RESUMO
Introduction: Exposure to elevated temperatures and relative humidity expedites the seed aging process, finally leading to seed viability loss. In this context, certain proteins play a pivotal role in safeguarding the longevity of seeds. However, the seedproteomic response to loss viability in Salvia hispanica L., commonly known as chia, remains incompletely understood. Methods: This work explores the application of proteomics as a potent tool for uncovering molecular responses to viability loss caused by artificial aging in two chia genotypes, WN and MN. Results: By using a quantitative label-free proteomics analysis (LC-MS/MS), 1787 proteins wereidentified in chia seeds at a 95% confidence level, including storage proteins, heat shock proteins (HSPs), late embryogenesis abundant proteins (LEA),oleosins, reactive oxygen species (ROS)-related enzymes, and ribosomal proteins. A relatively low percentage of exclusive proteins were identified in viable and non-viable seeds. However, proteins exhibiting differential abundancebetween samples indicated variations in the genotype and physiological status. Specifically, the WN genotype showed 130 proteins with differential abundancecomparing viable and non-viable seeds, while MN displayed changes in the abundance of 174 proteins. While both showed a significant decrease in keyproteins responsible for maintaining seed functionality, longevity, and vigor withhigh-temperature and humidity conditions, such as LEA proteins or HSPs, ROS, and oleosins, distinct responses between genotypes were noted, particularly in ribosomal proteins that were accumulated in MN and diminished in WN seeds. Discussion: Overall, the results emphasize the importance of evaluating changes in proteins of viable and non-viable seeds as they offer valuable insights into the underlying biological mechanisms responsible for the maintenance of chia seed integrity throughout high-temperature and humidity exposure.
RESUMO
Protein hydrolysates with antioxidant potential have been reported to act as adjuvants in preventing and treating type-2 diabetes (T2D). This work investigated the biochemical, antidiabetic, antioxidant potential, and physicochemical properties of chia meal protein hydrolysate (CMPH). Bands smaller than 14 kDa were observed in the electrophoretic profile. The predominant amino acids were hydrophobic and aromatic. CMPH had the potential to inhibit α-amylase (IC50: 1.76 ± 0.13 mg/mL), α-glucosidase (IC50: 0.42 ± 0.13 mg/mL), and DPP-IV (IC50: 0.46 ± 0.14 mg/mL). Antioxidant activity for ABTS (IC50: 0.236 mg/mL), DPPH (8.83 ± 0.52%), and ORAC (IC25: 0.115 mg/mL). Against chia meal protein isolate (CMPI), CMPH has a broad solubility (pH 2-12.46). Particle size (624.5 ± 247.3 nm), low PDI (0.22 ± 0.06), ζ-potential (-31.1 ± 2.5 mV), and surface hydrophobicity (11,183.33 ± 2024.11) and the intrinsic fluorescence peak of CMPH was lower than that of CMPI. CMPH represents an alternative to add value to the agri-food co-product of the chia seed oil industry, generating food ingredients with outstanding antidiabetic and antioxidant potential.
Assuntos
Antioxidantes , Hipoglicemiantes , Hidrolisados de Proteína , Salvia hispanica , alfa-Amilases , Hipoglicemiantes/química , Antioxidantes/química , Hidrolisados de Proteína/química , alfa-Amilases/química , Salvia hispanica/química , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Humanos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas de Plantas/química , Interações Hidrofóbicas e Hidrofílicas , Salvia/químicaRESUMO
Obesity is a global health problem and is increasing in prevalence in most countries. Although obesity affects all age groups, children are the most vulnerable sector. Functional foods are novel formulated foods containing substances (i.e., nutrients, phytochemicals, probiotics, etc.) that have potential health-enhancing or disease-preventing value. The research objective was to study the possible beneficial effects of providing a functional food made with amaranth flour, chia seed, and curcumin extract on the metabolism and behavior of a rat model of childhood obesity. Male Wistar rat pups from two litters of different sizes, a normal litter (NL) (10 pups) and a small litter (SL) (4 pups), were used. After weaning, the rats were fed a hypercaloric diet (HD) or an HD supplemented with the functional food mixture. Body weight and energy intake were measured for seven weeks, and locomotor activity, learning, and memory tests were also performed. At the end of the experiment, glucose and lipid metabolism parameters were determined. The results showed that in this model of obesity produced by early overfeeding and the consumption of a hypercaloric diet, anxiety-like behaviors and metabolic alterations occurred in the rat offspring; however, the provision of the functional food failed to reduce or prevent these alterations, and an exacerbation was even observed in some metabolic indicators. Interestingly, in the NL rats, the provision of the functional food produced some of the expected improvements in health, such as significant decreases in body weight gain and liver cholesterol and non-significant decreases in adipose tissue and leptin and insulin serum levels.
RESUMO
Abstract Introduction : Chia and flax seeds are rich in alpha-linolenic acid (ALA), which is bioconverted into the active derivatives eicosapentaenoic (EPA) and doco sahexaenoic (DHA) having multiple beneficial effects. However, there is limited knowledge about the anti-inflammatory effects of chia and flax integral flours diets rich in ALA. Objective : The study aimed to evaluate the anti-inflammatory effect of dietary supplementation with integral chia and flax flours in a murine model of LPS-induced systemic inflammation. Methods : Balb/c mice were distributed into three groups: diet A (control), diet B (supplemented with inte gral chia flour), and diet C (supplemented with integral flax flour). Nutritional, hematological, and biochemical determinations were performed. ALA, EPA, and DHA were assessed by GC-MS in the liver, brain, cardiac and skeletal muscles. NF-kB immunoassays were per formed in kidney, liver, and peritoneal macrophages, respectively. The phagocytic capacity was determined in peritoneal macrophages and the expression of the pro- and anti-inflammatory cytokines was assessed by RT-qPCR in the kidney, liver, and spleen. Results : Diets B and C exhibited optimal nutritional adequacy and caused increased levels of ALA, EPA, and DHA in critical tissues compared to the control. The phagocytic capacity of murine peritoneal macrophages (p< 0.01) and IL-10 transcription increased, whereas the expression of NF-κB, IL-1β, IL-6, and TNF-α decreased in animals fed both experimental diets. Conclusions : This work contributes to the current knowledge of the anti-inflammatory effects of chia and flax integral flours rich in ALA and reinforces the health advantages of their consumption.
Resumen Introducción : Las semillas de chía y lino son ricas en ácido alfa-linolénico (ALA), sus derivados activos eico sapentaenoico (EPA) y docosahexaenoico (DHA) ejercen probados efectos beneficiosos. Existe un conocimiento limitado sobre los efectos protectores de ambas semillas bajo la forma de harinas integrales, siendo de particular interés el efecto antiinflamatorio. Objetivo : El objetivo de este trabajo fue evaluar el efecto antiinflamatorio de la suplementación dietaria con harinas integrales de semillas de chía y lino en un modelo murino de inflamación sistémica inducido por LPS. Métodos : Ratones de la cepa Balb/c fueron distribui dos en tres grupos: dieta A (control), dieta B (suplemen tada con harina integral de chía) y dieta C (suplementa da con harina integral de lino). Se efecturaron determi naciones nutricionales, hematológicas y bioquímicas. El contenido de ALA, EPA y DHA en hígado, cerebro, corazón y músculo esquelético se determinó por cromatografía GC-MS. Se realizó la inmunodetección de NF-kB en macrófagos peritoneales, riñón e hígado. Se determinó la capacidad fagocítica de macrófagos peritoneales y se evaluó la expresión de citoquinas pro y antiinflamatorias por RT-qPCR en riñón, hígado y bazo. Resultados : Las dietas B y C mostraron una adecua ción nutricional óptima y generaron niveles elevados de ALA, EPA y DHA en tejidos críticos. La capacidad fagocítica de los macrófagos peritoneales (p< 0.01) y la transcripción de IL-10 aumentó, mientras que la expre sión de NF-κB, IL-1β, IL-6 y TNF-α disminuyó en animales de los grupos B y C. Conclusiones : Este trabajo contribuye al conocimien to actual de los efectos antiinflamatorios de ambas hari nas integrales y refuerza los beneficios de su consumo.
RESUMO
Skeletal muscle (SkM) is a plastic and dynamic tissue, essential in energy metabolism. Growing evidence suggests a close relationship between intramuscular fat accumulation, oxidative stress (OS), extracellular matrix (ECM) remodeling, and metabolic deregulation in SkM. Nowadays natural products emerge as promising alternatives for the treatment of metabolic disorders. We have previously shown that chia seed administration reverts SkM lipotoxicity and whole-body insulin resistant (IR) in sucrose-rich diet (SRD) fed rats. The purpose of the present study was to assess the involvement of OS and fibrosis in SkM metabolic impairment of insulin-resistant rats fed a long-term SRD and the effects of chia seed upon these mechanisms as therapeutic strategy. Results showed that insulin-resistant SRD-fed rats exhibited sarcopenia, increase in lipid peroxidation, altered redox state, and ECM remodeling-increased collagen deposition and lower activity of the metalloproteinase 2 (MMP-2) in SkM. Chia seed increased ferric ion reducing antioxidant power and glutathione reduced form levels, and the activities of glutathione peroxidase and glutathione reductase enzymes. Moreover, chia seed reversed fibrosis and restored the MMP-2 activity. This work reveals a participation of the OS and ECM remodeling in the metabolic alterations of SkM in our experimental model. Moreover, current data show novel properties of chia seed with the potential to attenuate SkM OS and fibrosis, hallmark of insulin-resistant muscle.
RESUMO
The byproduct of Salvia hispanica (chia) seed oil extraction by cold pressing, also known as expeller, possesses a high nutritional value. It is rich in proteins, fibers, minerals, and has a residual oil content of 7-11%, which is rich in omega 3 linolenic acid (ALA). However, this byproduct has been historically undervalued. Thus, the aim of current work was to study the effects of consuming of a rich in chia expeller diet on a rabbit model of metabolically unhealthy normal weight to validate their use as a functional food. Rabbits were fed different diets for a period of 6 weeks: a standard diet (CD), a high-fat diet (HFD), a rich in expeller CD (Exp-CD) and a rich in expeller HFD (Exp-HFD). The Exp-HFD attenuated the rise in basal glucose, TyG index, triglycerides, cholesterol and non-HDL cholesterol induced by the HFD. Both rich in expeller diets reduced mean arterial blood pressure (MAP) and increase liver and fat ALA levels compared to their respective controls. Furthermore, the angiotensin converting enzyme (ACE) activity was lower in the lungs of animals fed on rich in expeller diets compared to their respective controls. In vitro studies showed that ALA inhibited ACE activity. The evaluation of vascular reactivity revealed that rich in expeller diets improved angiotensin II affinity and reduced contractile response to noradrenaline. In conclusion, the consumption of rich in expeller diets showed beneficial effects in preventing cardiovascular risk factors such as insulin resistance, dyslipidemia and MAP. Therefore, its use as functional ingredient holds significant promise.
Assuntos
Dieta Hiperlipídica , Óleos de Plantas , Salvia hispanica , Sementes , Animais , Coelhos , Sementes/química , Óleos de Plantas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Pressão Sanguínea/efeitos dos fármacos , Fatores de Risco de Doenças Cardíacas , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Doenças Cardiovasculares/prevenção & controle , Ácido alfa-Linolênico/farmacologia , Modelos Animais de Doenças , Alimento Funcional , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Colesterol/sangue , Salvia/química , Valor NutritivoRESUMO
INTRODUCTION: Chia and flax seeds are rich in alphalinolenic acid (ALA), which is bioconverted into the active derivatives eicosapentaenoic (EPA) and docosahexaenoic (DHA) having multiple beneficial effects. However, there is limited knowledge about the antiinflammatory effects of chia and flax integral flours diets rich in ALA. OBJECTIVE: The study aimed to evaluate the antiinflammatory effect of dietary supplementation with integral chia and flax flours in a murine model of LPSinduced systemic inflammation. METHODS: Balb/c mice were distributed into three groups: diet A (control), diet B (supplemented with integral chia flour), and diet C (supplemented with integral flax flour). Nutritional, hematological, and biochemical determinations were performed. ALA, EPA, and DHA were assessed by GC-MS in the liver, brain, cardiac and skeletal muscles. NF-kB immunoassays were performed in kidney, liver, and peritoneal macrophages, respectively. The phagocytic capacity was determined in peritoneal macrophages and the expression of the pro- and anti-inflammatory cytokines was assessed by RT-qPCR in the kidney, liver, and spleen. RESULTS: Diets B and C exhibited optimal nutritional adequacy and caused increased levels of ALA, EPA, and DHA in critical tissues compared to the control. The phagocytic capacity of murine peritoneal macrophages (p< 0.01) and IL-10 transcription increased, whereas the expression of NF-κB, IL-1Β, IL-6, and TNF-α decreased in animals fed both experimental diets. CONCLUSIONS: This work contributes to the current knowledge of the anti-inflammatory effects of chia and flax integral flours rich in ALA and reinforces the health advantages of their consumption.
Introducción: Las semillas de chía y lino son ricas en ácido alfa-linolénico (ALA), sus derivados activos eicosapentaenoico (EPA) y docosahexaenoico (DHA) ejercen probados efectos beneficiosos. Existe un conocimiento limitado sobre los efectos protectores de ambas semillas bajo la forma de harinas integrales, siendo de particular interés el efecto antiinflamatorio. OBJETIVO: El objetivo de este trabajo fue evaluar el efecto antiinflamatorio de la suplementación dietaria con harinas integrales de semillas de chía y lino en un modelo murino de inflamación sistémica inducido por LPS. Métodos: Ratones de la cepa Balb/c fueron distribuidos en tres grupos: dieta A (control), dieta B (suplementada con harina integral de chía) y dieta C (suplementada con harina integral de lino). Se efecturaron determinaciones nutricionales, hematológicas y bioquímicas. El contenido de ALA, EPA y DHA en hígado, cerebro, corazón y músculo esquelético se determinó por cromatografía GC-MS. Se realizó la inmunodetección de NF-kB en macrófagos peritoneales, riñón e hígado. Se determinó la capacidad fagocítica de macrófagos peritoneales y se evaluó la expresión de citoquinas pro y antiinflamatorias por RT-qPCR en riñón, hígado y bazo. RESULTADOS: Las dietas B y C mostraron una adecuación nutricional óptima y generaron niveles elevados de ALA, EPA y DHA en tejidos críticos. La capacidad fagocítica de los macrófagos peritoneales (p< 0.01) y la transcripción de IL-10 aumentó, mientras que la expresión de NF-κB, IL-1Β, IL-6 y TNF-α disminuyó en animales de los grupos B y C. CONCLUSIONES: Este trabajo contribuye al conocimiento actual de los efectos antiinflamatorios de ambas harinas integrales y refuerza los beneficios de su consumo.
Assuntos
Suplementos Nutricionais , Linho , Inflamação , Camundongos Endogâmicos BALB C , Animais , Inflamação/dietoterapia , Camundongos , Farinha/análise , Citocinas/análise , Modelos Animais de Doenças , MasculinoRESUMO
Aim: This study explores chia oil, rich in ω-3 fatty acids and nutraceutical components, as a potential remedy for diseases, especially those linked to inflammation and cancer. Methods/materials: A chia oil-based nanoemulsion, developed through single emulsification, underwent comprehensive analysis using various techniques. In vitro and in vivo assays, including macrophage polarization, nitrite and cytokine production, cellular uptake and biodistribution, were conducted to assess the anti-inflammatory efficacy. Results & conclusion: Results reveal that the chia nanoemulsion significantly inhibits inflammation, outperforming pure oil with twice the efficacy. Enhanced uptake by macrophage-like cells and substantial accumulation in key organs indicate its potential as an economical and effective anti-inflammatory nanodrug, addressing global economic and health impacts of inflammation-related diseases.
RESUMO
Today, consumption of diets rich in saturated fat and fructose, associated with a variety of metabolic deregulations, has increased. The aim of this study was to evaluate the effect of dietary supplementation with a residue of defatted chia seed on a diet with low nutritional quality. To do this, C57BL/6 male mice were fed with the Control (C), Low-Nutritional-Quality (LNQ), or supplemented-with-chia-defatted-flour (LNQ+C) diets. After 12 weeks, the glucose and lactate levels were determined in the serum, liver, and kidney, along with reactive oxygen species (ROS) levels, antioxidant enzyme activity, reduced glutathione (GSH), and protein oxidation (AOPP). The LNQ diet increased the glucose and lactate levels (+25% and +50% approx. in the liver, with respect to the control group) and generated oxidative stress by modifying the levels of ROS and the activity of antioxidant enzymes, causing oxidative damage to proteins (+12% in the liver, with respect to the control). Chia supplementation helped to restore the glucose to control levels and modulate the endogenous antioxidant system, resulting in a decrease in protein oxidation products with no differences compared to the control group. In conclusion, supplementation with chia showed beneficial effects on the general health of mice, even when fed a low-nutritional-quality diet.
RESUMO
Eating practices are changing due to awareness about meat consumption associated with social, ethical, environmental, and nutritional issues. Plant-based meat analogs are alternatives to conventional meat products that attempt to mimic all the inherent characteristics of meat fully. Therefore, the search for raw materials that provide these characteristics is increasing. Chia seeds have excellent potential as a functional ingredient in these products since they are a source of proteins, lipids, and fibers. Allied with this, the full use of chia through the seed and its fractions highlights the numerous beneficial characteristics of the formulation regarding nutritional characteristics and techno-functionality. Therefore, this review aims to highlight the potential of chia seed and its fractions for applications in meat-like products. Chia seeds are protein sources. Chia oil is rich in polyunsaturated fatty acids, and its application in emulsions ensures the oil's nutritional quality and maintains its technological characteristics. Defatted chia flour has a high protein content and can be used to extract chia mucilage. Due to its high emulsification capacity, chia mucilage is an effective ingredient for meat products and, consequently, meat-like products. Therefore, this literature review demonstrates the strategic potential of using chia seeds and their fractions to develop meat analogs.
Assuntos
Substitutos da Carne , Extratos Vegetais , Salvia hispanica , Sementes , Carne , FarinhaRESUMO
Two chia mucilages with different viscosities, obtained by extraction conditions optimized in a previous work, were homogenized by high pressure homogenization (HPH). Particle size, molecular weight, zeta potential, FTIR spectrum, rheological properties, water absorption capacity, water holding capacity and iron binding capacity were determined on both mucilages treated and without treatment. Homogenization led to a significant reduction in viscosity respect to chia mucilage controls, which can be related to the decrease in particle size and molecular weight. A high iron binding capacity was obtained for both mucilages. FTIR spectra of both mucilages with iron showed displacements in bands related with stretching of carboxylic uronic acids, suggesting the interaction site with this mineral. This interaction was also verified by particle size determination with a displacement to higher sizes in the presence of iron. Potential zeta showed a significant reduction in the presence of iron. A model to explain the binding between chia mucilage and iron is proposed. HPH appears as an alternative to expand chia mucilage functionality reducing the viscosity of chia mucilage solutions for the offer of a new ingredient also with optimal levels of hydration and iron binding capacity.
Assuntos
Mucilagem Vegetal , Salvia , Mucilagem Vegetal/química , Sementes/química , Salvia/química , Polissacarídeos/química , Ferro/análise , Água/análiseRESUMO
The consumption of diets high in saturated fat can induce damages in liver morphology and function, which leads to increased inflammation, oxidative stress, and hepatic steatosis. Chia seed (Salvia hispanica L.) is rich in protein, which provides bioactive peptides with potential benefits, including antioxidant and anti-inflammatory functions. Then, this study aimed to analyze the effect of digested total protein (DTP) of chia on inflammation, oxidative stress, and morphological changes in liver of C57BL/6 mice fed a diet rich in saturated fat. Male C57BL/6 mice (n = 8/group), 8 weeks old, were fed standard diet (AIN), high-fat diet (HF), standard diet added digested protein (AIN + DTP) or high-fat diet added digested protein (HF + DTP) for 8 weeks. In animals fed a high-fat diet, chia DTP was able to reduce weight gain, food efficiency ratio and hepatosomatic index. In addition, it presented antioxidant capacity, which reduced catalase activity and lipid peroxidation. DTP was also able to reduce hepatic inflammation by reducing p65-NFκB expression and IL-1ß expression and quantification. The APSPPVLGPP peptide present in chia DTP presented binding capacity with PPAR-α, which contributed to the reduction of hepatic fat accumulation evidenced by histological analysis. Thus, chia DTP improved hepatic inflammatory and histological parameters, being an effective food in reducing the liver damage caused by a high-fat diet.
Assuntos
Antioxidantes , Dieta Hiperlipídica , Animais , Masculino , Camundongos , Antioxidantes/farmacologia , Ácidos Graxos , Inflamação , Camundongos Endogâmicos C57BL , PeptídeosRESUMO
Diabetes mellitus (DM) is considered one of the major health diseases worldwide, one that requires immediate alternatives to allow treatments for DM to be more effective and less costly for patients and also for health-care systems. Recent approaches propose treatments for DM based on that; in addition to focusing on reducing hyperglycemia, they also consider multitargets, as in the case of plants. Among these, we find the plant known as chia to be highlighted, a crop native to Mexico and one cultivated in Mesoamerica from pre-Hispanic times. The present work contributes to the review of the antidiabetic effects of chia for the treatment of DM. The antidiabetic effects of chia are effective in different mechanisms involved in the complex pathogenesis of DM, including hypoglycemic, antioxidant, and anti-inflammatory mechanisms, and the inhibition of the enzymes α-glucosidase and α-amylase, as well as in the prevention of the risk of cardiovascular disease. The tests reviewed included 16 in vivo assays on rodent models, 13 clinical trials, and 4 in vitro tests. Furthermore, chia represents advantages over other natural products due to its availability and its acceptance and, in addition, as a component of the daily diet worldwide, especially due to its omega-3 fatty acids and its high concentration of dietary fiber. Thus, chia in the present work represents a source of antidiabetic agents that would perhaps be useful in novel clinical treatments.
Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Salvia , Humanos , alfa-Amilases , alfa-Glucosidases , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Salvia hispanica , SementesRESUMO
The use of proteins to produce oil-containing microcapsules has been previously analyzed; however, their chemical modification, in order to improve their performance as wall materials, is a strategy that has not been widely developed yet. This study aimed to analyze the chemical modification of the proteins through cross-linking reactions with tannic acid and to evaluate their performance as wall materials to the microencapsulation of oils rich in polyunsaturated fatty acids. The cross-linking reaction of isolated soy protein and tannic acid was carried out at pH 10-11 and 60 °C. Subsequently, emulsions were made with a high-speed homogenizer and microcapsules were obtained by spray drying. Microcapsules were characterized by particle size, morphology (SEM), total pore area and % porosity (mercury intrusion methodology), superficial properties (contact angle), and size distribution of oil droplets (by laser diffraction). Additionally, encapsulation efficiency was determined as a function of total and surface oil. Oil chemical stability and quality were studied by Rancimat, hydroperoxide values, and fatty acid profiles. In addition, a storage test was performed for 180 days, and released oil and polyphenols were determined by in vitro gastric digestion. Moreover, the fatty acid composition of the oil and the total polyphenol content and antioxidant capacity of polyphenols were analyzed. The results showed that spray-dried microcapsules had an encapsulation efficiency between 54 and 78%. The oxidative stability exhibited a positive correlation between the amount of polyphenols used and the induction time, with a maximum of 27 h. The storage assay showed that the peroxide value was lower for those cross-linked microcapsules concerning control after 180 days. After the storage time, the omega-3 content was reduced by 49% for soy protein samples, while cross-linked microcapsules maintained the initial concentration. The in-vitro digestion assay showed a decrease in the amount of oil released from the cross-linked microcapsules and an increase in the amount of polyphenols and a higher antioxidant capacity for all samples (for example, 238.10 mgGAE/g and 554.22 mg TE/g for undigested microcapsules with TA 40% versus 322.09 mgGAE/g and 663.61 mg TE/g for digested samples). The microcapsules showed a high degree of protection of the encapsulated oil, providing a high content of polyunsaturated fatty acids (PUFAS) and polyphenols even in prolonged storage times.
RESUMO
A diet rich in sugar and fat can promote metabolic disorders development, especially in the intestine. Chia flour (Salvia hispanica. L) is a source of dietary fiber, alpha-linolenic fatty acid (ALA), bioactive peptides, and phenolics, promoting health benefits. This study aimed to analyze chia flour's effect on gut microbiota modulation and intestinal health in adult male Wistar rats fed a high-fat and high-fructose (HFHF) diet. Male Wistar rats (n = 10/group) were fed the diets standard (AIN-93M) or HFHF (31% saturated fat and 20% fructose) in the first phase to induce metabolic disorders. In the second phase, the rats were fed AIN-93M, HFHF, or HFHF plus 14.7% chia flour (HFHF + CF) for 10 weeks. The consumption of chia flour increased the ALA (3.24 ± 0.24) intake and significantly improved immunoglobulin A (IgA) levels (1126.00 ± 145.90), goblet cells number (24.57 ± 2.76), crypt thickness (34.37 ± 5.86), crypt depth (215.30 ± 23.19), the longitudinal muscle layer (48.11 ± 5.04), cecum weight (4.39 ± 0.71), Shannon index (p < 0.05), and significantly increased the production of acetic (20.56 ± 4.10) and butyric acids (5.96 ± 1.50), Monoglobus sp., Lachnospiraceae sp., and Prevotellaceae sp. abundance. Furthermore, chia significantly reduced the cecal pH content (7.54 ± 1.17), body mass index (0.62 ± 0.03) and weight (411.00 ± 28.58), and Simpson index (p < 0.05). Therefore, chia intake improved intestinal health parameters and functionality in rats with metabolic disorders, which demonstrates to be an effective strategy for gut microbiota modulation.
Assuntos
Farinha , Microbioma Gastrointestinal , Masculino , Ratos , Animais , Ratos Wistar , Frutose , Salvia hispanica , DietaRESUMO
By-products from the industrialization of oilseeds, particularly chia, can be sustainably used for the development of new functional products. In this work, wheat breads supplemented with up to 10 mg of chia expeller hydrolysate/g of flour were prepared, obtaining fortified breads with acceptability for consumption, according to a preliminary consumer research study based on an affective test employing a five-point hedonic scale of global acceptance. In this context, protein hydrolysates of the chia expeller were produced using Alcalase, reaching a degree of hydrolysis of 54.3 ± 1.6% with an antioxidant activity of 55.8 ± 0.4% after 6 h incubation at 25 °C in the presence of the enzyme. These peptides showed appropriate techno-functional properties and chemical compositions suitable for the further development of bakery products. Taken together, our approach and the development of a fortified bread with plant-based bioactive peptides provide a novel and eco-friendly alternative for the recovery of nutrients from agro-industrial waste. More importantly, these enriched breads could exert beneficial effects on human health by exploiting the antioxidant properties of functional peptides derived from the chia expeller.
RESUMO
BACKGROUND: Chia oil represents the vegetable source with the highest content of omega-3 fatty acids. However, the incorporation of polyunsaturated fatty acids into food is limited due to their susceptibility toward oxidation. This investigation aimed to study the microencapsulation of chia oil (CO), using gallic acid (GA) crosslinked-soy protein isolate (SPI) as a wall material and its effect on its oxidative stability. RESULTS: Microcapsules presented a moisture content, water activity, and encapsulation efficiency of around 2.95-4.51% (wet basis); 0.17 and 59.76-71.65%, respectively. Rancimat tests showed that with higher GA content, the induction period increased up to 27.9 h. The storage test demonstrated that the microencapsulated oil with crosslinked wall material has lower values of hydroperoxides and higher induction times concerning the non-crosslinked oil. Finally, the fatty acid profile at this storage time indicated that microcapsules with GA did not have significant changes. In vitro digestion exhibited a reduction in the percentage of bioavailable oil for crosslinked microcapsules, but with no variations in its chemical quality, and an increase in the total polyphenols amount and antioxidant activity. CONCLUSION: The results obtained demonstrated that the microencapsulation of CO using SPI crosslinked with GA as wall material exerted a very important protective effect since a synergistic effect could be described between the microencapsulation effect and the antioxidant power of GA. © 2023 Society of Chemical Industry.
Assuntos
Salvia , Proteínas de Soja , Ácido Gálico , Salvia/química , Cápsulas/química , Óleos de Plantas/química , Antioxidantes/químicaRESUMO
Nanoencapsulation can increase the stability of bioactive compounds, ensuring protection against physical, chemical, or biological degradations, and allows to control of the release of these biocompounds. Chia oil is rich in polyunsaturated fatty acids-8% corresponds to omega 3 and 19% to omega 6-resulting in high susceptibility to oxidation. Encapsulation techniques allow the addition of chia oil to food to maintain its functionality. In this sense, one strategy is to use the nanoemulsion technique to protect chia oil from degradation. Therefore, this review aims to present the state-of-the-art use of nanoemulsion as a new encapsulation approach to chia oil. Furthermore, the chia mucilage-another chia seed product-is an excellent material for encapsulation due to its good emulsification properties (capacity and stability), solubility, and water and oil retention capacities. Currently, most studies of chia oil focus on microencapsulation, with few studies involving nanoencapsulation. Chia oil nanoemulsion using chia mucilage presents itself as a strategy for adding chia oil to foods, guaranteeing the functionality and oxidative stability of this oil.
Assuntos
Óleos de Plantas , Salvia , Óleos de Plantas/química , Salvia/química , Polissacarídeos/análise , Extratos Vegetais/análise , Sementes/químicaRESUMO
Olive leaves (OL) are products of olive cultivation with a high commercial value because they contain valuable bioactive compounds. Chia and sesame seeds have a high functional value because of their attractive nutritional properties. When combined in the extraction process, the two products constitute a product of high quality. The use of pressurized propane in vegetable oil extraction is advantageous because it provides solvent-free oil. This study aimed to combine two high-quality products to obtain oils with a unique combination of attractive nutritional properties and high levels of bioactive compounds. The mass percentage yields of the OL extracts with chia and sesame oils were 23.4% and 24.8%, respectively. The fatty acid profiles of the pure oils and their respective OL-enriched oils were similar. There was an aggregation of the 35% and 32% (v/v) bioactive OL compounds in chia and sesame oils, respectively. OL oils exhibited superior antioxidant capacities. The induction times of the OL extracts with the sesame and chia oils increased by 73% and 4.4%, respectively. Incorporating OL active compounds in healthy edible vegetable oils using propane as a solvent promotes the reduction of lipid oxidation, improves the lipid profiles and health indices of the oils, and forms a product with attractive nutritional characteristics.
RESUMO
BACKGROUND: Chia oil (CO) is popular for being the richest vegetable source of α-linolenic acid (60-66%). However, this content of polyunsaturated fatty acids (PUFA) limits the incorporation of bulk CO in food products due to its high probability of oxidation. This justifies the study of alternative wall materials for microencapsulation. No reports regarding the use of dairy protein/vegetable protein/polysaccharide blends as wall material for the microencapsulation of CO have been published. Therefore, this work analyzed the behavior of a whey protein concentrate (WPC)/soy protein isolate (SPI)/arabic gum (AG) blend as wall material. The complex coacervation (CC) process was studied: pH, 4.0; total solid content, 30% w/v; WPC/SPI/AG ratio, 8:1:1 w/w/w; stirring speed, 600 rpm; time, 30 min; room temperature. RESULTS: The oxidative stability index (OSI) of CO (3.25 ± 0.16 h) was significantly increased after microencapsulation (around four times higher). Furthermore, the well-known matrix-forming ability of AG and WPC helped increase the OSI of microencapsulated oils. Meanwhile, SPI contributed to the increase of the encapsulation efficiency due to its high viscosity. Enhanced properties were observed with CC: encapsulation efficiency (up to 79.88%), OSIs (from 11.25 to 12.52 h) and thermal stability of microcapsules given by the denaturation peak temperatures of WPC (from 77.12 to 86.00 °C). No significant differences were observed in the fatty acid composition of bulk and microencapsulated oils. CONCLUSION: Microcapsules developed from complex coacervates based on the ternary blend represent promising omega-3-rich carriers for being incorporated into functional foods.