Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.936
Filtrar
1.
Ren Fail ; 46(2): 2371988, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38952291

RESUMO

AIMS: Abnormal renal lipid metabolism causes renal lipid deposition, which leads to the development of renal fibrosis in diabetic kidney disease (DKD). The aim of this study was to investigate the effect and mechanism of chlorogenic acid (CA) on reducing renal lipid accumulation and improving DKD renal fibrosis. METHODS: This study evaluated the effects of CA on renal fibrosis, lipid deposition and lipid metabolism by constructing in vitro and in vivo models of DKD, and detected the improvement of Notch1 and Stat3 signaling pathways. Molecular docking was used to predict the binding between CA and the extracellular domain NRR1 of Notch1 protein. RESULTS: In vitro studies have shown that CA decreased the expression of Fibronectin, α-smooth muscle actin (α-SMA), p-smad3/smad3, alleviated lipid deposition, promoted the expression of carnitine palmitoyl transferase 1 A (CPT1A), and inhibited the expression of cholesterol regulatory element binding protein 1c (SREBP1c). The expression of Notch1, Cleaved Notch1, Hes1, and p-stat3/stat3 were inhibited. These results suggested that CA might reduce intercellular lipid deposition in human kidney cells (HK2) by inhibiting Notch1 and stat3 signaling pathways, thereby improving fibrosis. Further, in vivo studies demonstrated that CA improved renal fibrosis and renal lipid deposition in DKD mice by inhibiting Notch1 and stat3 signaling pathways. Finally, molecular docking experiments showed that the binding energy of CA and NRR1 was -6.6 kcal/mol, which preliminarily predicted the possible action of CA on Notch1 extracellular domain NRR1. CONCLUSION: CA reduces renal lipid accumulation and improves DKD renal fibrosis by inhibiting Notch1 and stat3 signaling pathways.


Assuntos
Ácido Clorogênico , Nefropatias Diabéticas , Fibrose , Rim , Metabolismo dos Lipídeos , Receptor Notch1 , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Receptor Notch1/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Animais , Transdução de Sinais/efeitos dos fármacos , Fibrose/tratamento farmacológico , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Humanos , Camundongos , Masculino , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Linhagem Celular
2.
Food Chem ; 457: 140084, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38905842

RESUMO

This study investigated the interaction mechanism between chlorogenic acid (CA) and soy protein isolate (SPI) through multi-spectroscopic and computational docking and analyzed the changes in its functional properties. The results showed that the interaction of CA with SPI changed its UV and fluorescence absorption, and the fluorescence quenching mechanism was static quenching. At the same time, the secondary structure of the protein was altered, with a reduction in α-helix, ß-sheet and ß-turn. Computer docking analysis showed that CA binds to SPI through hydrophobic interactions, van der Waals forces, and hydrogen bonding to form a more compact complex. In addition, the dose-dependent enhancement of CA improved the functional properties of the complexes, including foaming, emulsification, and antioxidant properties. This study systematically investigated the mechanism of interaction between CA and SPI, which supports further research on food complex systems containing CA and SPI, as well as the application of the complex.

3.
Adv Healthc Mater ; : e2401114, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885954

RESUMO

Successful bone regeneration requires the close cooperation between bone marrow mesenchymal stem cells (BMSCs) and macrophages, but the low osteogenic differentiation efficiency of stem cells and the excessive inflammatory response of immune cells hinder the development of the bone repair. It is necessary to develop a strategy that simultaneously regulates the osteogenic differentiation of BMSCs and the anti-inflammatory polarization of macrophages for accelerating the bone regeneration. Herein, calcium-chlorogenic acid nanoparticles (Ca-CGA NPs) were synthesized by combining the small molecular of chlorogenic acid (CGA) with Ca2+. Ca-CGA NPs internalized by cells could be dissolved to release free CGA and Ca2+ under low pH conditions in lysosomes. In vitro results demonstrated that Ca-CGA NPs could not only enhance the osteogenic differentiation of BMSCs, but also promote the phenotype transformation of macrophages from M1 to M2. Furthermore, in vivo experiments confirmed that Ca-CGA NPs treatment facilitated the recovery of rat skull defect model through both the osteoinduction and immunomodulation. This study develops a new Ca-CGA NPs-based strategy to induce the differentiation of BMSCs into osteoblasts and the polarization of macrophages into M2 phenotype, which is promising for accelerating bone repair. This article is protected by copyright. All rights reserved.

4.
Plants (Basel) ; 13(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891272

RESUMO

Chlorogenic acid is one of the most prominent bioactive phenolic acids with great pharmacological, cosmetic and nutritional value. The potential of Berula erecta in tissue culture was investigated for the production of chlorogenic acid and its elicitation combined with light of different wavelengths and low temperature. The content of chlorogenic acid in the samples was determined by HPLC-UV, while the content of total phenolic compounds and the antioxidant activity of their ethanol extracts were evaluated spectrophotometrically. The highest fresh and dry biomasses were obtained in plants grown at 23 °C. This is the first study in which chlorogenic acid has been identified and quantified in Berula erecta. The highest chlorogenic acid content was 4.049 mg/g DW. It was determined in a culture grown for 28 days after the beginning of the experiment at 12 °C and under blue light. The latter also contained the highest content of total phenolic compounds, and its extracts showed the highest antioxidant activity. Berula erecta could, potentially, be suitable for the in vitro production of chlorogenic acid, although many other studies should be conducted before implementation on an industrial scale.

5.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893336

RESUMO

Glioblastoma, the most aggressive and challenging brain tumor, is a key focus in neuro-oncology due to its rapid growth and poor prognosis. The C6 glioma cell line is often used as a glioblastoma model due to its close simulation of human glioma characteristics, including rapid expansion and invasiveness. Alongside, herbal medicine, particularly Artemisia spp., is gaining attention for its anticancer potential, offering mechanisms like apoptosis induction, cell cycle arrest, and the inhibition of angiogenesis. In this study, we optimized extraction conditions of polyphenols from Artemisia annua L. and Artemisia vulgaris L. herbs and investigated their anticancer effects in silico and in vitro. Molecular docking of the main phenolic compounds of A. annua and A. vulgaris and potential target proteins, including programmed cell death (apoptosis) pathway proteins proapoptotic Bax (PDB ID 6EB6), anti-apoptotic Bcl-2 (PDB ID G5M), and the necroptosis pathway protein (PDB ID 7MON), mixed lineage kinase domain-like protein (MLKL), in complex with receptor-interacting serine/threonine-protein kinase 3 (RIPK3), revealed the high probability of their interactions, highlighting the possible influence of chlorogenic acid in modulating necroptosis processes. The cell viability of rat C6 glioma cell line was assessed using a nuclear fluorescent double-staining assay with Hoechst 33342 and propidium iodide. The extracts from A. annua and A. vulgaris have demonstrated anticancer activity in the glioblastoma model, with the synergistic effects of their combined compounds surpassing the efficacy of any single compound. Our results suggest the potential of these extracts as a basis for developing more effective glioblastoma treatments, emphasizing the importance of further research into their mechanisms of action and therapeutic applications.


Assuntos
Apoptose , Artemisia annua , Glioblastoma , Simulação de Acoplamento Molecular , Extratos Vegetais , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Artemisia annua/química , Linhagem Celular Tumoral , Humanos , Apoptose/efeitos dos fármacos , Artemisia/química , Ratos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Simulação por Computador , Sobrevivência Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos
6.
Front Pharmacol ; 15: 1396354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873428

RESUMO

Natural polyphenols may have a role in counteracting oxidative stress, which is associated with aging and several bone-related diseases. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound formed by the esterification of caffeic and quininic acids with osteogenic, antioxidant, and anti-inflammatory properties. This review discusses the potential of CGA to enhance osteogenesis by increasing the osteogenic capacity of mesenchymal stem cells (MSCs), osteoblast survival, proliferation, differentiation, and mineralization, as well as its ability to attenuate osteoclastogenesis by enhancing osteoclast apoptosis and impeding osteoclast regeneration. CGA can be involved in bone remodeling by acting directly on pro-osteoclasts/osteoblasts or indirectly on osteoclasts by activating the nuclear factor kB (RANK)/RANK ligand (RANKL)/acting osteoprotegerin (OPG) system. Finally, we provide perspectives for using CGA to treat bone diseases.

7.
Plant Physiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875157

RESUMO

Citrus is one of the most important fruit crop genera in the world, but many Citrus species are vulnerable to cold stress. Ichang papeda (Citrus ichangensis), a cold-hardy citrus species, holds great potential for identifying valuable metabolites that are critical for cold tolerance in Citrus. However, the metabolic changes and underlying mechanisms that regulate Ichang papeda cold tolerance remain largely unknown. In this study, we compared the metabolomes and transcriptomes of Ichang papeda and HB pummelo (Citrus grandis 'Hirado Buntan', a cold-sensitive species) to explore the critical metabolites and genes responsible for cold tolerance. Metabolomic analyses led to the identification of common and genotype-specific metabolites, consistent with transcriptomic alterations. Compared to HB pummelo under cold stress, Ichang papeda accumulated more sugars, flavonoids, and unsaturated fatty acids, which are well-characterized metabolites involved in stress responses. Interestingly, sphingosine and chlorogenic acid substantially accumulated only in Ichang papeda. Knockdown of CiSPT (C. ichangensis serine palmitoyltransferase) and CiHCT2 (C. ichangensis hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase2), two genes involved in sphingosine and chlorogenic acid biosynthesis, dramatically decreased endogenous sphingosine and chlorogenic acid levels, respectively. This reduction in sphingosine and chlorogenic acid notably compromised the cold tolerance of Ichang papeda, whereas exogenous application of these metabolites increased plant cold tolerance. Taken together, our findings indicate that greater accumulation of a spectrum of metabolites, particularly sphingosine and chlorogenic acid, promotes cold tolerance in cold-tolerant citrus species. These findings broaden our understanding of plant metabolic alterations in response to cold stress and provide valuable targets that can be manipulated to improve Citrus cold tolerance.

8.
Free Radic Biol Med ; 222: 275-287, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925315

RESUMO

As a prevalent neurodegenerative disorder, Parkinson's disease is associated with oxidative stress. Our recent investigations revealed that reactive oxygen species (ROS) and PD-toxins like 6-hydroxydopamine (6-OHDA) can induce neuronal apoptosis through over-activation of Akt signaling. Chlorogenic acid (CGA), a natural acid phenol abundant in the human diet, is well-documented for its ability to mitigate intracellular ROS. In this study, we utilized CGA to treat experimental models of PD both in vitro and in vivo. Our study results demonstrated that SH-SY5Y and primary neurons exhibited cell apoptosis in response to 6-OHDA. Pretreatment with CGA significantly attenuated PD toxins-induced large amount of ROS, inhibiting Erk1/2 activation, preventing Akt inhibition, and hindering neuronal cell death. Combining the Erk1/2 inhibitor U0126 with CGA could reverse 6-OHDA-induced Akt inhibition, ROS, and apoptosis in the cells. Crucially, the Akt activator SC79 and ROS scavenger NAC both could eliminate excessive ROS via Akt and Erk1/2 signaling pathways, and CGA further potentiated these effects in PD models. Behavioral experiments revealed that CGA could alleviate gait abnormalities in PD model mice. The neuroprotective effects have been demonstrated in several endocrine regions and in the substantia nigra tissue, which shows the positive tyrosine hydroxylase (TH). Overall, our results suggest that CGA prevents the activation of Erk1/2 and inactivation of Akt by removing excess ROS in PD models. These findings propose a potential strategy for mitigating neuronal degeneration in Parkinson's disease by modulating the Akt/Erk1/2 signaling pathway through the administration of CGA and/or the use of antioxidants to alleviate oxidative stress.

9.
Food Chem ; 457: 139925, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38917567

RESUMO

Blueberry leaves (BBL) are a natural source with strong antioxidant activity, but bioactive compounds and their seasonal variation remain vague. Here, two major classes of compounds including four caffeoylquinic acids and eight flavonoids were identified in two southern highbush cultivars ("Lanmei" #1 and "Jewel") grown in China. Major bioactive compounds were discovered using an online HPLC post-column derivatization system and determined as neochlorogenic acid (NeoCA), chlorogenic acid (CA), rutin, hyperoside, and isoquercitrin. CA contributed the most to the BBL antioxidant activity. "Lanmei" showed significant advantages in terms of rutin content and antioxidant activity over "Jewel" (P < 0.05). The highest CA content (CAC) of juvenile "Jewel" leaves reached 17.9%. July was the optimum harvest time for both cultivars after fruiting stage. Total phenolic content (TPC) and Trolox equivalent antioxidant capacity (TEAC) of fresh BBL were accurately predicted by a portable near-infrared (NIR) device in a rapid, low-cost, and non-destructive way in situ.

10.
Poult Sci ; 103(8): 103949, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38917604

RESUMO

This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on inflammatory responses and intestinal health of lipopolysaccharide (LPS)-challenged broilers. One hundred and forty-four 1-day-old male broiler chicks were divided into 3 groups with 6 replicates of 8 birds each. The groups were as follows: 1) Control group: birds fed a basal diet; 2) LPS group: LPS-challenged birds fed a basal diet; 3) CGA group: LPS-challenged birds fed a CGA-supplemented diet. The LPS was intraperitoneally administered at a dose of 1 mg/kg of body weight. CGA increased the weight gain and feed intake of LPS-challenged birds by 37.05% and 24.29%, respectively (P < 0.05). CGA also alleviated LPS-induced inflammation, as evidenced by lower levels of pro-inflammatory cytokines in the serum and jejunum (tumor necrosis factor-α, interferon-γ, interleukin-1ß, and interleukin-6), and the decreased myeloperoxidase activity in the jejunum (P < 0.05). These effects were accompanied by a decrease in the mRNA abundance of toll-like receptor 4 and myeloid differentiation factor 88 and an inhibition of nuclear factor kappa-B translocation in the jejunum (P < 0.05). CGA reduced circulating diamine oxidase activity and levels of D-lactate and endotoxin, and positively regulated the expression of jejunal claudin-3 and zonula occludens-1 in LPS-challenged broilers (P < 0.05). Compared to the LPS group, CGA reduced the apoptotic rate of epithelial cells and cytochrome c concentration in the jejunum, and normalized the expression of genes responsible for proliferation and apoptosis in jejunal epithelial cells, including cysteine aspartate-specific protease-9, B cell lymphoma-2, and proliferating cell nuclear antigen (P < 0.05). Furthermore, CGA normalized the altered phosphorylation of protein kinase B and glycogen synthase kinase-3ß, as well as the translocation of nuclear ß-catenin in the jejunum of LPS-challenged broilers (P < 0.05). These results suggested that CGA supplementation improved growth performance, alleviated inflammation, and helped maintain intestinal integrity and barrier function in LPS-challenged broilers, possibly through the regulation of the toll-like receptor 4/nuclear factor kappa-B and protein kinase B/Wnt/ß-catenin pathways.

11.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928123

RESUMO

Most reported breast cancer-associated deaths are directly correlated with metastatic disease. Additionally, the primary goal of treating metastatic breast cancer is to prolong life. Thus, there remains the need for more effective and safer strategies to treat metastatic breast cancer. Recently, more attention has been given to natural products (or phytochemicals) as potential anticancer treatments. This study aimed to investigate the synergistic effects of the combination of the phytochemicals chlorogenic acid and cinnamaldehyde (CGA and CA) toward inhibiting metastasis. The hypothesis was that CGA and CA in combination decrease the metastatic potential of breast cancer cells by inhibiting their invasive and migratory abilities as well as the induction of apoptosis via the downregulation of the Akt, disrupting its signal transduction pathway. To test this, wound-healing and Transwell™ Matrigel™ assays were conducted to assess changes in the migration and invasion properties of the cells; apoptosis was analyzed by fluorescence microscopy for Annexin V/propidium iodide; and immunoblotting and FACSort were performed on markers for the epithelial-to-mesenchymal transition status. The results show that CGA and CA significantly downregulated Akt activation by inhibiting phosphorylation. Consequently, increased caspase 3 and decreased Bcl2-α levels were observed, and apoptosis was confirmed. The inhibition of metastatic behavior was demonstrated by the attenuation of N-cadherin, fibronectin, vimentin, and MMP-9 expressions with concomitant increased expressions of E-cadherin and EpCAM. In summary, the present study demonstrated that CGA and CA in combination downregulated Akt activation, inhibited the metastatic potential, and induced apoptosis in different breast cancer cell lines.


Assuntos
Acroleína , Apoptose , Neoplasias da Mama , Movimento Celular , Ácido Clorogênico , Proteínas Proto-Oncogênicas c-akt , Humanos , Ácido Clorogênico/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acroleína/análogos & derivados , Acroleína/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Apoptose/efeitos dos fármacos , Feminino , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metástase Neoplásica
12.
Acta Biomater ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914412

RESUMO

Postoperative abdominal adhesion (PAA) widely occurs after abdominal surgery, which often produces severe complications. However, there were still no satisfactory anti-adhesive products including barriers and anti-adhesive agents. Herein, we developed a ROS-responsive and scavenging hydrogel barrier, termed AHBC/PSC, wherein the monomer AHBC was synthesized by phenylboronic acid (PBA)-modified hyaluronic acid (HA-PBA) further grafted with adipic dihydrazide (ADH) and PBA-based chlorogenic acid (CGA) via ROS-sensitive borate ester bond, and the other monomer PSC was constructed by polyvinyl alcohol (PVA) grafted with sulfated betaine (SB) and p-hydroxybenzaldehyde (CHO). Further, the double crosslinked AHBC/PSC hydrogel was successfully fabricated between AHBC and PSC via forming dynamic covalent acylhydrazone bonds and borate ester bonds. Results showed that AHBC/PSC hydrogel had in situ gelation behavior, satisfactory mechanical properties (storage modulus of about 1 kPa and loss factor Tan δ of about 0.5), suitable wet tissue adhesion strength of about 2.3 kPa on rat abdominal wall, and good biocompatibility, achieving an ideal physical barrier. Particularly, CGA could be responsively released from the hydrogel by breakage of borate ester bonds between CGA and PBA based on high reactive oxygen species (ROS) levels of damaged tissue and exhibited great ROS scavenging capability to regulate inflammation and promote the polarization of macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. Moreover, the grafted SB as a zwitterionic group could reduce protein adsorption and fibroblast adhesion. Finally, the in vivo experiments revealed that AHBC/PSC hydrogel with good safety and in vivo retention behavior of about 2 weeks, effectively prevented PAA by regulating the inflammatory microenvironment and alleviating the fibrosis process. In brief, the versatile AHBC/PSC hydrogel would provide a more convenient and efficient approach for PAA prevention. STATEMENT OF SIGNIFICANCE: Postoperative abdominal adhesion (PAA) widely occurs after surgery and is often accompanied by severe complications. Excessive inflammation and oxidative stress are very crucial for PAA formation. This study provides a ROS-responsive and scavenging hydrogel with suitable mechanical properties, good biocompatibility and biodegradability, and resistance to protein and fibroblast. The antioxidant and anti-inflammatory active ingredient could be responsively released from the hydrogel via triggering by the high ROS levels in the postoperative microenvironment thereby regulating the inflammatory balance. Finally, the hydrogel would effectively regulate the development process of PAA thereby achieving non-adhesion wound healing.

13.
Int J Biol Macromol ; 273(Pt 1): 133029, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852716

RESUMO

This study determined the inhibitory mechanism as well as anti-biofilm activity of chlorogenic acid-grafted-chitosan (CS-g-CA) against Pseudomonas fluorescens (P. fluorescens) in terms of biofilm content, oxidative stress, quorum sensing and cyclic diguanosine monophosphate (c-di-GMP) concentration, and detected the changes in the expression levels of related genes by quantitative real-time PCR (qRT-PCR). Results indicated that treatment with sub-concentrations of CS-g-CA for P. fluorescens led to reduce the biofilm size of large colonies, decrease the content of biofilm and extracellular polymers, weaken the motility and adhesion of P. fluorescens. Moreover, CS-g-CA resulted in higher ROS levels, diminished catalase activity (CAT), and increased superoxide dismutase (SOD) in P. fluorescens. CS-g-CA reduced the production of quorum-sensing signaling molecules (AHLs) and the concentration of c-di-GMP in bacteria. Genes for flagellar synthesis (flgA), the resistance to stress (rpoS and hfq), and pde (phosphodiesterases that degrade c-di-GMP) were significantly down-regulated as determined by RT-PCR. Overall, CS-g-CA leads to the accumulation of ROS in bacteria via P. fluorescens environmental resistance genes and decreases the activity of enzymes in the bacterial antioxidant system, and interferes with the production and reception of quorum-sensing signaling molecules and the synthesis of c-di-GMP in P. fluorescens, which regulates the generation of biofilms.


Assuntos
Biofilmes , Quitosana , Ácido Clorogênico , GMP Cíclico , Estresse Oxidativo , Pseudomonas fluorescens , Percepção de Quorum , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo , Quitosana/química , Quitosana/farmacologia , Biofilmes/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/química , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
14.
Bioorg Chem ; 150: 107571, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38936048

RESUMO

In recent years, Varicocele (VC) has been recognized as a common cause of male infertility that can be treated by surgery or drugs. How to reduce the damage of VC to testicular spermatogenic function has attracted extensive attention in recent years. Among them, overexpressed ROS and high levels of inflammation may play a key role in VC-induced testicular damage. As the key mediated innate immune pathways, cGAS-STING shaft under pathological conditions, such as in cell and tissue damage stress can be cytoplasmic DNA activation, induce the activation of NLRP3 inflammatory corpuscle, triggering downstream of the inflammatory cascade reaction. Chlorogenic acid (CGA), as a natural compound from a wide range of sources, has strong anti-inflammatory and antioxidant activities, and is a potential effective drug for the treatment of varicocele infertility. The aim of this study is to investigate the role of CGA in the spermatogenic dysfunction of the rat testis induced by VC and the potential mechanisms. The results of this study have shown that CGA gavage treatment ameliorated the pathological damage of seminiferous tubules, increased the number of sperm in the lumen, and increased the expression levels of Occludin and ZO-1, which indicated the therapeutic effect of CGA on spermatogenic dysfunction in the testis of VC rats. Meanwhile, the damage of mitochondrial structure was alleviated and the expression levels of ROS, NLRP3 and pro-inflammatory cytokines (IL-1ß, IL-6, IL-18) were significantly reduced in the testicular tissues of model rats after CGA treatment. In addition, we demonstrated for the first time the high expression status of cGAS and STING in testicular tissues of VC model rats, and this was ameliorated to varying degrees after CGA treatment. In conclusion, this study suggests that CGA can improve the spermatogenic function of the testis by reducing mitochondrial damage and inhibiting the activation of the cGAS-STING axis, inhibiting the activation of the NLRP3 inflammasome, and improving the inflammatory damage of the testis, highlighting the potential of CGA as a therapeutic agent for varicocele infertility.

15.
Metabolites ; 14(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921480

RESUMO

Chlorogenic acid (CGA) is a natural polyphenol found in coffee, tea, vegetables, and fruits. It exhibits strong antioxidant activity and possesses several other biological properties, including anti-inflammatory effects, antimicrobial activity, and insulin-sensitizing properties. Moreover, it may improve lipid and glucose metabolism. This review summarizes the available information on the therapeutic effect of CGA in metabolic dysfunction-associated steatotic liver disease (MASLD). As the literature search engine, the browsers in the PubMed, Scopus, Web of Science databases, and ClinicalTrials.gov register were used. Animal trials and clinical studies suggest that CGA has promising therapeutic potential in treating MASLD and hepatic steatosis. Its mechanisms of action include antioxidant, anti-inflammatory, and anti-apoptotic effects via the activation of the Nrf2 signaling pathway and the inhibition of the TLR4/NF-κB signaling cascade. Furthermore, the alleviation of liver disease by CGA also involves other important molecules such as AMPK and important physiological processes such as the intestinal barrier and gut microbiota. Nevertheless, the specific target cell and key molecule to which CGA is directed remain unidentified and require further study.

16.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931461

RESUMO

Chlorogenic acid (CGA) has demonstrated anti-tumor effects across various cancers, but its role in cholangiocarcinoma (CCA) remains unclear. Our study revealed CGA's potent anti-tumor effects on CCA, significantly suppressing cell proliferation, migration, colony formation, and invasion while inhibiting the epithelial-mesenchymal transition. CGA induced apoptosis, modulated cell cycle progression, and exhibited a stable binding affinity to AKR1B10 in CCA. AKR1B10 was highly expressed in RBE cells, and CGA treatment reduced AKR1B10 expression. Knocking out AKR1B10 inhibited the proliferation of RBE cells, whereas the overexpression of AKR1B10 promoted their proliferation. Additionally, CGA suppressed the proliferation of RBE cells with AKR1B10 overexpression. Mechanistically, AKR1B10 activated AKT, and CGA exerted its inhibitory effect by reducing AKR1B10 levels, thereby suppressing AKT activation. Furthermore, CGA facilitated the polarization of tumor-associated macrophages towards an anti-tumor phenotype and enhanced T-cell cytotoxicity. These findings underscore CGA's potential as a promising therapeutic agent for CCA treatment.

17.
J Sci Food Agric ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877786

RESUMO

BACKGROUND: Dandelion contains hundreds of active compounds capable of inhibiting urease activity, but the individual compounds have not yet been fully identified, and their effects and underlying mechanisms are not clear. The present study aimed to screen the urease inhibition active compounds of dandelion by urease inhibitory activity evaluation HPLC-tandem mass spectrometry analysis, their mechanism of urease inhibition by polyphenols was explored using enzyme kinetic studies via Lineweaver-Burk plots. Other investigations included isothermal titration calorimetry and surface plasmon resonance sensing, fluorescence quenching experiments, and single ligand molecular docking and two-ligand simultaneous docking techniques. RESULTS: The results indicated that the ethyl acetate fraction of dandelion flower exhibited the greatest inhibition (lowest IC50 0.184 ± 0.007 mg mL-1). Chlorogenic acid, caffeic acid and luteolin could be effective urease inhibitors that acted in a non-competitive inhibition manner. Individually, chlorogenic acid could not only fast bind to urease, but also dissociate rapidly, whereas luteolin might interact with urease with the weakest affinity. The chlorogenic acid-caffeic acid combination exhibited an additive effect in urease inhibition. However, the chlorogenic acid-luteolin and caffeic acid-luteolin combinations exhibited antagonistic effects, with the caffeic acid-luteolin combination showing greater antagonism. CONCLUSION: The present study reveals that chlorogenic acid, caffeic acid and luteolin are major bioactive compounds for urease inhibition, indicating the molecular mechanisms. The antagonistic effects were observed between luteolin and chlorogenic acid/caffeic acid, and the interactions of the catalytic site and flap may account for the antagonistic effects. © 2024 Society of Chemical Industry.

18.
Molecules ; 29(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893434

RESUMO

Lonicera macranthoides, the main source of traditional Chinese medicine Lonicerae Flos, is extensively cultivated in Southwest China. However, the quality of L. macranthoides produced in this region significantly varies due to its wide distribution and various cultivation breeds. Herein, 50 Lonicerae Flos samples derived from different breeds of L. macranthoides cultivated in Southwest China were collected for quality evaluation. Six organic acids and three saponin compounds were quantitatively analyzed using HPLC. Furthermore, the antioxidant activity of a portion of samples was conducted with 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging experiments. According to the quantitative results, all samples met the quality standards outlined in the Chinese Pharmacopoeia. The samples from Guizhou, whether derived from unopened or open wild-type breeds, exhibited high quality, while the wild-type samples showed relatively significant fluctuation in quality. The samples from Chongqing and Hunan demonstrated similar quality, whereas those from Sichuan exhibited relatively lower quality. These samples demonstrated significant abilities in clearing ABTS and DPPH radicals. The relationship between HPLC chromatograms and antioxidant activity, as elucidated by multivariate analysis, indicated that chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C are active components and can serve as Q-markers for quality evaluation.


Assuntos
Antioxidantes , Lonicera , Cromatografia Líquida de Alta Pressão/métodos , Lonicera/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/análise , China , Picratos/química , Picratos/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Ácidos Sulfônicos/química , Ácidos Sulfônicos/antagonistas & inibidores , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/normas , Controle de Qualidade , Benzotiazóis/química , Saponinas/química , Saponinas/análise , Extratos Vegetais
19.
Artigo em Inglês | MEDLINE | ID: mdl-38910475

RESUMO

Chlorogenic acid (CHA) is a phenolic substance found in various edible plants, such as tea and green coffee extracts. This chemical has demonstrated significant efficacy in reducing the probability of many diseases in preclinical and clinical environments. Chlorogenic acid (CHA) possesses several pharmacological attributes, such as anticancer, hepatoprotective, antimicrobial, immune-suppressant, antioxidant, and antidiabetic activities. Its applications extend to multiple industries, such as food, chemicals, medicine, and healthcare. Studies have shown that CHA can exert its anticancer effects through numerous mechanisms. It can hinder the process of cell division, trigger cell apoptosis, and suppress an increase in cancerous cell growth. The literature research conducted for this study revealed a variety of molecular and cellular processes influencing distinct signaling pathways. These mechanisms include angiogenesis, invasion and migration, oxidative stress, inflammation, cell cycle arrest, and proliferation.However, significant issues surround the use of CHA, primarily due to its limited bioavailability in animal models. This review focuses on the chemistry, natural sources, pharmacokinetics, and underlying mechanisms of action of CHA and its clinical utility in treating life-threatening diseases, such as cancer. The manuscript provides insight into novel formulation approaches.

20.
Sci Rep ; 14(1): 10613, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38719831

RESUMO

Chlorogenic acid (CA) is an effective ingredient that can strengthen immunity during following the COVID-19 era. The current cost of CA is high owing to its complex purification process and low yield (approximately 2%). In this study, a one-step path orthogonal experiment was designed based on the results from Gauss calculation, which consisted of acidity, coordination, and hydrolysis in molecules. The optimized extraction conditions were 60 â„ƒ, 60 min, 1:20 liquid ratio, and 40% ethanol in a nitrogen atmosphere controlled using a device of our own design, which led to CA yields of up to 6.35% from potato leaves. The purified CA was analyzed using high-performance liquid chromatography, thin-layer chromatography, ultraviolet-visible spectroscopy, and molecular fluorescence. This accurate and reproducible method can not only be used to obtain high yields of CA but can also be used for the quality control of active plant products and their isomers.


Assuntos
Ácido Clorogênico , Folhas de Planta , Solanum tuberosum , Ácido Clorogênico/análise , Solanum tuberosum/química , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...