Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1409203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994127

RESUMO

Both cell surface and soluble extracellular glycosaminoglycans have been shown to interfere with the exogenous nucleic acid delivery efficiency of non-viral gene delivery, including lipoplex and polyplex-mediated transfection. Most gene therapy viral vectors used commercially and in clinical trials are currently manufactured using transient transfection-based bioprocesses. The growing demand for viral vector products, coupled with a global shortage in production capability, requires improved transfection technologies and processes to maximise process efficiency and productivity. Soluble extracellular glycosaminoglycans were found to accumulate in the conditioned cell culture medium of suspension adapted HEK293T cell cultures, compromising transfection performance and lentiviral vector production. The enzymatic degradation of specific, chondroitin sulphate-based, glycosaminoglycans with chondroitinase ABC was found to significantly enhance transfection performance. Additionally, we report significant improvements in functional lentiviral vector titre when cultivating cells at higher cell densities than those utilised in a control lentiviral vector bioprocess; an improvement that was further enhanced when cultures were supplemented with chondroitinase ABC prior to transfection. A 71.2% increase in functional lentiviral vector titre was calculated when doubling the cell density prior to transfection compared to the existing process and treatment of the high-density cell cultures with 0.1 U/mL chondroitinase ABC resulted in a further 18.6% increase in titre, presenting a method that can effectively enhance transfection performance.

2.
Schizophr Res ; 271: 100-109, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018984

RESUMO

BACKGROUND: The onset of schizophrenia is concurrent with multiple key processes of brain development, such as the maturation of inhibitory networks. Some of these processes are proposed to depend on the development of perineuronal nets (PNNs), a specialized extracellular matrix structure that surrounds preferentially parvalbumin-containing GABAergic interneurons (PVIs). PNNs are fundamental to the postnatal experience-dependent maturation of inhibitory brain circuits. PNN abnormalities have been proposed as a core pathophysiological finding in SCZ, being linked to widespread consequences on circuit disruptions underlying SCZ symptoms. OBJECTIVE: Here, we systematically evaluate PNN density in postmortem brain studies of subjects with SCZ. METHODS: A systematic search in 3 online databases (PubMed, Embase, and Scopus) and qualitative review analysis of case-control studies reporting on PNN density in the postmortem brain of subjects with SCZ were performed. RESULTS: Results consisted of 7 studies that were included in the final analysis. The specific brain regions investigated in the studies varied, with most attention given to the dorsolateral prefrontal cortex (DLPFC; 3 studies) and amygdala (2 studies). Findings were mostly positive for reduced PNN density in SCZ, with 6 of the 7 studies reporting significant reductions and one reporting a tendency towards reduced PNN density. Overall, tissue processing methodologies were heterogeneous. CONCLUSIONS: Despite few studies, PNN density was consistently reduced in SCZ across different brain regions. These findings support evidence that implicates deficits in PNN density in the pathophysiology of SCZ. However, more studies, preferably using similar methodological approaches as well as replication of findings, are needed.

3.
Microb Cell ; 11: 221-234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975022

RESUMO

Human breastmilk is composed of many well researched bioactive components crucial for infant nutrition and priming of the neonatal microbiome and immune system. Understanding these components gives us crucial insight to the health and wellbeing of infants. Research surrounding glycosaminoglycans (GAGs) previously focused on those produced endogenously; however, recent efforts have shifted to understanding GAGs in human breastmilk. The structural complexity of GAGs makes detection and analysis complicated therefore, research is time consuming and limited to highly specialised teams experienced in carbohydrate analysis. In breastmilk, GAGs are present in varying quantities in four forms; chondroitin sulphate, heparin/heparan sulphate, dermatan sulphate and hyaluronic acid, and are hypothesised to behave similar to other bioactive components with suspected roles in pathogen defense and proliferation of beneficial gut bacteria. Chondroitin sulphate and heparin, being the most abundant, are expected to have the most impact on infant health. Their decreasing concentration over lactation further indicates their role and potential importance during early life.

4.
Int J Biol Macromol ; 266(Pt 2): 131425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583830

RESUMO

Nano-MoS2 exhibit oxidoreductase-like activities, and has been shown to effectively eliminate excessive intracellular ROS and inhibit Aß aggregation, thus demonstrating promising potential for anti-Alzheimer's disease (anti-AD) intervention. However, the low water dispersibility and high toxicity of nano-MoS2 limits its further application. In this study, we developed a chondroitin sulphate (CS)-modified MoS2 nanoenzyme (CS@MoS2) by harnessing the excellent biocompatibility of CS and the exceptional activities of nano-MoS2 to explore its potential in anti-AD research. Promisingly, CS@MoS2 significantly inhibited Aß1-40 aggregation and prevented toxic injury in SH-SY5Y cells caused by Aß1-40. In addition, CS@MoS2 protected these cells from oxidative stress damage by regulating ROS production, as well as promoting the activities of SOD and GSH-Px. CS@MoS2 also modulated the intracellular Ca2+ imbalance and downregulated Tau hyperphosphorylation by activating GSK-3ß. CS@MoS2 suppressed p-NF-κB (p65) translocation to the nucleus by inhibiting MAPK phosphorylation, and modulated the expression of downstream anti- and proinflammatory cytokines. Owing to its multifunctional activities, CS@MoS2 effectively improved spatial learning, memory, and anxiety in D-gal/AlCl3-induced AD mice. Taken together, these results indicate that CS@MoS2 has significant potential for improving the therapeutic efficacy of the prevention and treatment of AD, while also presenting a novel framework for the application of nanoenzymes.


Assuntos
Doença de Alzheimer , Sulfatos de Condroitina , Dissulfetos , Molibdênio , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Animais , Camundongos , Humanos , Molibdênio/química , Molibdênio/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Peptídeos beta-Amiloides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular Tumoral , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Masculino , Modelos Animais de Doenças
5.
Int J Biol Macromol ; 267(Pt 2): 131577, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615853

RESUMO

Chondroitin sulphates (CSs) are the most well-known glycosaminoglycans (GAGs) found in any living organism, from microorganisms to invertebrates and vertebrates (including humans), and provide several health benefits. The applications of CSs are numerous including tissue engineering, osteoarthritis treatment, antiviral, cosmetics, and skincare applications. The current commercial production of CSs mostly uses animal, bovine, porcine, and avian tissues as well as marine organisms, marine mammals, sharks, and other fish. The production process consists of tissue hydrolysis, protein removal, and purification using various methods. Mostly, these are chemical-dependent and are complex, multi-step processes. There is a developing trend for abandonment of harsh extraction chemicals and their substitution with different green-extraction technologies, however, these are still in their infancy. The quality of CSs is the first and foremost requirement for end-applications and is dependent on the extraction and purification methodologies used. The final products will show different bio-functional properties, depending on their origin and production methodology. This is a comprehensive review of the characteristics, properties, uses, sources, and extraction methods of CSs. This review emphasises the need for extraction and purification processes to be environmentally friendly and gentle, followed by product analysis and quality control to ensure the expected bioactivity of CSs.


Assuntos
Sulfatos de Condroitina , Animais , Sulfatos de Condroitina/química , Humanos , Cosméticos/química , Engenharia Tecidual
6.
Cancers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539478

RESUMO

The role of the interaction with cell-surface glycosaminoglycans (GAGs) during in vivo HSV infection is currently unknown. The rationale of the current investigation was to improve the anticancer efficacy of systemically administered retargeted oHSVs (ReHVs) by decreasing their binding to GAGs, including those of endothelial cells, blood cells, and off-tumor tissues. As a proof-of-principle approach, we deleted seven amino acids critical for interacting with GAGs from the glycoprotein C (gC) of R-337 ReHV. The modification in the resulting R-399 recombinant prolonged the half-life in the blood of systemically administered R-399 and enhanced its biodistribution to tumor-positive lungs and to the tumor-negative liver. Ultimately, it greatly increased the R-399 efficacy against metastatic-like lung tumors upon IV administration but not against subcutaneous tumors upon IT administration. These results provide evidence that the increased efficacy seen upon R-399 systemic administration correlated with the slower clearance from the circulation. To our knowledge, this is the first in vivo evidence that the partial impairment of the gC interaction with GAGs resulted in a prolonged half-life of circulating ReHV, an increase in the amount of ReHV taken up by tissues and tumors, and, ultimately, an enhanced anticancer efficacy of systemically administered ReHV.

7.
Mar Drugs ; 22(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535480

RESUMO

Thromboembolic conditions are the most common cause of death in developed countries. Anticoagulant therapy is the treatment of choice, and heparinoids and warfarin are the most adopted drugs. Sulphated polysaccharides extracted from marine organisms have been demonstrated to be effective alternatives, blocking thrombus formation by inhibiting some factors involved in the coagulation cascade. In this study, four acidic glycan fractions from the marine sponge Sarcotragus spinosulus were purified by anion-exchange chromatography, and their anticoagulant properties were investigated through APTT and PT assays and compared with both standard glycosaminoglycans and holothurian sulphated polysaccharides. Moreover, their topographic localization was assessed through histological analysis, and their cytocompatibility was tested on a human fibroblast cell line. A positive correlation between the amount of acid glycans and the inhibitory effect towards both the intrinsic and extrinsic coagulation pathways was observed. The most effective anticoagulant activity was shown by a highly charged fraction, which accounted for almost half (about 40%) of the total hexuronate-containing polysaccharides. Its preliminary structural characterization, performed through infrared spectroscopy and nuclear magnetic resonance, suggested that it may consist of a fucosylated chondroitin sulphate, whose unique structure may be responsible for the anticoagulant activity reported herein for the first time.


Assuntos
Poríferos , Humanos , Animais , Polissacarídeos , Glicosaminoglicanos , Anticoagulantes , Coagulação Sanguínea , Sulfatos
8.
Med Devices (Auckl) ; 17: 47-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312113

RESUMO

Purpose: Medical Device Regulation (EU) 2017/745 requires the principal mode of action (MoA) to be demonstrated by experimental data. The MoA of Ialuril® Prefill (combined as HA+CS+CaCl2: sodium hyaluronate 1.6%, sodium chondroitin sulphate 2% w/v and calcium chloride 0.87%) Class III medical device, indicated for intravesical instillation to reduce urinary tract infections, has been evaluated on a 3D reconstructed human bladder epithelium (HBE). Methods: Three experimental designs; i) E. coli strain selection (DSM 103538, DSM 1103) to investigate the HA+CS+CaCl2 properties in modifying bacterial growth in liquid broth (CFU 4h and 24h) at 80%, 50% and 25% concentrations; ii) evaluation of film forming properties on HBE after 15 min exposure by quantifying caffeine permeation across the epithelium; iii) capacity to counteract E. coli adhesion and biofilm formation on colonized HBE by viable counts and ultrastructural analysis by scanning electron microscopy (SEM) using ciprofloxacin as the reference antimicrobial molecule. Results: No significant differences were observed in bacterial viability for both the E. coli strains. HA+CS+CaCl2 reduced caffeine permeation of 51.7% and 38.1% at 1h and 2h, respectively and determined a significant decrease in caffeine permeation rate at both timepoints supporting HA+CS+CaCl2 capacity to firmly adhere to the bladder epithelium creating a physical barrier on the surface. The viable counts in HBE treated tissues then infected with E. coli resulted not different from the negative control suggesting that the device did not inhibit E. coli growth. SEM images showed homogenous product distribution over the HBE surface and confirmed the capacity of HA+CS+CaCl2 to adhere to the bladder epithelium, counteracting biofilm formation. Conclusion: The results support the capacity of HA+CS+CaCl2 to counteract bacterial invasion by using a physico-mechanical mode of action: this medical device represents a valid alternative to antibiotics in the treatment of recurrent UTIs.

9.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251863

RESUMO

The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.


Assuntos
Células-Tronco Neurais , Proteoglicanas , Camundongos , Animais , Proteoglicanas/metabolismo , Sulfatos de Condroitina , Proteoglicanas de Sulfatos de Condroitina , Matriz Extracelular/metabolismo , Rombencéfalo/metabolismo , Células-Tronco Neurais/metabolismo
10.
J Indian Soc Periodontol ; 27(5): 496-502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781324

RESUMO

Background: The traditional treatment procedures which aimed at treating periodontal disease did not result in true periodontal regeneration. Unpredictability about osseous defect fill after periodontal flap surgery has stemmed in the research of a variety of regenerative materials. This randomized clinical trial was conducted to compare regenerative potential of Biostite® bone graft material with and without Paroguide® a bioresorbable membrane in the treatment of periodontal osseous defects. Materials and Methods: Twenty sites from a total of from ten patients were chosen for the study. Those sites were divided into experimental site A (Biostite®) and experimental site B (Biostite® with Paroguide®) at random. Plaque index and gingival index (GI) were the clinical parameters noted at baseline, 3rd, 6th and 9th months, whereas the probing pocket depth, clinical attachment level and gingival recession were noted at baseline, 6th and 9th months. Radiographic evaluation was made by using computer-assisted densitometric analysis. Intrasurgical measurements were done at baseline and 9 months. Statistical analysis was done using paired t-test and un-paired t-test. Results: Both experimental site A and B showed a significant reduction in plaque and GI. All clinical parameters as well as radiographic image analysis showed highly significant improvement from baseline to 9 months for both sites. Inter-group comparison does not show statistically significant improvement. Conclusion: The results of this study suggested that both Biostite® bone graft and Paroguide® membrane have promised encouraging results in the management of periodontal intrabony defects, however, the groups did differed to each other statistically.

11.
Nutrients ; 15(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630763

RESUMO

Urinary tract infections represent a common and significant health concern worldwide. The high rate of recurrence and the increasing antibiotic resistance of uropathogens are further worsening the current scenario. Nevertheless, novel key ingredients such as D-mannose, chondroitin sulphate, hyaluronic acid, and N-acetylcysteine could represent an important alternative or adjuvant to the prevention and treatment strategies of urinary tract infections. Several studies have indeed evaluated the efficacy and the potential use of these compounds in urinary tract health. In this review, we aimed to summarize the characteristics, the role, and the application of the previously reported compounds, alone and in combination, in urinary tract health, focusing on their potential role in urinary tract infections.


Assuntos
Infecções Urinárias , Sistema Urinário , Humanos , Ácido Hialurônico , Acetilcisteína/uso terapêutico , Sulfatos de Condroitina/uso terapêutico , Manose , Infecções Urinárias/tratamento farmacológico
12.
Pharm Dev Technol ; 28(8): 785-798, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610935

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease which affects around 1% globally leading to joint inflammation and disability. Etorocoxib (ETR) is a potent COX-2 inhibitor traditionally used orally to alleviate RA induced inflammation, yet it causes hepatic side effects on prolonged use. This study aims for in silico optimization of ETR polyelectrolyte complex (PEC) utilizing chondroitin sulphate (CS) and chitosan (CH) for transdermal delivery to RA-inflamed joints with a synergistic anti-inflammatory action owing to CS. An artificial neural network (ANN) combined with 22 factorial design was used to optimize the PEC formula according to particle size (PS) and entrapment efficiency (%EE) by varying CS and CH concentrations. The optimum ETR PEC was incorporated in a gel and examined for its in vitro release, ex vivo permeation, in vivo inflammatory biomarkers, and histopathological evaluation in rats. The optimized formula (F3) with 0.1 CH% w/w and 0.5 CS %w/w showed a PS of 214.98 ± 17.24 nm, %EE 75.31 ± 1.67%, and enhanced in vitro release profile, ex vivo permeation and in vivo anti-inflammatory effect compared to ETR gel via suppressing the expression of IL-6, TNF-α, and TGF-ß pro-inflammatory cytokines as well as the additional anti-inflammatory effect of CS. In conclusion, ETR-PEC gel holds promise as transdermal therapy for managing RA-induced inflammation.


Assuntos
Artrite Reumatoide , Quitosana , Ratos , Animais , Sulfatos de Condroitina , Polieletrólitos/uso terapêutico , Administração Cutânea , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Tamanho da Partícula
13.
J Biomol Struct Dyn ; : 1-14, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480263

RESUMO

Mpox virus is the latest member of the Poxviridae family of which small pox virus is a member. Monekypox virus has led to thousands of infections across the globe. Poxvirus gains entry into the cell making use of glycosaminoglycans like chondroitin sulphate and heparan sulphate. The interaction of the Mpox virus protein E8L also called cell surface binding protein is crucial for host cell attachment, membrane fusion and viral entry into the host cell leading to establishment of infection thus making this protein a very attractive therapeutic target. In this study we have tried to utilize the chondroitin sulphate binding groove present in the protein and identify molecules which are structurally similar to chondroitin sulphate. These molecules can thus occupy the same pocket but with a better binding affinity than chondroitin sulphate in order to outcompete the latter molecule from binding to the E8L protein and thus prevent it from performing its function. This study may pave the way for development of highly efficient therapeutics against the Mpox virus and further curb its infective potential.Communicated by Ramaswamy H. Sarma.

14.
Neural Regen Res ; 18(12): 2573-2581, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449592

RESUMO

Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.

15.
Mar Drugs ; 21(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367655

RESUMO

The skin is the largest organ of the human body, composed of a diverse range of cell types, non-cellular components, and an extracellular matrix. With aging, molecules that are part of the extracellular matrix undergo qualitative and quantitative changes and the effects, such as a loss of skin firmness or wrinkles, can be visible. The changes caused by the aging process do not only affect the surface of the skin, but also extend to skin appendages such as hair follicles. In the present study, the ability of marine-derived saccharides, L-fucose and chondroitin sulphate disaccharide, to support skin and hair health and minimize the effects of intrinsic and extrinsic aging was investigated. The potential of the tested samples to prevent adverse changes in the skin and hair through stimulation of natural processes, cellular proliferation, and production of extracellular matrix components collagen, elastin, or glycosaminoglycans was investigated. The tested compounds, L-fucose and chondroitin sulphate disaccharide, supported skin and hair health, especially in terms of anti-aging effects. The obtained results indicate that both ingredients support and promote the proliferation of dermal fibroblasts and dermal papilla cells, provide cells with a supply of sulphated disaccharide GAG building blocks, increase ECM molecule production (collagen and elastin) by HDFa, and support the growth phase of the hair cycle (anagen).


Assuntos
Sulfatos de Condroitina , Elastina , Humanos , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/metabolismo , Fucose/metabolismo , Células Cultivadas , Pele , Colágeno/farmacologia , Colágeno/metabolismo , Fibroblastos/metabolismo , Dissacarídeos/metabolismo
16.
J Chem Neuroanat ; 131: 102286, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169039

RESUMO

The extracellular matrix (ECM) plays a vital role in growth, guidance and survival of neurons in the central nervous system (CNS). The chondroitin sulphate proteoglycans (CSPGs) are a type of ECM proteins that are crucial for CNS homeostasis. The major goal of this study was to uncover the effects of astroglial activation and associated intensified expression of CSPGs on dendritogenesis, spinogenesis as well as on synaptic activity in cerebellum following protein malnutrition (PMN) and lipopolysaccharide (LPS) induced bacterial infection. Female Wistar albino rats (3 months old) were switched to control (20% protein) or low protein (LP, 8% protein) diet for 15 days followed by breeding. A set of pups born to control/LP mothers and maintained on respective diets throughout the experimental period constituted the control and LP groups, while a separate set of both control and LP group pups exposed to bacterial infection by a single intraperitoneal injection of LPS (0.3 mg/ kg body weight) on postnatal day-9 (P-9) constituted control+LPS and LP+LPS groups respectively. The consequences of astrogliosis induced CSPG upregulation on cerebellar cytoarchitecture and synaptic activity were studied using standard immunohistochemical and histological tools on P-21 and 6 months of age. The results revealed reactive astrogliosis and associated CSPG upregulation in a double-hit model of PMN and LPS induced bacterial infection resulted in disrupted dendritogenesis, reduced postsynaptic density protein (PSD-95) levels and a deleterious impact on normal spine growth. Such alterations frequently have the potential to cause synaptic dysregulation and inhibition of plasticity both during development as well as adulthood. At the light of our results, we can envision that upregulation of CSPGs in PMN and LPS co-challenged individuals might emerge as an important modulator of brain circuitry and a major causative factor for many neurological disorders.


Assuntos
Infecções Bacterianas , Desnutrição , Ratos , Animais , Feminino , Gliose/metabolismo , Lipopolissacarídeos/farmacologia , Ratos Wistar , Regulação para Cima , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cerebelo/metabolismo
17.
Phytomedicine ; 115: 154811, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094421

RESUMO

BACKGROUND: Proteoglycans (PGs) accumulation and inflammation are two interactional pathological processes of atherosclerosis (AS). Up to now, there is no ideal drug for decreasing these pathological changes. Gua Lou Er Chen decoction (GED) has been used to treat AS for several years. However, if GED could treat AS through reducing PGs accumulation and inflammation remains unknown. PURPOSE: This study was designed to illustrate whether GED could attenuate AS by reducing chondroitin sulphate proteoglycan (CSPG) expressions and alleviating inflammation. METHODS: In vivo study, apolipoprotein E-deficient mice were fed a high-fat diet to induce AS. In vitro study, oxidised low-density lipoprotein (ox-LDL) and tumour necrosis factor (TNF)-α were used to induce proteoglycans accumulation and inflammation changes of vascular smooth muscle cells (VSMCs) and RAW264.7 macrophages. Oil Red O was used to stain mouse aortic lipid plaque. Haematoxylin eosin staining was used to assess the pathological changes of aortic valve and thoracic aorta. Specialised kits were used to identify blood lipids and sGAGs. Immunofluorescence and immunohistochemistry was used to identify aortic valve CSPG and versican. Western blotting, enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction were used to measure versican, interleukin (IL)-6, TNF-α, and chondroitin sulphate (CS) synthetase expressions. CCK-8 was used to measure the cells proliferation. RESULTS: In vivo experiments revealed that GED significantly improved hyperlipidemia, lowered lipid plaque deposition in the aorta, and increased plaque stability of AS mice. In addition, further studies revealed that GED lowered the sGAGs, CSPG, and versican levels and down-regulated CS synthetase and inflammatory factor expressions. In vitro experiments revealed that GED decreased TNF-α expression in the RAW264.7 macrophage supernatant stimulated by ox-LDL; decreased versican, CS-related synthetase, and IL-6 expressions; reduced VSMC proliferation stimulated by ox-LDL; down-regulated sGAG and versican expressions of VSMCs stimulated by TNF-α. CONCLUSION: Our results demonstrated that GED could attenuate AS by reducing hyperlipidemia, hyper-expression of CSPG, and inflammation. This study might provide a novel insight into the development of innovative drug for AS.


Assuntos
Aterosclerose , Hiperlipidemias , Placa Aterosclerótica , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Versicanas , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipoproteínas LDL , Interleucina-6 , Lipídeos , Hiperlipidemias/tratamento farmacológico
18.
Mar Drugs ; 21(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37103360

RESUMO

Several studies have isolated chondroitin sulphate (CHS) from sharks' jaws or cartilage. However, there has been little research on CHS from shark skin. In the present study, we extracted a novel CHS from Halaelurus burgeri skin, which has a novel chemical structure and bioactivity on improvement in insulin resistance. Results using Fourier transform-infrared spectroscopy (FT-IR), 1H-nuclear magnetic resonance spectroscopy (1H-NMR), and methylation analysis showed that the structure of the CHS was [4)-ß-D-GlcpA-(1→3)-ß-D-GlcpNAc-(1→]n with 17.40% of sulfate group concentration. Its molecular weight was 238.35 kDa, and the yield was 17.81%. Experiments on animals showed that this CHS could dramatically decrease body weight, reduce blood glucose and insulin levels, lower lipid concentrations both in the serum and the liver, improve glucose tolerance and insulin sensitivity, and regulate serum-inflammatory factors. These results demonstrated that the CHS from H. burgeri skin has a positive effect in reducing insulin resistance because of its novel structure, which provides a significant implication for the polysaccharide as a functional food.


Assuntos
Resistência à Insulina , Tubarões , Animais , Sulfatos de Condroitina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Glicemia
19.
Eur J Pharm Biopharm ; 186: 43-54, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940886

RESUMO

Long-term oral tofacitinib (TOF) administration has been linked to serious side effects majorly immunological suppression. The aim of this work was to enhance the therapeutic efficacy of TOF by chondroitin sulphate (CS) coated proglycosomes through the anchoring of high-affinity CS to CD44 receptors on immune cells in the inflammatory region. The CS was coated onto the TOF-loaded proglycosomes (CS-TOF-PG) formulations and they were evaluated for in vitro drug release, ex vivo (permeation, dermatokinetics) studies. In vivo efficacy studies were carried out in Freund's complete adjuvant (CFA) induced arthritis model. The optimized CS-TOF-PG showed particle sizes of 181.13 ± 7.21 nm with an entrapment efficiency of 78.85 ± 3.65 %. Ex-vivo studies of CS-TOF-PG gel exhibited 1.5-fold high flux and 1.4-fold dermal retention compared to FD-gel. The efficacy study revealed that CS-TOF-PG showed a significant (P < 0.001) reduction in inflammation in arthritic rat paws compared to the TOF oral and FD gel. The current study ensured that the CS-TOF-PG topical gel system would provide a safe and effective formulation for localization and site-specific delivery of TOF at the RA site and overcome the adverse effects associated with the TOF.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Sulfatos de Condroitina , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Piperidinas
20.
Carbohydr Res ; 525: 108747, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773398

RESUMO

The clinically important anticoagulant heparin, a member of the glycosaminoglycan family of carbohydrates that is extracted predominantly from porcine and bovine tissue sources, has previously been shown to inhibit the ß-site amyloid precursor protein cleaving enzyme 1 (BACE-1), a key drug target in Alzheimer's Disease. In addition, heparin has been shown to exert favourable bioactivities through a number of pathophysiological pathways involved in the disease processes of Alzheimer's Disease including inflammation, oxidative stress, tau phosphorylation and amyloid peptide generation. Despite the multi-target potential of heparin as a therapeutic option for Alzheimer's disease, the repurposing of this medically important biomolecule has to-date been precluded by its high anticoagulant potential. An alternative source to mammalian-derived glycosaminoglycans are those extracted from marine environments and these have been shown to display an expanded repertoire of sequence-space and heterogeneity compared to their mammalian counterparts. Furthermore, many marine-derived glycosaminoglycans appear to retain favourable bioactivities, whilst lacking the high anticoagulant potential of their mammalian counterparts. Here we describe a sulphated, marine-derived glycosaminoglycan extract from the Atlantic Sea Scallop, Placopecten magellanicus that displays high inhibitory potential against BACE-1 (IC50 = 4.8 µg.mL-1) combined with low anticoagulant activity; 25-fold less than that of heparin. This extract possesses a more favourable therapeutic profile compared to pharmaceutical heparin of mammalian provenance and is composed of a mixture of heparan sulphate (HS), with a high content of 6-sulphated N-acetyl glucosamine (64%), and chondroitin sulphate.


Assuntos
Doença de Alzheimer , Pectinidae , Animais , Bovinos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/uso terapêutico , Anticoagulantes/química , Glicosaminoglicanos/farmacologia , Heparina/farmacologia , Mamíferos/metabolismo , Pectinidae/metabolismo , Suínos , Secretases da Proteína Precursora do Amiloide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...