Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 178: 113963, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309879

RESUMO

Cellulose nanofibers (CNF) have been widely studied for their biodegradability and for their unique advantages as a stabilizer in Pickering-type emulsions. However, it is challenging to produce cellulose nanofibers from agroindustry waste with good techno-functional properties, without the use of harsh process conditions. Green alternatives (eco-friendly) have been studied to obtain nanofibers, such as enzymatic hydrolysis and/or application of mechanical processes. In this work, we used acid hydrolysis (as a control and example of an efficient method), enzymatic hydrolysis and a mechanical process (ultrasound) to obtain cellulose nanofibers. We also evaluated the effect of the presence of ethyl groups in the cellulosic matrix (ethylcellulose) on the stabilizing mechanism of emulsions. All cellulose nanofibers were able to produce Pickering emulsions at concentrations of 0.01-0.05% (w/w), although showing differences in emulsion stability and digestibility. Morphology of the different cellulose nanofibers affected the viscosity of the aqueous suspensions used as continuous phase. Emulsions with nanofibers obtained from cassava peel (without the presence of ethyl groups) were stabilized only by the Pickering-type mechanism, while ethylcellulose nanofibers also showed surface activity that contributed to the stability of the emulsion. Furthermore, these latter emulsions showed greater release of free fatty acids in in vitro digestion compared to emulsions stabilized by cellulose nanofibers. Despite these differences, in vitro digestion showed the potential of applying cellulose-stabilized emulsions to control the rate of lipid digestion, due to the low amount of free fatty acids released (<20%).


Assuntos
Nanofibras , Emulsões , Ácidos Graxos não Esterificados , Celulose , Hidrólise
2.
J Biosci Bioeng ; 118(4): 415-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24794850

RESUMO

The combined effect of temperature and pretreatment of the substrate on the anaerobic treatment of the organic fraction of slaughterhouse solid waste was studied. The goal of the study was to evaluate the effect of pretreating the waste on the efficiency of anaerobic digestion. The effect was analyzed at two temperature ranges (the psychrophilic and the mesophilic ranges), in order to evaluate the effect of temperature on the performance of the anaerobic digestion process for this residue. The experiments were performed in 6 L batch reactors for 30 days. Two temperature ranges were studied: the psychrophilic range (at room temperature, 18°C average) and the mesophilic range (at 37°C). The waste was pretreated with NaOH before the anaerobic treatment. The result of pretreating with NaOH was a 194% increase in the soluble chemical oxygen demand (COD) with a dose of 0.6 g NaOH per g of volatile suspended solids (VSS). In addition, the soluble chemical oxygen demand/total chemical oxygen demand ratio (sCOD/tCOD) increased from 0.31 to 0.7. For the anaerobic treatment, better results were observed in the mesophilic range, achieving 70.7%, 47% and 47.2% removal efficiencies for tCOD, total solids (TS), and volatile solids (VS), respectively.


Assuntos
Matadouros , Eliminação de Resíduos/métodos , Hidróxido de Sódio/química , Resíduos Sólidos/análise , Anaerobiose , Biocombustíveis/análise , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Temperatura
3.
Food Chem ; 152: 46-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24444905

RESUMO

Among phytochemicals, phenolic compounds have been extensively researched due to their diverse health benefits. Phenolic compounds occur mostly as soluble conjugates and insoluble forms, covalently bound to sugar moieties or cell wall structural components. Absorption mechanisms for bound phenolic compounds in the gastrointestinal tract greatly depend on the liberation of sugar moieties. Food processes such as fermentation, malting, thermoplastic extrusion or enzymatic, alkaline and acid hydrolyses occasionally assisted with microwave or ultrasound have potential to release phenolics associated to cell walls. Different kinds of wet chemistry methodologies to release and detect bound phenolic have been developed. These include harsh heat treatments, chemical modifications or biocatalysis. New protocols for processing and determining phenolics in food matrices must be devised in order to release bound phenolics and for quality control in the growing functional food industry.


Assuntos
Análise de Alimentos , Fenóis/química , Parede Celular/química , Manipulação de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA