Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
3 Biotech ; 14(4): 120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545123

RESUMO

A protocol has been established for genetic transformation of the chloroplasts in two new cultivars of tomato (Solanum lycopersicum L.) grown in India and Australia: Pusa Ruby and Yellow Currant. Tomato cv. Green Pineapple was also used as a control that has previously been used for establishing chloroplast transformation by other researchers. Selected tomato cultivars were finalized from ten other tested cultivars (Green Pineapple excluded) due to their high regeneration potential and better response to chloroplast transformation. This protocol was set up using a chloroplast transformation vector (pRB94) for tomatoes that is made up of a synthetic gene operon. The vector has a chimeric aadA selectable marker gene that is controlled by the rRNA operon promoter (Prrn). This makes the plant or chloroplasts resistant to spectinomycin and streptomycin. After plasmid-coated particle bombardment, leaf explants were cultured in 50 mg/L selection media. Positive explant selection from among all the dead-appearing (yellow to brown) explants was found to be the major hurdle in the study. Even though this study was able to find plastid transformants in heteroplasmic conditions, it also found important parameters and changes that could speed up the process of chloroplast transformation in tomatoes, resulting in homoplasmic plastid-transformed plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03954-3.

2.
Semin Cell Dev Biol ; 155(Pt A): 37-47, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37085353

RESUMO

Rubisco catalyses the entry of almost all CO2 into the biosphere and is often the rate-limiting step in plant photosynthesis and growth. Its notoriety as the most abundant protein on Earth stems from the slow and error-prone catalytic properties that require plants, cyanobacteria, algae and photosynthetic bacteria to produce it in high amounts. Efforts to improve the CO2-fixing properties of plant Rubisco has been spurred on by the discovery of more effective isoforms in some algae with the potential to significantly improve crop productivity. Incompatibilities between the protein folding machinery of leaf and algae chloroplasts have, so far, prevented efforts to transplant these more effective Rubisco variants into plants. There is therefore increasing interest in improving Rubisco catalysis by directed (laboratory) evolution. Here we review the advances being made in, and the ongoing challenges with, improving the solubility and/or carboxylation activity of differing non-plant Rubisco lineages. We provide perspectives on new opportunities for the directed evolution of crop Rubiscos and the existing plant transformation capabilities available to evaluate the extent to which Rubisco activity improvements can benefit agricultural productivity.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Folhas de Planta , Dobramento de Proteína
3.
J Biol Eng ; 17(1): 63, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798746

RESUMO

BACKGROUND: The high cost of fermentation, purification, cold storage and transportation, short shelf life, and sterile delivery methods of biopharmaceuticals, is a matter for producers and consumers as well. Since the FDA has now approved plant cells for large-scale, cost-effective biopharmaceutical production, the isolation and lyophilization of transplastomic chloroplasts can cover concerns about limitations. DARPins are engineered small single-domain proteins that have been selected to bind to HER2 with high affinity and specificity. HER2 is an oncogene involved in abnormal cell growth in some cancers and the target molecule for cancer immunotherapy. RESULTS: In this study, we reported the prolonged stability and functionality of DARPin G3 in lyophilized transplastomic tobacco leaves and chloroplasts. Western blot analysis of lyophilized leaves and chloroplasts stored at room temperature for up to nine months showed that the DARPin G3 protein was stable and preserved proper folding. Lyophilization of leaves and isolated chloroplasts increased DARPin G3 protein concentrations by 16 and 32-fold, respectively. The HER2-binding assay demonstrated that the chloroplast-made DARPin G3 can maintain its stability and binding activity without any affinity drop in lyophilized leaf materials throughout this study for more than nine months at room temperature. CONCLUSION: Lyophilization of chloroplasts expressing DARPin G3 would further reduce costs and simplify downstream processing, purification, and storage. Compressed packages of lyophilized chloroplasts were much more effective than lyophilized transplastomic leaves considering occupied space and downstream extraction and purification of DARPin G3 after nine months. These methods facilitate any relevant formulation practices for these compounds to meet any demand-oriented needs.

4.
J Biotechnol ; 374: 31-37, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481211

RESUMO

Avian Influenza, the most studied virus, is of high concern due to its zoonotic pandemic potential. In recent years, several influenza vaccines have been used with the broad goal of managing and in certain cases, eliminating the disease. The matrix 2 extracellular domain (M2e), is one of the key targets of the universal influenza vaccine, a liner peptide that is conserved throughout all influenza A subtypes virus. Many recombinant influenza proteins have been expressed in yeast and plants for vaccine development. A remarkable development has been made in the field of biotechnology to explore the potential of microalga as an expression host. In this study, we designed a fusion gene code for M2e peptide and CTB protein as M2e's natural form has a low level of immunogenicity. The fusion gene was cloned in the Chloroplast transformation vector pSRSapI and expressed in the TN72 mutant strain of Chlamydomonas reinhardii. The expression of the targeted protein was confirmed by ECL western blot analysis. A GM1-ELISA was carried out to detect the affinity of fusion protein for GM1 monosialoganglioside and the significant P-value is lower than 0.05. Immunogenicity assay on chicken detected the anti-M2e bodies in chicken serum. This study gives evidence of therapeutic protein production through algae chloroplast and a stable, selection free and low cost oral delivery for universal vaccine against influenza A virus.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Vacinas de Plantas Comestíveis , Gangliosídeo G(M1) , Vacinas contra Influenza/genética , Proteínas Recombinantes , Peptídeos , Proteínas Recombinantes de Fusão/genética , Camundongos Endogâmicos BALB C , Anticorpos Antivirais
5.
Mol Biotechnol ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523020

RESUMO

Insect-pests infestation greatly affects global agricultural production and is projected to become more severe in upcoming years. There is concern about pesticide application being ineffective due to insect resistance and environmental toxicity. Reduced effectiveness of Bt toxins also made the scientific community shift toward alternative strategies to control devastating agricultural pests. With the advent of host-delivered RNA interference, also known as host-induced gene silencing, targeted insect genes have been suppressed through genetic engineering tools to deliver a novel insect-pest resistance strategy for combating a number of agricultural pests. This review recapitulates the possible mechanism of host-delivered RNA interference (HD-RNAi), in particular, the silencing of target genes of insect-pests. We emphasize the development of the latest strategies against evolving insect targets including designing of artificial microRNAs, vector constructs, and the benefit of using plastid transformation to transform target RNA-interfering genes. Advantages of using HD-RNAi over other small RNA delivery modes and also the supremacy of HD-RNAi over the CRISPR-Cas system particularly for insect resistance have been described. However, the broader application of this technology is restricted due to its several limitations. Using artificial miRNA designs, the host-delivered RNAi + Bt combinatorial approach and chloroplast transformation can overcome limitations of RNAi. With careful design and delivery approaches, RNAi promises to be extremely valuable and effective plant protection strategy to attain durable insect-pest resistance in crops. Development of transgenic plant using novel strategies to achieve durable resistance against the target insect.

6.
N Biotechnol ; 76: 1-12, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37004923

RESUMO

Hydroxyalkanoyloxyalkanoates (HAA) are lipidic surfactants with a number of potential applications, but more remarkably, they are the biosynthetic precursors of rhamnolipids (RL), which are preferred biosurfactants thanks to their excellent physicochemical properties, biological activities, and environmental biodegradability. Because the natural highest producer of RLs is the pathogenic bacterium Pseudomonas aeruginosa, important efforts have been dedicated to transfer production to heterologous non-pathogenic microorganisms. Unicellular photosynthetic microalgae are emerging as important hosts for sustainable industrial biotechnology due to their ability to transform CO2 efficiently into biomass and bioproducts of interest. Here, we have explored the potential of the eukaryotic green microalgae Chlamydomonas reinhardtii as a chassis to produce RLs. Chloroplast genome engineering allowed the stable functional expression of the gene encoding RhlA acyltransferase from P. aeruginosa, an enzyme catalyzing the condensation of two 3-hydroxyacyl acid intermediaries in the fatty acid synthase cycle, to produce HAA. Four congeners of varying chain lengths were identified and quantified by UHPLC-QTOF mass spectrometry and gas chromatography, including C10-C10 and C10-C8, and the less abundant C10-C12 and C10-C6 congeners. HAA was present in the intracellular fraction, but also showed increased accumulation in the extracellular medium. Moreover, HAA production was also observed under photoautotrophic conditions based on atmospheric CO2. These results establish that RhlA is active in the chloroplast and is able to produce a new pool of HAA in a eukaryotic host. Subsequent engineering of microalgal strains should contribute to the development of an alternative clean, safe and cost-effective platform for the sustainable production of RLs.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Microalgas/genética , Microalgas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Dióxido de Carbono , Cromatografia Gasosa-Espectrometria de Massas , Glicolipídeos/química , Cloroplastos/metabolismo
7.
Mol Biotechnol ; 65(11): 1923-1934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36884112

RESUMO

The carotenoid pathway in plants has been altered through metabolic engineering to enhance their nutritional value and generate keto-carotenoids, which are widely sought after in the food, feed, and human health industries. In this study, the aim was to produce keto-carotenoids by manipulating the native carotenoid pathway in tobacco plants through chloroplast engineering. Transplastomic tobacco plants were generated that express a synthetic multigene operon composed of three heterologous genes, with Intercistronic Expression Elements (IEEs) for effective mRNA splicing. The metabolic changes observed in the transplastomic plants showed a significant shift towards the xanthophyll cycle, with only a minor production of keto-lutein. The use of a ketolase gene in combination with the lycopene cyclase and hydroxylase genes was a novel approach and demonstrated a successful redirection of the carotenoid pathway towards the xanthophyll cycle and the production of keto-lutein. This study presents a scalable molecular genetic platform for the development of novel keto-carotenoids in tobacco using the Design-Build-Test-Learn (DBTL) approach. This study corroborates chloroplast metabolic engineering using a synthetic biology approach for producing novel metabolites belonging to carotenoid class in industrially important tobacco plant. The synthetic multigene construct resulted in producing a novel metabolite, keto-lutein with high accumulation of xanthophyll metabolites. This figure was drawn using BioRender ( https://www.biorender.com ).


Assuntos
Luteína , Nicotiana , Humanos , Nicotiana/genética , Nicotiana/metabolismo , Luteína/metabolismo , Carotenoides/metabolismo , Xantofilas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Óperon
8.
PNAS Nexus ; 2(2): pgac305, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36743474

RESUMO

The last decade has seen significant advances in the development of approaches for improving both the light harvesting and carbon fixation pathways of photosynthesis by nuclear transformation, many involving multigene synthetic biology approaches. As efforts to replicate these accomplishments from tobacco into crops gather momentum, similar diversification is needed in the range of transgenic options available, including capabilities to modify crop photosynthesis by chloroplast transformation. To address this need, here we describe the first transplastomic modification of photosynthesis in a crop by replacing the native Rubisco in potato with the faster, but lower CO2-affinity and poorer CO2/O2 specificity Rubisco from the bacterium Rhodospirillum rubrum. High level production of R. rubrum Rubisco in the potRr genotype (8 to 10 µmol catalytic sites m2) allowed it to attain wild-type levels of productivity, including tuber yield, in air containing 0.5% (v/v) CO2. Under controlled environment growth at 25°C and 350 µmol photons m2 PAR, the productivity and leaf biochemistry of wild-type potato at 0.06%, 0.5%, or 1.5% (v/v) CO2 and potRr at 0.5% or 1.5% (v/v) CO2 were largely indistinguishable. These findings suggest that increasing the scope for enhancing productivity gains in potato by improving photosynthate production will necessitate improvement to its sink-potential, consistent with current evidence productivity gains by eCO2 fertilization for this crop hit a ceiling around 560 to 600 ppm CO2.

9.
BMC Biotechnol ; 23(1): 1, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611158

RESUMO

BACKGROUND: Chloroplast transformation is a robust technology for the expression of recombinant proteins. Various types of pharmaceutical proteins including growth factors have been reported in chloroplasts via chloroplast transformation approach at high expression levels. However, high expression of epidermal growth factor (EGF) in chloroplasts with the technology is still unavailable. RESULTS: The present work explored the high-level expression of recombinant EGF, a protein widely applied in many clinical therapies, in tobacco chloroplasts. In this work, homoplastic transgenic plants expressing fusion protein GFP-EGF, which was composed of GFP and EGF via a linker, were generated. The expression of GFP-EGF was confirmed by the combination of green fluorescent observation and Western blotting. The achieved accumulation of the recombinant fusion GFP-EGF was 10.21 ± 0.27% of total soluble proteins (1.57 ± 0.05 g kg- 1 of fresh leaf). The chloroplast-derived GFP-EGF was capable of increasing the cell viability of the NSLC cell line A549 and enhancing the phosphorylation level of the EGF receptor in the A549 cells. CONCLUSION: The expression of recombinant EGF in tobacco chloroplasts via chloroplast transformation method was achieved at considerable accumulation level. The attempt gives a good example for the application of chloroplast transformation technology in recombinant pharmaceutical protein production.


Assuntos
Fator de Crescimento Epidérmico , Nicotiana , Humanos , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/metabolismo , Preparações Farmacêuticas/metabolismo
10.
Crit Rev Biotechnol ; 43(7): 1001-1018, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35815847

RESUMO

Addressing nutritional deficiencies in food crops through biofortification is a sustainable approach to tackling malnutrition. Biofortification is continuously being attempted through conventional breeding as well as through various plant biotechnological interventions, ranging from molecular breeding to genetic engineering and genome editing for enriching crops with various health-promoting metabolites. Genetic engineering is used for the rational incorporation of desired nutritional traits in food crops and predominantly operates through nuclear and chloroplast genome engineering. In the recent past, chloroplast engineering has been deployed as a strategic tool to develop model plants with enhanced nutritional traits due to the various advantages it offers over nuclear genome engineering. However, this approach needs to be extended for the nutritional enhancement of major food crops. Further, this platform could be combined with strategies, such as synthetic biology, chloroplast editing, nanoparticle-mediated rapid chloroplast transformation, and horizontal gene transfer through grafting for targeting endogenous metabolic pathways for overproducing native nutraceuticals, production of biopharmaceuticals, and biosynthesis of designer nutritional compounds. This review focuses on exploring various features of chloroplast genome engineering for nutritional enhancement of food crops by enhancing the levels of existing metabolites, restoring the metabolites lost during crop domestication, and introducing novel metabolites and phytonutrients needed for a healthy daily diet.

11.
Crit Rev Biotechnol ; 43(6): 823-834, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35762029

RESUMO

Cannabis is widely recognized as a medicinal plant owing to bioactive cannabinoids. However, it is still considered a narcotic plant, making it hard to be accessed. Since the biosynthetic pathway of cannabinoids is disclosed, biotechnological methods can be employed to produce cannabinoids in heterologous systems. This would pave the way toward biosynthesizing any cannabinoid compound of interest, especially minor substances that are less produced by a plant but have a high medicinal value. In this context, microalgae have attracted increasing scientific interest given their unique potential for biopharmaceutical production. In the present review, the current knowledge on cannabinoid production in different hosts is summarized and the biotechnological potential of microalgae as an emerging platform for synthetic production is put in perspective. A critical survey of genetic requirements and various transformation approaches are also discussed.


Assuntos
Canabinoides , Cannabis , Microalgas , Canabinoides/genética , Canabinoides/metabolismo , Microalgas/genética , Microalgas/metabolismo , Engenharia Genética , Biotecnologia , Cannabis/genética , Cannabis/metabolismo
12.
Growth Factors ; 41(1): 20-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454601

RESUMO

Human epidermal growth factor (hEGF) is an important therapeutic compound with multiple applications particularly in pharmaceutical industry. Human EGF has already been expressed in different expression systems, however, the production of hEGF with bioactivity in chloroplasts has not been successful so far. In this study, we expressed a 6 × His-tagged hEGF in tobacco chloroplasts in its native conformation for the potential of large-scale production of hEGF for industrial applications. Several transplastomic plant lines were obtained, which were screened by PCR (polymerase chain reaction) using primers specific to selectable gene aadA, hEGF- and GFP-coding sequences that were included in the chloroplast expression vector. The selected lines were confirmed to be homoplasmic by PCR verification and Southern blot analysis. Immunoblotting assays of homoplasmic lines using antibodies raised against hEGF confirmed the accumulation of hEGF in transplastomic plants and the ELISA results demonstrated the expression levels of hEGF were between 0.124% and 0.165% of the total soluble proteins (TSP), namely, 23.16-25.77 ng/g of the fresh weight. In terms of activity, the data from cell proliferation and elongation assays showed that the tobacco-derived recombinant hEGF was as bioactive as its commercial counterpart. To our knowledge, this is the first report of recombinant production of hEGF with native bioactivity form in the chloroplast stroma. Overall, our results demonstrate the potential of higher plant chloroplasts for the production of a human therapeutic, hEGF, in an active conformation.


Assuntos
Fator de Crescimento Epidérmico , Nicotiana , Humanos , Fator de Crescimento Epidérmico/genética , Nicotiana/genética , Proliferação de Células , Anticorpos , Cloroplastos/genética
13.
J Exp Bot ; 74(2): 664-676, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36322613

RESUMO

Rubisco is a fundamental enzyme in photosynthesis and therefore for life. Efforts to improve plant Rubisco performance have been hindered by the enzymes' complex chloroplast biogenesis requirements. New Synbio approaches, however, now allow the production of some plant Rubisco isoforms in Escherichia coli. While this enhances opportunities for catalytic improvement, there remain limitations in the utility of the expression system. Here we generate, optimize, and test a robust Golden Gate cloning E. coli expression system incorporating the protein folding machinery of tobacco chloroplasts. By comparing the expression of different plant Rubiscos in both E. coli and plastome-transformed tobacco, we show that the E. coli expression system can accurately predict high level Rubisco production in chloroplasts but poorly forecasts the biogenesis potential of isoforms with impaired production in planta. We reveal that heterologous Rubisco production in E. coli and tobacco plastids poorly correlates with Rubisco large subunit phylogeny. Our findings highlight the need to fully understand the factors governing Rubisco biogenesis if we are to deliver an efficient, low-cost screening tool that can accurately emulate chloroplast expression.


Assuntos
Escherichia coli , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Chaperonas Moleculares/metabolismo , Folhas de Planta/metabolismo , Dióxido de Carbono/metabolismo , Nicotiana/metabolismo
14.
Microorganisms ; 10(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36144372

RESUMO

Green microalgae are important sources of natural products and are attractive cell factories for manufacturing high-value products such as recombinant proteins. Increasing scales of production must address the bottleneck of providing sufficient light energy for photosynthesis. Enhancing the photosynthetic action spectrum of green algae to improve the utilisation of yellow light would provide additional light energy for photosynthesis. Here, we evaluated the Katushka fluorescent protein, which converts yellow photons to red photons, to drive photosynthesis and growth when expressed in Chlamydomonas reinhardtii chloroplasts. Transplastomic algae expressing a codon-optimised Katushka gene accumulated the active Katushka protein, which was detected by excitation with yellow light. Removal of chlorophyll from cells, which captures red photons, led to increased Katushka fluorescence. In yellow light, emission of red photons by fluorescent Katushka increased oxygen evolution and photosynthetic growth. Utilisation of yellow photons increased photosynthetic growth of transplastomic cells expressing Katushka in light deficient in red photons. These results showed that Katushka was a simple and effective yellow light-capturing device that enhanced the photosynthetic action spectrum of C. reinhardtii.

15.
Mar Drugs ; 20(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36005487

RESUMO

To solve the problem of antibiotic abuse in aquaculture and to utilize the application potential of antimicrobial peptides (AMPs), a chloroplast transformation system of Porphyridium purpureum was successfully constructed for effectively expressing two exogenous AMPs. The endogenous fragments of 16S rDNA/trnA-23S rDNA were used as flanking fragments for the homologous recombination in the chloroplast genome. Two AMPs encoded by the transformation vector were controlled by the native promoter psbB in a polycistron. The plasmids were transferred into P. purpureum via particle bombardment and the transformation vectors were screened using phosphinothricin (bar), a dominant selection marker under the control of the psbA promoter. Subsequently, in the positive transformed colonies, the exogenous fragments were found to be inserted in the flanking fragments directionally as expected and two foreign AMPs were successfully obtained. Finally, two exogenous peptides with antibacterial properties were obtained from the transformed strain. The two AMPs expressed by the transformed strain were shown to have similar inhibitory effects to antibiotics by inhibition tests. This suggested that AMPs can be introduced into aquaculture using baited microalgae, providing new ideas and ways to solve a series of aquaculture diseases caused by bacteria.


Assuntos
Porphyridium , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Cloroplastos/genética , DNA Ribossômico
16.
Curr Opin Plant Biol ; 66: 102185, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35183927

RESUMO

The plastid (chloroplast) genome of seed plants represents an attractive target of metabolic pathway engineering by genetic transformation. Although the plastid genome is relatively small, it can accommodate large amounts of foreign DNA that precisely integrates via homologous recombination, and is largely excluded from pollen transmission due to the maternal mode of plastid inheritance. Since the engineering of metabolic pathways often requires the expression of multiple transgenes, the possibility to conveniently stack transgenes in synthetic operons makes the transplastomic technology particularly appealing in the area of metabolic engineering. Absence of epigenetic gene silencing mechanisms from plastids and the possibility to achieve high transgene expression levels further add to the attractiveness of plastid genome transformation. This review focuses on engineering principles and available tools for the transplastomic expression of enzymes and pathways, and highlights selected recent applications in metabolic engineering.


Assuntos
Engenharia Metabólica , Plastídeos , Cloroplastos , Engenharia Genética , Plantas Geneticamente Modificadas/genética , Plastídeos/genética , Transgenes
17.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613758

RESUMO

Plant biomass is the most abundant renewable resource in nature. In a circular economy perspective, the implementation of its bioconversion into fermentable sugars is of great relevance. Lytic Polysaccharide MonoOxygenases (LPMOs) are accessory enzymes able to break recalcitrant polysaccharides, boosting biomass conversion and subsequently reducing costs. Among them, auxiliary activity of family 9 (AA9) acts on cellulose in synergism with traditional cellulolytic enzymes. Here, we report for the first time, the production of the AA9 LPMOs from the mesophilic Trichoderma reesei (TrAA9B) and the thermophilic Thermoascus aurantiacus (TaAA9B) microorganisms in tobacco by plastid transformation with the aim to test this technology as cheap and sustainable manufacture platform. In order to optimize recombinant protein accumulation, two different N-terminal regulatory sequences were used: 5' untranslated region (5'-UTR) from T7g10 gene (DC41 and DC51 plants), and 5' translation control region (5'-TCR), containing the 5'-UTR and the first 14 amino acids (Downstream Box, DB) of the plastid atpB gene (DC40 and DC50 plants). Protein yields ranged between 0.5 and 5% of total soluble proteins (TSP). The phenotype was unaltered in all transplastomic plants, except for the DC50 line accumulating AA9 LPMO at the highest level, that showed retarded growth and a mild pale green phenotype. Oxidase activity was spectrophotometrically assayed and resulted higher for the recombinant proteins without the N-terminal fusion (DC41 and DC51), with a 3.9- and 3.4-fold increase compared to the fused proteins.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Celulose/química , Proteínas Fúngicas/biossíntese , Oxigenases de Função Mista/biossíntese , Polissacarídeos/metabolismo , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plastídeos
18.
Biochem Soc Trans ; 49(5): 2007-2019, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623388

RESUMO

Rising human population, along with the reduction in arable land and the impacts of global change, sets out the need for continuously improving agricultural resource use efficiency and crop yield (CY). Bioengineering approaches for photosynthesis optimization have largely demonstrated the potential for enhancing CY. This review is focused on the improvement of Rubisco functioning, which catalyzes the rate-limiting step of CO2 fixation required for plant growth, but also catalyzes the ribulose-bisphosphate oxygenation initiating the carbon and energy wasteful photorespiration pathway. Rubisco carboxylation capacity can be enhanced by engineering the Rubisco large and/or small subunit genes to improve its catalytic traits, or by engineering the mechanisms that provide enhanced Rubisco expression, activation and/or elevated [CO2] around the active sites to favor carboxylation over oxygenation. Recent advances have been made in the expression, assembly and activation of foreign (either natural or mutant) faster and/or more CO2-specific Rubisco versions. Some components of CO2 concentrating mechanisms (CCMs) from bacteria, algae and C4 plants has been successfully expressed in tobacco and rice. Still, none of the transformed plant lines expressing foreign Rubisco versions and/or simplified CCM components were able to grow faster than wild type plants under present atmospheric [CO2] and optimum conditions. However, the results obtained up to date suggest that it might be achievable in the near future. In addition, photosynthetic and yield improvements have already been observed when manipulating Rubisco quantity and activation degree in crops. Therefore, engineering Rubisco carboxylation capacity continues being a promising target for the improvement in photosynthesis and yield.


Assuntos
Bioengenharia/métodos , Produção Agrícola/métodos , Fotossíntese/genética , Engenharia de Proteínas/métodos , Ribulose-Bifosfato Carboxilase/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Catálise , Cloroplastos/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Ativação Enzimática/genética , Oryza/enzimologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Ribulose-Bifosfato Carboxilase/genética , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
19.
Methods Mol Biol ; 2317: 95-107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028764

RESUMO

Excision of marker genes using DNA direct repeats makes use of the efficient native homologous recombination pathway present in the plastids of algae and plants. The method is simple, efficient, and widely applicable to plants and green algae. Marker excision frequency is dependent on the length and number of directly repeated sequences. When two repeats are used a repeat size of greater than 600 bp promotes efficient excision of the marker gene. A wide variety of sequences can be used to make the direct repeats. Only a single round of transformation is required and there is no requirement to introduce site-specific recombinases by retransformation or sexual crosses. Selection is used to maintain the marker and ensure homoplasmy of transgenic plastid genomes (plastomes). Release of selection allows the accumulation of marker-free plastomes generated by marker excision, which is a spontaneous and unidirectional process. Cytoplasmic sorting allows the segregation of cells with marker-free transgenic plastids. The marker-free shoots resulting from direct repeat mediated excision of marker genes have been isolated by vegetative propagation of shoots in the T0 generation. Alternatively, accumulation of marker-free plastomes during growth, development and flowering of T0 plants allows for the collection of seeds that give rise to a high proportion of marker-free T1 seedlings. The procedure enables precise plastome engineering involving insertion of transgenes, point mutations and deletion of genes without the inclusion of any extraneous DNA. The simplicity and convenience of direct repeat excision facilitates its widespread use to isolate marker-free crops.


Assuntos
DNA de Plantas/genética , Marcadores Genéticos , Plantas Geneticamente Modificadas/genética , Plastídeos/genética , Recombinação Genética , Transformação Genética , Transgenes , DNA Nucleotidiltransferases , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sequências Repetitivas de Ácido Nucleico
20.
Methods Mol Biol ; 2317: 283-290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028776

RESUMO

Chloroplast biotechnology has assumed great importance in the past 20 years and, thanks to the numerous advantages as compared to conventional transgenic technologies, has been applied in an increasing number of plant species but still very much limited. Hence, it is of outmost importance to extend the range of species in which plastid transformation can be applied. Sugar beet (Beta vulgaris L.) is an important industrial crop of the temperate zone in which chloroplast DNA is not transmitted trough pollen. Transformation of the sugar beet genome is performed in several research laboratories, conversely sugar beet plastome genetic transformation is far away from being considered a routine technique. We describe here a method to obtain transplastomic sugar beet plants trough biolistic transformation. The availability of sugar beet transplastomic plants should avoid the risk of gene flow between these cultivated genetic modified sugar beet plants and the wild-type plants or relative wild species.


Assuntos
Beta vulgaris/genética , DNA de Cloroplastos/genética , Engenharia Genética/métodos , Plantas Geneticamente Modificadas/genética , Plastídeos/genética , Transformação Genética , Beta vulgaris/crescimento & desenvolvimento , Produtos Agrícolas , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...