multiple DTC groups forming stable chain-like macromolecular chelates with Pb. However, although the environmental risks associated with Pb, Zn, and Cd in the initial (0-d) chelated products of the 1.5 %-TS-300 and 6.0 %-SDD groups were minimized to low and negligible levels, there was a significant increase in the leaching of the three HMs after 28 d of storage. Therefore, with appropriate CA addition, although the leaching concentration of HMs in the chelated product may comply with the GB16889-2008 standards, it remains essential to consider its environmental risk, particularly in highly acidic or alkaline environments and during prolonged storage of the product.

12.
J Oleo Sci ; 73(1): 73-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171733

RESUMO

To improve the detergency of mud stains without triphosphate, we developed a new composition that enhances the detergency of mud stains more efficiently. To develop the composition, a new correction method based on the probability density functional method was used to compare the results of approximately 100 cleaning tests conducted on different days using various active ingredients. As a result of various evaluations, it was found that the combination of a homopolymer with a molecular weight of approximately 2000 and a chelating agent can effectively improve the detergency of particle stains. By combining washing experiments with different polymer concentrations, water hardness, turbidity, and reduced viscosity, we were able to estimate the expansion of the polymer and the washing mechanism using a combination of low-molecular-weight polymers and chelating agents.


Assuntos
Quelantes , Corantes , Polímeros , Água , Dureza
13.
Molecules ; 29(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257221

RESUMO

Chelating agents are commonly employed in microelectronic processes to prevent metal ion contamination. The ligand fragments of a chelating agent largely determine its binding strength to metal ions. Identification of ligands with suitable characteristics will facilitate the design of chelating agents to enhance the capture and removal of metal ions from the substrate in microelectronic processes. This study employed quantum chemical calculations to simulate the binding process between eleven ligands and the hydrated forms of Ni2+, Cu2+, Al3+, and Fe3+ ions. The binding strength between the metal ions and ligands was quantified using binding energy and binding enthalpy. Additionally, we explored the binding interaction mechanisms and explained the differences in binding abilities of the eleven ligands using frontier molecular orbitals, nucleophilic indexes, electrostatic potentials, and energy decomposition calculations based on molecular force fields. Based on our computational results, promising chelating agent structures are proposed, aiming to guide the design of new chelating agents to address metal ion contamination issues in integrated circuit processes.

14.
Environ Res ; 245: 117981, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142729

RESUMO

The degradation of organic pollution by sulfur-modified nano zero-valent iron(S-nZVI) combined with advanced oxidation systems has been extensively studied. However, the low utilization of nZVI and low reactive oxygen species (ROS) yield in the system have limited its wide application. Herein, a natural organic acid commonly found in citrus fruits, citric acid (CA), was combined with the conventional S-nZVI@Ps system to enhance the degradation of norfloxacin (NOR). The addition of CA increased the NOR removal by about 31% compared with the conventional S-nZVI@Ps system under the same experimental conditions. Among them, the enhanced effect of CA is mainly reflected in its ability to promote the release of Fe2+ and accelerate the cycling of Fe2+ and Fe3+ to further improve the utilization of nZVI and the generation of ROS; it also promotes the dissolution of the active substance (FeS) on the surface of S-nZVI to further improve the degradation rate of NOR. More importantly, the chelate of CA and Fe2+ (CA-Fe2+) had higher reactivity than alone Fe2+. Free radical quenching and electron spin resonance (ESR) experiments indicated that the main ROS for the degradation of NOR in the CA/S-nZVI@Ps system were SO4•- and OH•. CA-bound sulfur-modifying effects on NOR degradation was systematically investigated, and the degradation mechanism of NOR in CA/S-nZVI@Ps system was explored by various techniques. Additionally, the effect of common anions in water matrix on the degradation of NOR in CA/S-nZVI@Ps system and its degradation of various pollutants were also studied. This study provides a new perspective to enhance the degradation of pollutants by S-nZVI combined with advanced oxidation system, which can help to solve the application boundary problem of S-nZVI.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Norfloxacino , Ácido Cítrico , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/análise , Citratos , Enxofre
15.
Heliyon ; 9(11): e21990, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027657

RESUMO

Despite the positive aspects of low salinity water (LSW), this technique is relatively expensive and unavailable in some countries. Furthermore, potential problems associated with LSW such as scale precipitation in carbonate reservoirs and fine migration in sandstone reservoirs raise concerns. Chelating agents have the ability to chelate metal ions from solution, effectively reducing the salinity of seawater (SW) and mimicking the behavior of LSW. However, they mitigate the challenges associated with LSW injection. This study focuses on how the Diethylenetriaminepentaacetic acid (DTPA) chelating agent performs in modifying rock surface charge. The impact of concentration, brine salinity, potential determining ions (PDIs), oil presence, Fe3+ ions, and solution pH on the effectiveness of DTPA in altering rock surface charge was evaluated. Furthermore, wettability alteration and sand pack flooding tests were conducted to study the effect of DTPA on rock wettability and oil recovery. Results of wettability alteration, zeta potential, sand pack flooding experiments and ion concentration analysis are reported in this paper. The results showed that reducing salinity, increasing DTPA concentration, and raising solution pH changed rock wettability from oil-wetness towards water-wetness. The presence or absence of PDIs in the solution did not affect the performance of DTPA. However, by tripling the concentration of these ions in the solution, the performance of DTPA in changing rock surface charge was impaired. Based on the wettability alteration and zeta potential experiments, 5 wt% DTPA was determined as the optimum concentration. Subsequent flooding experiments revealed that injecting 5 wt% DTPA chelating agents into the sandstone sand pack after SW injection increased oil recovery from 48 % to 68.3 %. The analysis of ion concentrations also revealed a significant increase in the amount of calcium ions during the DTPA flooding, indicating the chelation of metal ions from both rock and solution and improving the wettability conditions.

16.
Int J Ophthalmol ; 16(11): 1899-1910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028518

RESUMO

Iron is one of the necessary metal elements in the human body. There are numerous factors that control the balance of iron metabolism, and its storage and transportation mechanisms are intricate. As one of the most energy-intensive tissues in the body, the retina is susceptible to iron imbalance. The occurrence of iron overload in the retina leads to the generation of a significant quantity of reactive oxygen species. This will aggravate local oxidative stress and inflammatory reactions and even lead to ferroptosis, eventually resulting in retinal dysfunction. The blood-retina-retinal barrier is eventually harmed by oxidative stress and elevated inflammation, which are characteristics of retinal vascular disorders. The pathophysiology of retinal vascular disorders may be significantly influenced by iron. Recently, iron-chelating agents have been found to have antioxidative and anti-inflammatory actions in addition to iron chelating. Therefore, iron neutralization is considered to be a new and potentially useful therapeutic strategy. This article reviews the iron overload in retinal vascular diseases and discusses the therapeutic potential of iron-chelating agents.

17.
Gels ; 9(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37998933

RESUMO

Marble is one of the materials most susceptible to copper leaching, resulting in easily identifiable turquoise stains on the marble. This problem is particularly relevant when we are talking about marble structures of heritage value. For this reason, conservators look for cleaning materials that are specific to the structure to be treated without damaging the original surface. Materials such as agar have been studied for a long time. Agar creates a controlled water release system that adapts to the needs of conservators who seek the greatest possible cleanliness without damaging the material to be treated. To improve the cleaning, chelating agents such as EDTA are added to the agar composition. However, the microbiological growth and the damage it produces to the original material are disadvantages to take into account. In order to solve these problems, other natural materials with cleaning potential such as kudzu and konjac gels were studied in combination with other chelating agents such as citrate, oxalate, and gluconic acid. For the characterization and evaluation of copper cleaning, various analytical techniques were used, including Raman spectroscopy, colorimetry, X-ray fluorescence (XRF), and inductively coupled plasma mass spectrometry (ICP-MS). In this study, both konjac and kudzu emerged as promising alternatives to agar, revealing distinctive features such as simplified preparation methods and inherent antimicrobial properties. The EDTA chelator was found to be the most harmful for marble surfaces, as it extracted a greater amount of calcium from the marble during application of the gels doped with it. Citrate and gluconic acid have been identified as a promising substitute to prepare doped gels for the removal of copper stains. These compounds exhibit comparable or potentially superior cleaning capabilities than EDTA, with no negative side effects.

18.
Materials (Basel) ; 16(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005120

RESUMO

We studied the influence of the ethylenediaminetetraacetic acid (EDTA) content used as combustion fuel when fabricating nickel oxide (NiO) nanocatalysts via solution combustion synthesis, as well as the growth behavior of carbon nanotubes (CNTs) using this catalyst. Nickel nitrate hexahydrate (Ni(NO3)2∙6H2O) was used as the metal precursor (an oxidizer), and the catalysts were synthesized by adjusting the molar ratio of fuel (EDTA) to oxidizer in the range of 1:0.25 to 2.0. The results of the crystal structure analysis showed that as the EDTA content increased beyond the chemical stoichiometric balance with Ni(NO3)2∙6H2O (F/O = 0.25), the proportion of Ni metal within the catalyst particles decreased, and only single-phase NiO was observed. Among the synthesized catalysts, the smallest crystallite size was observed with a 1:1 ratio of Ni ions to EDTA. However, an increase in the amount of EDTA resulted in excessive fuel supply, leading to an increase in crystallite size. Microstructure analysis revealed porous NiO agglomerates due to the use of EDTA, and differences in particle growth based on the fuel ratio were observed. We analyzed the growth behavior of CNTs grown using NiO nanocatalysts through catalytic chemical vapor deposition (CCVD). As the F/O ratio increased, it was observed that the catalyst particles grew excessively beyond hundreds of nanometers, preventing further CNT growth and leading to a rapid termination of CNT growth. Raman spectroscopy was used to analyze the structural characteristics of CNTs, and it was found that the ID/IG ratio indicated the highest CNT crystallinity near an F/O ratio of 1:1.

19.
Chemosphere ; 345: 140500, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866501

RESUMO

Chemically mediated recovery of phosphorous (P) as vivianite from the sludges generated by chemical phosphorus removal (CPR) is a potential means of enhancing sustainability of wastewater treatment. This study marks an initial attempt to explore direct P release and recovery from lab synthetic Fe-P sludge via reductive dissolution using ascorbic acid (AA) under acidic conditions. The effects of AA/Fe molar ratio, age of Fe-P sludge and pH were examined to find the optimum conditions for Fe-P reductive solubilization and vivianite precipitation. The performance of the reductive, chelating, and acidic effects of AA toward Fe-P sludge were evaluated by comparison with hydroxylamine (reducing agent), oxalic acid (chelating agent), and inorganic acids (pH effect) including HNO3, HCl, and H2SO4. Full solubilization of Fe-P sludge and reduction of Fe3+ were observed at pH values 3 and 4 for two Fe/AA molar ratios of 1:2 and 1:4. Sludge age (up to 11 days) did not affect the reductive solubilization of Fe-P with AA addition. The reductive dissolution of Fe-P sludge with hydroxylamine was negligible, while both P (95 ± 2%) and Fe3+ (90 ± 1%) were solubilized through non-reductive dissolution by oxalic acid treatment at an Fe/oxalic acid molar ratio 1:2 and a pH 3. With sludge treatment with inorganic acids at pH 3, P and Fe release was very low (<10%) compared to AA and oxalic acid treatment. After full solubilization of Fe-P sludge by AA treatment at pH 3 it was possible to recover the phosphorus and iron as vivianite by simple pH adjustment to pH 7; P and Fe recoveries of 88 ± 2% and 90 ± 1% respectively were achieved in this manner. XRD analysis, Fe/P molar ratio measurements, and magnetic attraction confirmed vivianite formation. PHREEQC modeling showed a reasonable agreement with the measured release of P and Fe from Fe-P sludge and vivianite formation.


Assuntos
Fósforo , Águas Residuárias , Esgotos , Eliminação de Resíduos Líquidos , Fosfatos , Ácido Ascórbico , Ácido Oxálico , Hidroxilaminas
20.
J Agric Food Chem ; 71(41): 14979-14988, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791964

RESUMO

Serious concerns about the negative impact of ethylenediaminetetraacetic acid (EDTA) on the environment resulted in severe restrictions imposed on this compound in many countries. One of the main concerns is related to the use of EDTA in agriculture as a chelator in microelement fertilizers: being introduced directly into the sawing fields, it penetrates into groundwater, with no chance to be captured/recycled. Respectively, there is an active search for environmentally friendly, biodegradable alternatives for this chelator. In this study, we proposed a biodegradable chelating agent, 2-((1,2-dicarboxyethyl)amino)pentanedioic acid (IGSA). It was synthesized in accordance with the principles of "green chemistry" from readily available nonhazardous precursors using water as a solvent; in addition, the method yields literally no waste. The synthesized chelator in the form of the crude reaction mixture was further used for preparing a multicomponent micronutrient fertilizer (B, Zn, Fe, Cu, Mn, and Mo). The fertilizer was shown to be highly biodegradable (72% in 28 days), while the EDTA-based product degraded only by 13%. The plant growing efficiency was tested on lettuce in the greenhouse experiments. The results were compared against the known commercial fertilizers based on EDTA and iminodisuccinic acid (IDS). The newly developed IGSA-based fertilizer significantly outperformed the EDTA-based fertilizer in lettuce biomass (1.4 and 1.6 times for root and foliar application, respectively). The total mineral uptake was almost two times higher (1.9 and 1.8 times for root and foliar treatments, respectively) compared to the EDTA-based complex and even slightly higher (1.2 and 1.1 times, respectively) compared to the IDS-based complex. Our work opens the doors for the industrial scale production and application of this fully "green", inexpensive microelement fertilizer that has the potential to replace the EDTA-based products.


Assuntos
Quelantes , Oligoelementos , Ácido Edético , Fertilizantes , Micronutrientes , Fertilização , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...