Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Heliyon ; 9(10): e20871, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867854

RESUMO

Zinc Oxide (ZnO) nanoparticles (NPs) have been synthesized by a simple chemical precipitation method. The effect of monoethanolamine (MEA) content in different solvents on ZnO NPs synthesis and their structural properties has been investigated. The NPs synthesized by using isopropanol (IPA) with 15 ml MEA as a stabilizer under the most favorable conditions (deposition time, td = 120 min, temperature = 60 °C) showed good structural properties. Synthesized NPs exhibited beneficial structural properties after annealing. The hexagonal wurtzite crystal structure of ZnO NPs was verified by XRD. Different models were used to calculate structural parameters such as crystallite size, strain, stress, and energy density for all the reflection peaks of XRD corresponding to ZnO lying in the range 2θ = 15°-80°. The crystallite size of the ZnO nanoparticles was found to be 50-60 nm. FTIR and EDX confirmed the presence of ZnO NPs in the samples. SEM micrograph of all the samples revealed that the grain sizes decrease gradually with the increase of the amount of MEA. UV-Visible diffuse reflectance spectroscopy results provide evidence that the ZnO NPs possess broader absorption bands, together with high band gap energy. The ZnO NPs synthesized with IPA solvent have the highest transmittance and band gap energy of 3.3eV. According to DLS data, various content of MEA stabilizer in solvent affects the hydrodynamic size of ZnO NPs.

2.
Chemosphere ; 336: 139208, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37321458

RESUMO

UV and solar-based photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) as an organic contaminant in ceramics industry wastewater by ZnS and Fe-doped ZnS NPs was the focus of this research. Nanoparticles were prepared using a chemical precipitation process. The cubic, closed-packed structure of undoped ZnS and Fe-doped ZnS NPs was formed in spherical clusters, according to XRD and SEM investigations. According to optical studies, the optical band gaps of pure ZnS and Fe-doped ZnS nanoparticles are 3.35 and 2.51 eV, respectively, and Fe doping increased the number of carriers with high mobility, improved carrier separation and injection efficiency, and increased photocatalytic activity under UV or visible light. Doping of Fe increased the separation of photogenerated electrons and holes and facilitated charge transfer, according to electrochemical impedance spectroscopy investigations. Photocatalytic degradation studies revealed that in the present pure ZnS and Fe-doped ZnS nanoparticles, 100% treatment of 120 mL of 15 mg/L phenolic compound was obtained after 55- and 45-min UV-irradiation, respectively, and complete treatment was attained after 45 and 35-min solar light irradiation, respectively. Because of the synergistic effects of effective surface area, more effective photo-generated electron and hole separation efficiency, and enhanced electron transfer, Fe-doped ZnS demonstrated high photocatalytic degradation performance. The study of Fe-doped ZnS's practical photocatalytic treatment capability for removing 120 mL of 10 mg/L 2,4-DCP solution made from genuine ceramic industrial wastewater revealed Fe-doped ZnS's excellent photocatalytic destruction of 2,4-DCP from real industrial wastewater.


Assuntos
Nanopartículas , Águas Residuárias , Raios Ultravioleta , Luz , Nanopartículas/química , Fenóis , Catálise
3.
Angew Chem Int Ed Engl ; 62(24): e202219307, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36951795

RESUMO

Advancing inverted (p-i-n) perovskite solar cells (PSCs) is critical for commercial applications given their compatibility with different bottom cells for tandem photovoltaics, low-temperature processability (≤100 °C), and promising operational stability. Although inverted PSCs have achieved an efficiency of over 25 % using doped or expensive organic hole transport materials (HTMs), their synthesis cost and stability still cannot meet the requirements for their commercialization. Recently, dopant-free and low-cost non-stoichiometric nickel oxide nanocrystals (NiOx NCs) have been extensively studied as a low-cost and effective HTM in perovskite optoelectronics. In this minireview, we summarize the synthesis and surface-functionalization methods of NiOx NCs. Then, the applications of NiOx NCs in other perovskite optoelectronics beyond photovoltaics are discussed. Finally, we provide a perspective for the future development of NiOx NCs for the commercialization of perovskite optoelectronics.

4.
Pharmaceutics ; 15(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678930

RESUMO

In the current study, the combined anti-tumor efficacy of bioactive hydroxyapatite nano- particles (HA-NPs) loaded with altretamine (ALT) was evaluated. The well-known fact that HA has great biological compatibility was confirmed through the findings of the hemolytic experiments and a maximum IC50 value seen in the MTT testing. The preparation of HA-NPs was performed using the chemical precipitation process. An in vitro release investigation was conducted, and the results demonstrated the sustained drug release of the altretamine-loaded hydroxyapatite nanoparticles (ALT-HA-NPs). Studies using the JURKAT E6.1 cell lines MTT assay, and cell uptake, as well as in vivo pharmacokinetic tests using Wistar rats demonstrated that the ALT-HA-NPs were easily absorbed by the cells. A putative synergism between the action of the Ca2+ ions and the anticancer drug obtained from the carrier was indicated by the fact that the ALT-HA-NPs displayed cytotoxicity comparable to the free ALT at 1/10th of the ALT concentration. It has been suggested that a rise in intracellular Ca2+ ions causes cells to undergo apoptosis. Ehrlich's ascites model in Balb/c mice showed comparable synergistic efficacy in a tumor regression trial. While the ALT-HA-NPs were able to shrink the tumor size by six times, the free ALT was only able to reduce the tumor volume by half.

5.
Nanotechnology ; 33(29)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504008

RESUMO

Herein we describe an effective route for the degradation of methyl green (MG) dye under visible light illumination by pristine and strontium (Sr)-doped zinc oxide (ZnO) photocatalysts (synthesized by the simple chemical precipitation method). The x-ray diffraction structural analysis has confirmed that both photocatalysts exhibit the hexagonal wurtzite structure; without any additional phase formation in Sr-doped ZnO, in particular. The optical properties of the synthesized photocatalysts have been investigated using UV-vis absorption spectroscopy in the wavelength range of 250-800 nm. Through Tauc's plot, the slight decrease from 3.3 to 3.2 eV in band gap energy has been elucidated (in the case of Sr-doped ZnO), which has been further confirmed by the quenching in the intensity of Photoluminescence (PL) emission spectrum. This may be due to sub-band level formation between valence and conduction band, caused by the impregnation of Sr2+ions into ZnO host. The morphological study has also been performed using Field Emission Scanning Electron Microscope, which indicates nanoparticles (NPs) based surface texture for both photocatalysts. During the photocatalytic activity study, after 30 min irradiation of visible light, ∼65.7% and ∼84.8% photocatalytic degradation of MG dye has been achieved for pristine and Sr-doped (2 wt%) ZnO photocatalysts, respectively. The rate of photocatalytic reaction (K) has been observed to be âˆ¼0.06399 min-1for Sr-doped (2 wt%), whereas nearly half magnitude âˆ¼0.03403 min-1has been observed for pristine ZnO, respectively. The significantly improved photodegradation activity may be ascribed to the relatively broader optical absorption capability, surface defects and the enhanced charge separation efficiency of the Sr-doped ZnO photocatalyst.

6.
Environ Res ; 168: 85-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30278366

RESUMO

Copper oxide (CuO) nanomaterials (NMs) of different size and morphology were synthesized by Chemical precipitation, Microwave irradiation and Hydrothermal method and characterized by TEM, BET, FTIR, XRD and EDX analysis. As synthesized CuO NMs were utilized for elimination of harmful dyes viz. Direct Red 81 (DR-81) and Coomassie Brilliant blue R-250 (BBR-250) and pathogenic bacteria (Staphylococcus aureus). Owing to their morphology, smaller size and relatively high surface area (40.320 m2 g-1), CuO NMs prepared by chemical precipitation method were observed to show better adsorption capacity for both the dyes (68.70 (DR-81) and 73.04 (BBR-250) mg g-1). The influence of different experimental conditions was studied by the methodical assessments of various parameters such as pH, adsorbent dose, concentration and contact time. Moreover, different adsorption isotherms and pseudo-second order kinetic model were applied to understand the adsorption mechanism. Langmuir model was found to be best fit thus confirming the monolayer adsorption process. To ensure the practical utility of CuO NMs for organic waste removal, the adsorption studies were performed in the presence of different inorganic ions and real water samples. In addition, recovery of the dye and NMs were also carried out effectively by simple method, thus avoiding the secondary pollution. CuO NMs were observed to exhibit significant antibacterial activity against the human pathogenic bacteria. These studies demonstrated that synthesized CuO NMs showed good adsorption efficiency for the removal of harmful dyes and antimicrobial activity against the pathogenic bacteria, which vary as a function of size and surface area.


Assuntos
Antibacterianos , Cobre , Recuperação e Remediação Ambiental , Nanoestruturas , Adsorção , Cobre/química , Humanos , Cinética
7.
Artigo em Inglês | MEDLINE | ID: mdl-24681311

RESUMO

In the present study, an attempt has been made for characterization and synthesis of pure and Ni-doped α-Fe2O3 (hematite) nanoparticles by chemical precipitation method. The synthesized products have been studied by X-ray diffraction (X-RD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), vibrating sample magnetometer (VSM) and scanning electron microscopy (SEM) techniques. The estimated average diameter of α-Fe2O3 nanoparticles were calculated by using the Debye-Scherrer equation and established as 31 nm. SEM micrographs showed the surface morphology as well as structures and particles distributions of synthesized samples. The UV-Vis DRS showed the indirect and direct band gap energies of pure and Ni-doped α-Fe2O3, these were reduced from 1.9847 to 1.52 eV and 2.0503 to 1.76 eV respectively. This result suggested the dopant enhanced the semiconducting behavior of iron oxide nanoparticles to an extent proportional to its nickel doped in the α-Fe2O3. Further, the magnetic properties of the pure and doped samples were investigated by vibrating sample magnetometer (VSM) and evaluated the information of pure and doped samples exhibited saturated hysteresis loop at room temperature, which is indicating that the weak ferromagnetism in nature of our synthesized samples. In addition, it has been found from the magnetization hysteresis curves of Ni-doping, resulting from increased the saturation of magnetization and reduced the coercivity of used samples. Therefore, the present study showed the reduction in band gap energies and coercive field for α-Fe2O3 nanoparticles due to nickel doped.


Assuntos
Compostos Férricos/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Níquel/química , Tamanho da Partícula
8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-536728

RESUMO

?Objective: To study the preparation method of nanometer powder of zirconia, which was used to toughen dental alumina ceramics. Methods: The inorganic precursors at the concentrations of 0.0155 , 0.03, 0.05, 0.1 and 0.28 mol/L were used to prepare zirconia powder via precipitation method. Ammonia water was added into the said solutions to control the pH value at 7.0, 8.5 and 9. The dried precipitation product was then calcined. The prepared zirconia powder were studied by using X ray diffraction (XRD) and scanning electron microscope (SEM). Results: The zirconia powder prepared under the condition of 0.03 0.05 mol/L concentration of inorganic precursors, pH = 8.5, and calcined at 700 ℃ for 2 h was even in size,well dispersed and well micronized. The diameter of the final powder was about 100 nm. Conclusion: With proper preparation condition, weakly agglomerated powder of zirconia in nanometer size can be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...