Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(27): 35651-35665, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38922439

RESUMO

In this study, a convenient chitosan oligosaccharide laser lithograph (COSLL) technology was developed to fabricate laser-induced graphene (LIG) electrodes and flexible on-chip microsupercapacitors (MSCs). With a simple one-step CO2 laser, the pyrolysis of a chitosan oligosaccharide (COS) and in situ welding of the generated LIGs to engineering plastic substrates are achieved simultaneously. The resulting LIG products display a hierarchical porous architecture, excellent electrical conductivity (6.3 Ω sq-1), and superhydrophilic properties, making them ideal electrode materials for MSCs. The pyrolysis-welding coupled mechanism is deeply discussed through cross-sectional analyses and finite element simulations. The MSCs prepared by COSLL exhibit considerable areal capacitance of over 4 mF cm-2, which is comparable to that of the polyimide-LIG-based counterpart. COSLL is also compatible with complementary metal-oxide-semiconductor (CMOS) and micro-electro-mechanical system (MEMS) processes, enabling the fabrication of LIG/Au MSCs with comparable areal capacitance and lower internal resistance. Furthermore, the as-prepared MSCs demonstrate excellent mechanical robustness, long-cycle capability, and ease of series-parallel integration, benefiting their practical application in various scenarios. With the use of eco-friendly biomass carbon source and convenient process flowchart, the COSLL emerges as an attractive method for the fabrication of flexible LIG on-chip MSCs and various other advanced LIG devices.

2.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892141

RESUMO

Rice (Oryza sativa L.) is an important social-economic crop, and rice seedlings are easily affected by salt stress. Chitosan oligosaccharide (COS) plays a positive role in promoting plant growth and development. To gain a better understanding of the salt tolerance mechanism of rice under the action of COS, Nipponbare rice seedlings were selected as the experimental materials, and the physiological and biochemical indexes of rice seedlings in three stages (normal growth, salt stress and recovery) were measured. Unlabelled quantitative proteomics technology was used to study differential protein and signaling pathways of rice seedlings under salt stress, and the mechanism of COS to improve rice tolerance to salt stress was elucidated. Results showed that after treatment with COS, the chlorophyll content of rice seedlings was 1.26 times higher than that of the blank group (CK). The root activity during the recovery stage was 1.46 times that of the CK group. The soluble sugar in root, stem and leaf increased by 53.42%, 77.10% and 9.37%, respectively. The total amino acid content increased by 77% during the stem recovery stage. Furthermore, the malondialdehyde content in root, stem and leaf increased by 21.28%, 26.67% and 32.69%, respectively. The activity of oxide dismutase (SOD), peroxidase (POD) and oxygenase (CAT) were increased. There were more differentially expressed proteins in the three parts of the experimental group than in the CK group. Gene Ontology (GO) annotation of these differentially expressed proteins revealed that the experimental group was enriched for more entries. Then, through the Kyoto Encyclopedia of Genes and Genomes (KEGG), the top ten pathways enriched with differentially expressed proteins in the two groups (COS and CK groups) were utilized, and a detailed interpretation of the glycolysis and photosynthesis pathways was provided. Five key proteins, including phosphofructokinase, fructose bisphosphate aldolases, glycer-aldehyde-3-phosphate dehydrogenase, enolase and pyruvate kinase, were identified in the glycolysis pathway. In the photosynthesis pathway, oxygen evolution enhancement proteins, iron redox proteins and ferredoxin-NADPH reductase were the key proteins. The addition of COS led to an increase in the abundance of proteins, a response of rice seedlings to salt stress. COS helped rice seedlings resist salt stress. Furthermore, using COS as biopesticides and biofertilizers can effectively increase the utilization of saline-affected farmland, thereby contributing to the alleviating of the global food crisis.


Assuntos
Quitosana , Oligossacarídeos , Oryza , Proteínas de Plantas , Proteoma , Tolerância ao Sal , Plântula , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/genética , Quitosana/farmacologia , Plântula/metabolismo , Plântula/efeitos dos fármacos , Oligossacarídeos/metabolismo , Proteoma/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteômica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Clorofila/metabolismo
3.
Exp Ther Med ; 28(2): 310, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873041

RESUMO

Chitin degradation products, especially chitosan oligosaccharides (COSs), are highly valued in various industrial fields, such as food, medicine, cosmetics and agriculture, for their rich resources and high cost-effectiveness. However, little is known about the impact of acetylation on COS cellular bioactivity. The present study aimed to compare the differential effects of COS and highly N-acetylated COS (NACOS), known as chitin oligosaccharide, on H2O2-induced cell stress. MTT assay showed that pretreatment with NACOS and COS markedly inhibited H2O2-induced RAW264.7 cell death in a concentration-dependent manner. Flow cytometry indicated that NACOS and COS exerted an anti-apoptosis effect on H2O2-induced oxidative damage in RAW264.7 cells. NACOS and COS treatment ameliorated H2O2-induced RAW264.7 cell cycle arrest. Western blotting revealed that the anti-oxidation effects of NACOS and COS were mediated by suppressing expression of proteins involved in H2O2-induced apoptosis, including Bax, Bcl-2 and cleaved PARP. Furthermore, the antagonist effects of NACOS were greater than those of COS, suggesting that acetylation was essential for the protective effects of COS.

4.
Int J Biol Macromol ; 275(Pt 1): 133330, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908638

RESUMO

The persistent global issues of unsafe food and food waste continue to exist. Microbial contamination stands out as a major cause of losses in perishable foods like vegetables and fruits. Herein, we report a self-assembling coating based on disulfide bond cleavage-induced bovine serum albumin (BSA), where the antimicrobial activity of chitosan oligosaccharide (COS) is stably anchored in the coating by electrostatic interactions during the unfolding-aggregation phase of BSA. The intrinsic antimicrobial activity of COS, combined with the positively charged and hydrophobic regions enriched on the BSA coating, significantly disrupts the integrity of bacterial structures. Furthermore, the BSA@COS coating can easily adhere in situ to the grooves on the surface of strawberries through a simple one-step spraying process, extending the shelf life of strawberries and bananas by nearly three times. This makes it a potential economic alternative to current commercial antimicrobial coatings, offering a solution to the rampant global issue of food waste.

5.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790626

RESUMO

Rice (Oryza sativa L.) is one of the most important food crops worldwide. However, during direct seeding, rice is extremely vulnerable to flooding stress, which impairs rice's emergence and seedling growth and results in a significant yield loss. According to our research, chitosan oligosaccharides have the potential to be a chemical seed-soaking agent that greatly increases rice's resistance to flooding. Chitosan oligosaccharides were able to enhance seed energy supply, osmoregulation, and antioxidant capacity, according to physiological index assessments. Using transcriptome and metabolomic analysis, we discovered that important differential metabolites and genes were involved in the signaling pathway for hormone synthesis and antioxidant capacity. Exogenous chitosan oligosaccharides specifically and significantly inhibit genes linked to auxin, jasmonic acid, and abscisic acid. This suggested that applying chitosan oligosaccharides could stabilize seedling growth and development by controlling associated hormones and reducing flooding stress by enhancing membrane stability and antioxidant capacity. Finally, we verified the effectiveness of exogenous chitosan oligosaccharides imbibed in seeds by field validation, demonstrating that they can enhance rice seedling emergence and growth under flooding stress.

6.
Front Vet Sci ; 11: 1376758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803795

RESUMO

This study investigated the effects of different combinations of antibacterial compounds (attapulgite, plant essential oils, and chitosan oligosaccharides) on growth performance, blood biochemical parameters, and rumen microbiome of calves. A total of 48 preweaning calves were randomly divided into four groups (n = 12 per group), and fed the following full mixed-ration granule diets for the 67-d-feeding trial: (1) basal diet (control group); (2) basal diet +1,000 g/t attapulgite, plant essential oils, and chitosan oligosaccharide (AEOCO group); (3) basal diet +1,000 g/t attapulgite and chitosan oligosaccharide (ACO group); and (4) basal diet +1,000 g/t attapulgite and plant essential oil (AEO group). The results showed that the daily weight gain of the AEOCO and AEO groups significantly increased (p < 0.05), whereas the feed conversion ratio decreased compared with that of the control group. Among the three treatment groups, AEO group showed the most positive effect, with the diarrhea rate reduced by 68.2% compared with that of the control group. Total protein and globulin levels were lower in the AEO group than in the control group. Albumin levels were higher in the AEOCO and AEO groups than in the control group. Immunoglobulin A, immunoglobulin G, and immunoglobulin M concentrations were higher in the AEOCO group (p < 0.05) than in the control group. The interleukin-6 concentration was lower in the AEOCO and AEO groups than in the control group (p < 0.05). The Chao 1 richness and ACE indices were higher in the AEOCO group than in the control group (p < 0.05). The ACO group had a significantly lower (p < 0.05) relative abundance of Firmicutes than the control group. The relative abundance of Bacteroidetes was the lowest in the control group, whereas that of Spirochaetota and Fibrobacteriota was the highest (p < 0.05). The relative abundance of Succiniclasticum was higher in the ACO and AEO groups (p < 0.05). These findings indicate that the combination of attapulgite, plant essential oils, and chitosan oligosaccharides has ameliorative effects on the growth performance, blood parameters, and rumen microbiome of calves.

7.
Int J Biol Macromol ; 269(Pt 2): 132131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719017

RESUMO

Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.


Assuntos
Antinematódeos , Quitosana , Oligossacarídeos , Sulfonamidas , Tylenchoidea , Quitosana/química , Quitosana/farmacologia , Animais , Tylenchoidea/efeitos dos fármacos , Antinematódeos/farmacologia , Antinematódeos/química , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Relação Estrutura-Atividade , Larva/efeitos dos fármacos
8.
Food Chem ; 454: 139685, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795629

RESUMO

In this study, a new composite with combination of chitosan oligosaccharide (COS) and zinc oxide nanoparticles (ZnO NPs), termed Chitosan Oligosaccharide-Zinc Oxide Nanocomposites (COS-ZnO NC), was designed to enhance the quality of tomato fruits during postharvest storage. SEM analysis showed a uniform distribution of COS-ZnO NC films on tomato surfaces, indicating high biocompatibility, while the FTIR spectrum confirmed the interaction of COS and ZnO NPs via hydrogen bonds. The COS-ZnO NC exerts positive effects on post-harvest quality of tomato fruits, including significantly reduced water loss, fewer skin wrinkles, increased sugar-acid ratio, and enhanced vitamin C and carotenoids accumulation. Furthermore, COS-ZnO NC induces transcription of carotenoid biosynthesis genes and promotes carotenoids storage in the chromoplast. These results suggest that the COS-ZnO NC film can significantly improve the quality traits of tomato fruits, and therefore is potential in post-harvest storage of tomato fruits.


Assuntos
Carotenoides , Quitosana , Frutas , Nanocompostos , Oligossacarídeos , Solanum lycopersicum , Óxido de Zinco , Solanum lycopersicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Quitosana/química , Óxido de Zinco/química , Frutas/química , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Nanocompostos/química , Carotenoides/química , Carotenoides/análise , Oligossacarídeos/química , Oligossacarídeos/análise , Conservação de Alimentos/métodos , Armazenamento de Alimentos
9.
Food Chem ; 449: 139163, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604024

RESUMO

Precipitation was an important obstacle to improving zinc's bioavailability. Therefore, zinc-whey protein hydrolysate-chitosan oligosaccharide (Zn-WPH-COS) complexes (167 nm) were prepared by linking Zn-WPH (zinc: 18.4%) with COS (1:1, 2 h) to enhance zinc's bioaccessibility. Fourier-transform infrared showed Zn-WPH formed with zinc replaced hydrogen (from 3274 to 3279 cm-1) and reacted with COO- (C-N: from 1394 to 1402 cm-1), a new peak at 1025 cm-1 proved COS can be successful cross-linked (Zn-WPH-COS). Fluorescence spectra showed zinc and COS reduced WPH hydrophobicity (28.0 and 39.0%, respectively). Circular dichroism showed zinc decreased WPH α-helix (from 13.7 to 11.5%), in contrast with COS to Zn-WPH. Zinc solubility and dialyzability were increased (64.5/ 54.2% vs 50.2/ 41.2% vs 29.5/ 21.7%) in Zn-WPH-COS, compared with Zn-WPH and ZnSO4·7H2O, respectively, due to the smallest size (167 nm) and COS protection on Zn-WPH (gastric digestion). These results indicate Zn-WPH-COS could significantly improve the digestion and absorption of zinc.


Assuntos
Disponibilidade Biológica , Quitosana , Nanopartículas , Zinco , Zinco/química , Quitosana/química , Nanopartículas/química , Humanos , Solubilidade
10.
Int J Biol Macromol ; 268(Pt 2): 131641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641277

RESUMO

Redox nanoparticles have been extensively developed for chemotherapy. However, the intracellular oxidative stress induced by constant aberrant glutathione (GSH), reactive oxygen species (ROS) and gamma-glutamyl transpeptidase (GGT) homeostasis remains the primary cause of evading tumor apoptosis. Herein, an oxidative stress-amplification strategy was designed using a pH-GSH-H2O2-GGT sensitive nano-prodrug for precise synergistic chemotherapy. The disulfide bond- conjugated doxorubicin prodrug (DOX-ss) was constructed as a GSH-scavenger. Then, phenylboronic acid (PBA), DOX-ss and poly (γ-glutamic acid) (γ-PGA) were successively conjugated using chitosan oligosaccharide (COS) to obtain the nano-prodrug PBA-COS-ss-DOX/γ-PGA. The PBA-COS-ss-DOX/γ-PGA prodrug could tightly attach to the polymer chain segment by atom transfer radical polymerization. Simultaneously, the drug interacted relatively weakly with the polymer by encapsulating ionic crosslinkers in DOX@PBA-COS/γ-PGA. The disulfide bond of the DOX-ss prodrug as a GSH-scavenger could be activated using overexpressed GSH to release DOX. Particularly, PBA-COS-ss-DOX/γ-PGA could prevent premature drug leakage and facilitate DOX delivery by GGT-targeting and intracellular H2O2-cleavable linker in human hepatocellular carcinoma (HepG2) cells. Concurrently, the nano-prodrug induced strong oxidative stress and tumor cell apoptosis. Collectively, the pH-GSH-H2O2-GGT responsive nano-prodrug shows potential for synergistic tumor therapy.


Assuntos
Quitosana , Doxorrubicina , Nanopartículas , Oligossacarídeos , Estresse Oxidativo , Pró-Fármacos , Quitosana/química , Estresse Oxidativo/efeitos dos fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Nanopartículas/química , Glutationa/metabolismo , Glutationa/química , Células Hep G2 , Espécies Reativas de Oxigênio/metabolismo , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Peróxido de Hidrogênio/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Apoptose/efeitos dos fármacos , gama-Glutamiltransferase/metabolismo , Ácidos Borônicos/química , Concentração de Íons de Hidrogênio
11.
Curr Issues Mol Biol ; 46(4): 3729-3740, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38666962

RESUMO

Despite present antiviral agents that can effectively work against HIV-1 replication, side effects and drug resistance have pushed researchers toward novel approaches. In this context, there is a continued focus on discovering new and more effective antiviral compounds, particularly those that have a natural origin. Polysaccharides are known for their numerous bioactivities, including inhibiting HIV-1 infection and replication. In the present study, phosphorylated chitosan oligosaccharides (PCOSs) were evaluated for their anti-HIV-1 potential in vitro. Treatment with PCOSs effectively protected cells from HIV-1-induced lytic effects and suppressed the production of HIV-1 p24 protein. In addition, results show that PCOSs lost their protective effect upon post-infection treatment. According to the results of ELISA, PCOSs notably disrupted the binding of HIV-1 gp120 protein to T cell surface receptor CD4, which is required for HIV-1 entry. Overall, the results point out that PCOSs might prevent HIV-1 infection at the entry stage, possibly via blocking the viral entry through disruption of virus-cell fusion. Nevertheless, the current results only present the potential of PCOSs, and further studies to elucidate its action mechanism in detail are needed to employ phosphorylation of COSs as a method to develop novel antiviral agents.

12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 441-446, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645870

RESUMO

Objective: To study the immunoadjuvant effects of chitosan oligosaccharide (COS), including the immune activation and the triggering of lysosomal escape, and to explore whether COS can be used as an adjuvant for attenuated live bacteria vector vaccines. Methods: 1) Mouse macrophages RAW264.7 cells were cultured with COS at 0 mg/mL (the control group) and 0.1-4 mg/mL for 24 h and the effect on cell viability was measured by CCK8 assay. Mouse macrophages RAW264.7 were treated with COS at 0 (the control group), 1, 2, and 4 mg/mL for 24 h. Then, the mRNA expression levels of the cytokines, including IFN-γ, IL-10, TGF-ß, and TLR4, were determined by RT-qPCR assay. 2) RAW264.7 cells were treated with 1 mL of PBS containing different components, including calcein at 50 µg/mL, COS at 2 mg/mL, and bafilomycin A1, an inhibitor, at 1 µmol/mL, for culturing. The cells were divided into the Calcein group, Calcein+COS group, and Calcein+COS+Bafilomycin A1 group accordingly. Laser scanning confocal microscopy was used to observe the phagocytosis and the intracellular fluorescence distribution of calcein, a fluorescent dye, in RAW264.7 cells in the presence or absence of COS intervention to determine whether COS was able to trigger lysosomal escape. 3) LM∆E6E7 and LI∆E6E7, the attenuated Listeria vector candidate therapeutic vaccines for cervical cancer, were encapsulated with COS at the mass concentrations of 0.5 mg/mL, 1 mg/mL, 2 mg/mL , 4 mg/mL, and 8 mg/mL. Then, the changes in zeta potential were measured to select the concentration of COS that successfully encapsulated the bacteria. Phagocytosis of the vaccine strains by RAW264.7 cells was measured before and after LM∆E6E7 and LI∆E6E7 were coated with COS at 2 mg/mL. Results: 1) CCK8 assays showed that, compared with the findings for the control group, the intervention of RAW264.7 cells with COS at different concentrations for 24 h was not toxic to the cells and promoted cell proliferation, with the difference being statistically significant (P<0.05). According to the RT-qPCR results, compared with those of the control group, the COS intervention up-regulated the mRNA levels of TLR4 and IFN-γ in RAW264.7 cells, while it inhibited the mRNA expression levels of TGF-ß and IL-10, with the most prominent effect being observed in the 4 mg/mL COS group (P<0.05). 2) Laser scanning confocal microscopy revealed that the amount of fluorescent dye released from lysosomes into the cells was greater in the Calcein+COS group than that in the Calcein group. In other words, a greater amount of fluorescent dye was released from lysosomes into the cells under COS intervention. Furthermore, this process could be blocked by bafilomycin A1. 3) The zeta potential results showed that COS could successfully encapsulate the surface of bacteria when its mass concentration reached 2 mg/mL. Before and after the vaccine strain was encapsulated by COS, the phagocytosis of LM∆E6E7 by RAW264.7 cells was 5.70% and 22.00%, respectively, showing statistically significant differences (P<0.05); the phagocytosis of LI∆E6E7 by RAW264.7 cells was 1.55% and 6.12%, respectively, showing statistically significant differences (P<0.05). Conclusion: COS has the effect of activating the immune response of macrophages and triggering lysosomal escape. The candidates strains of coated live attenuated bacterial vector vaccines can promote the phagocytosis of bacteria by macrophages. Further research is warranted to develop COS into an adjuvant for bacterial vector vaccine.


Assuntos
Adjuvantes Imunológicos , Vacinas Bacterianas , Quitosana , Oligossacarídeos , Animais , Camundongos , Células RAW 264.7 , Oligossacarídeos/farmacologia , Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Vacinas Atenuadas/imunologia , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos
13.
Nutrition ; 124: 112428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38663127

RESUMO

OBJECTIVES: This study aimed to explore the protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharide (LPS)-induced inflammatory responses in IEC-6 cells and dextran sodium sulfate (DSS)-induced colitis in mice. METHODS: The cell inflammation model was constructed by LPS in vitro and enteritis model by DSS in vivo. RESULTS: Following LPS exposure, IEC-6 cell proliferation significantly decreased, epithelial cell integrity was compromised, and TNF-α and IL-1ß levels were increased. However, COS pretreatment reversed these changes. In vivo, DSS-treated mice exhibited evident pathological alterations, including heightened inflammatory levels and significantly decreased expression of tight junction proteins and critical proteins in the Mitogen activated proteins kinase signaling pathway. Nevertheless, COS administration notably reduced inflammatory levels and increased the expression of tight junction proteins and key proteins in the Mitogen activated proteins kinase signaling pathway. CONCLUSIONS: Our findings suggest that COS safeguards gut barrier integrity by upregulating tight junction proteins through the ERK1/2 signaling pathway. Therefore, COS has emerged as a promising candidate for novel drug interventions against inflammatory bowel disease.


Assuntos
Quitosana , Colite , Sulfato de Dextrana , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Oligossacarídeos , Proteínas de Junções Íntimas , Regulação para Cima , Animais , Quitosana/farmacologia , Proteínas de Junções Íntimas/metabolismo , Oligossacarídeos/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/tratamento farmacológico , Camundongos , Regulação para Cima/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Ratos
14.
Carbohydr Polym ; 332: 121914, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431416

RESUMO

Chitosan oligosaccharide (COS), which represent the positively charged basic amino oligosaccharide in nature, is the deacetylated and degraded products of chitin. COS has become the focus of intensive scientific investigation, with a growing body of practical and clinical studies highlighting its remarkable health-enhancing benefits. These effects encompass a wide range of properties, including antibacterial, antioxidant, anti-inflammatory, and anti-tumor activities. With the rapid advancements in chemical modification technology for oligosaccharides, many COS derivatives have been synthesized and investigated. These newly developed derivatives possess more stable chemical structures, improved biological activities, and find applications across a broader spectrum of fields. Given the recent interest in the chemical modification of COS, this comprehensive review seeks to consolidate knowledge regarding the preparation methods for COS derivatives, alongside discussions on their structural characterization. Additionally, various biological activities of COS derivatives have been discussed in detail. Lastly, the potential applications of COS derivatives in biomedicine have been reviewed and presented.


Assuntos
Quitosana , Quitosana/farmacologia , Quitosana/química , Quitina/química , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Antibacterianos , Antioxidantes/farmacologia
15.
Adv Healthc Mater ; 13(17): e2303782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38430208

RESUMO

Exosomes are small extracellular vesicles that play a crucial role in intercellular communication and offer significant potential for a wide range of biomedical applications. However, conventional methods for exosome isolation have limitations in terms of purity, scalability, and preservation of exosome structural integrity. To address these challenges, an exosome isolation platform using chitosan oligosaccharide lactate conjugated 1-pyrenecarboxylic acid (COL-Py) based self-assembled magnetic nanoclusters (CMNCs), is presented. CMNCs are characterized to optimize their size, stability, and interaction dynamics with exosomes. The efficiency of CMNCs in isolating exosomes is systematically evaluated using various analytical methods to demonstrate their ability to capture exosomes based on amphiphilic lipid bilayers. CMNC-based exosome isolation consistently yields exosomes with structural integrity and purity similar to those obtained using traditional methods. The reusability of CMNCs over multiple exosome isolation cycles underscores their scalability and offers an efficient solution for biomedical applications. These results are supported by western blot analysis, which demonstrated the superiority of CMNC-based isolation in terms of purity compared to conventional methods. By providing a scalable and efficient exosome isolation process that preserves both structural integrity and purity, CMNCs can constitute a new platform that can contribute to the field of exosome studies.


Assuntos
Quitosana , Exossomos , Quitosana/química , Exossomos/química , Exossomos/metabolismo , Humanos , Oligossacarídeos/química , Pirenos/química , Nanopartículas de Magnetita/química , Ácido Láctico/química , Ácidos Carboxílicos/química
16.
BioTech (Basel) ; 13(1)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38534915

RESUMO

Chitosan, a natural cationic polysaccharide derived from crustaceans and shellfish shells, is known for its advantageous biological properties, including biodegradability, biocompatibility, and antibacterial activity. Chitosan and its composite materials are studied for their potential for bone tissue repair. However, the effects of chitosan degradation products, glucosamine (GlcN) and chitosan oligosaccharide (COS), on osteoclasts remain unclear. If these chitosan degradation products promote osteoclastic differentiation, careful consideration is required for the use of chitosan and related materials in bone repair applications. Here, we assessed the effects of high (500 µg/mL) and low (0.5 µg/mL) concentrations of GlcN and COS on osteoclastic differentiation in human peripheral blood mononuclear cells (PBMCs) and murine macrophage-like RAW264 cells. A tartrate-resistant acid phosphatase (TRAP) enzyme activity assay, TRAP staining, and actin staining were used to assess osteoclastic differentiation. High concentrations of GlcN and COS, but not low concentrations, suppressed macrophage colony-stimulating factor (M-CSF)- and RANKL-dependent increases in TRAP enzyme activity, TRAP-positive multinuclear osteoclast formation, and actin ring formation in PBMCs without cytotoxicity. Similar effects were observed in the RANKL-dependent osteoclastic differentiation of RAW264 cells. In conclusion, chitosan degradation products do not possess osteoclast-inducing properties, suggesting that chitosan and its composite materials can be safely used for bone tissue repair.

17.
Mar Drugs ; 22(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535469

RESUMO

Chitosan oligosaccharides are the degradation products of chitin obtained from the shell extracts of shrimps and crabs. Compared with chitosan, chitosan oligosaccharides have better solubility and a wider application range. In this study, high-molecular-weight chitosan oligosaccharides (COST, chitosan oligosaccharides, MW ≤ 1000) were isolated and purified by a GPC gel column, and the molecular weight range was further reduced to obtain high-purity and low-molecular-weight chitosan (COS46). Compared with COST, COS46 is better at inhibiting CCl4-induced cell death, improving cell morphology, reducing ALT content, and improving cell antioxidant capacity. The effects of COST and COS46 on CCl4-induced acute liver injury were further verified in mice. Both COS46 and COST improved the appearance of the liver induced by CCl4, decreased the levels of ALT and AST in serum, and decreased the oxidation/antioxidant index in the liver. From the liver pathological section, the effect of COS46 was better. In addition, some indicators of COS46 showed a dose-dependent effect. In conclusion, compared with COST, low-molecular-weight COS46 has better antioxidant capacity and a better therapeutic effect on CCl4-induced acute liver injury.


Assuntos
Quitosana , Animais , Camundongos , Antioxidantes , Fígado , Morte Celular , Oligossacarídeos
18.
J Hazard Mater ; 469: 133922, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442604

RESUMO

The dissemination of antibiotic resistance genes (ARGs), especially via plasmid-mediated horizontal gene transfer, poses a pervasive threat to global health. Chitosan-oligosaccharide (COS) is extensively utilized in medicine, plant and animal husbandry. However, their impact on microflora implies the potential to exert selective pressure on plasmid transfer. To explore the role of COS in facilitating the dissemination of ARGs via plasmid conjugation, we established in vitro mating models. The addition of COS to conjugation mixtures significantly enhanced the transfer of RP4 plasmid and mcr-1 positive IncX4 plasmid in both intra- and inter-specific. Phenotypic and transcriptome analysis revealed that COS enhanced intercellular contact by neutralizing cell surface charge and increasing cell surface hydrophobicity. Additionally, COS increased membrane permeability by inhibiting the Tol-Pal system, thereby facilitating plasmid conjugative transfer. Furthermore, COS served as the carbon source and was metabolized by E. coli, providing energy for plasmid conjugation through regulating the expression of ATPase and global repressor factor-related genes in RP4 plasmid. Overall, these findings improve our awareness of the potential risks associated with the presence of COS and the spread of bacterial antibiotic resistance, emphasizing the need to establish guidelines for the prudent use of COS and its discharge into the environment.


Assuntos
Antibacterianos , Quitosana , Animais , Antibacterianos/farmacologia , Genes Bacterianos , Escherichia coli/genética , Quitosana/farmacologia , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Transferência Genética Horizontal , Oligossacarídeos/farmacologia
19.
Carbohydr Polym ; 330: 121818, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368100

RESUMO

Mono or dual chitosan oligosaccharide lactate (COL)-conjugated pluronic F127 polymers, FCOL1 and FCOL2 were prepared, self-assembled to form micelles, and loaded with gatifloxacin. The Gati@FCOL1/Gati@FCOL2 micelles preparation process was optimized by QbD analysis. Micelles were characterized thoroughly for size, CMC, drug compatibility, and viscosity by GPC, DLS, SEM, IR, DSC, and XRD. The micelles exhibited good cellular uptake in both monolayers and spheroids of HCEC. The antibacterial and anti-biofilm activities of the micelles were evaluated on P. aeruginosa and S. aureus. The anti-quorum sensing activity was explored in P. aeruginosa by analyzing micelles' ability to produce virulence factors, including AHLs, pyocyanin, and the motility behavior of the organism. Gati@FCOL2 Ms was mucoadhesive, cornea-penetrant, antibacterial, and inhibited the biofilm formation by P. aeruginosa and S. aureus significantly more than Gati@FCOL1. A significant reduction in bacterial load in mice cornea was observed after Gati@FCOL2 Ms-treatment to the P. aeruginosa-induced bacterial keratitis-infected mice.


Assuntos
Quitosana , Ceratite , Lactatos , Camundongos , Animais , Micelas , Poloxâmero , Quitosana/farmacologia , Staphylococcus aureus , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácido Láctico/farmacologia , Ceratite/tratamento farmacológico , Pseudomonas aeruginosa
20.
J Agric Food Chem ; 72(8): 3872-3883, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358096

RESUMO

Herein, a series of chitosan oligosaccharide copper complexes modified with pyridine groups (CPSx-Cu complexes) were successfully prepared via the Schiff base reaction and ion complexation reaction for slow-release fungicide. The structures of the synthesized derivatives were characterized via Fourier transform infrared spectroscopy and 1H and 13C nuclear magnetic resonance spectroscopy, and the unit configuration of the complexes was calculated using Gaussian software. The slow-release performance experiment demonstrated that the cumulative copper ion release rate of CPSx-Cu complexes was dependent on the type of substituents on the pyridine ring. Furthermore, the in vitro and in vivo antifungal activities of the CPSx-Cu complexes were investigated. At a concentration of 0.4 mg/mL, CPSx-Cu complexes completely inhibited the growth of Pythium vexans and Phytophthora capsici. Results indicated that CPSx-Cu complexes with slow-release ability exhibited better antifungal activity than thiodiazole-copper and copper sulfate basic. This study confirmed that combining chitosan oligosaccharide with bioactive pyridine groups and copper ions is an effective approach to further developing slow-release copper fungicides, providing new possibilities for the application of copper fungicides in green agriculture. This study lays the foundation for further studies on biogreen copper fungicides.


Assuntos
Quitosana , Complexos de Coordenação , Fungicidas Industriais , Cobre/química , Antifúngicos/química , Fungicidas Industriais/farmacologia , Quitosana/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Bases de Schiff , Espectroscopia de Infravermelho com Transformada de Fourier , Piridinas/farmacologia , Oligossacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...