Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cells ; 10(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571923

RESUMO

The Escherichia coli SOS response to DNA damage, discovered and conceptualized by Evelyn Witkin and Miroslav Radman, is the prototypic DNA-damage stress response that upregulates proteins of DNA protection and repair, a radical idea when formulated in the late 1960s and early 1970s. SOS-like responses are now described across the tree of life, and similar mechanisms of DNA-damage tolerance and repair underlie the genome instability that drives human cancer and aging. The DNA damage that precedes damage responses constitutes upstream threats to genome integrity and arises mostly from endogenous biology. Radman's vision and work on SOS, mismatch repair, and their regulation of genome and species evolution, were extrapolated directly from bacteria to humans, at a conceptual level, by Radman, then many others. We follow his lead in exploring bacterial molecular genomic mechanisms to illuminate universal biology, including in human disease, and focus here on some events upstream of SOS: the origins of DNA damage, specifically at chromosome fragile sites, and the engineered proteins that allow us to identify mechanisms. Two fragility mechanisms dominate: one at replication barriers and another associated with the decatenation of sister chromosomes following replication. DNA structures in E. coli, additionally, suggest new interpretations of pathways in cancer evolution, and that Holliday junctions may be universal molecular markers of chromosome fragility.


Assuntos
Sítios Frágeis do Cromossomo , Dano ao DNA , Reparo do DNA , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Resposta SOS em Genética , Animais , Proteínas de Escherichia coli/genética , Humanos
2.
Cell Rep ; 32(12): 108179, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966779

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene and deficiency of a functional FMRP protein. FMRP is known as a translation repressor whose nuclear function is not understood. We investigated the global impact on genome stability due to FMRP loss. Using Break-seq, we map spontaneous and replication stress-induced DNA double-strand breaks (DSBs) in an FXS patient-derived cell line. We report that the genomes of FXS cells are inherently unstable and accumulate twice as many DSBs as those from an unaffected control. We demonstrate that replication stress-induced DSBs in FXS cells colocalize with R-loop forming sequences. Exogenously expressed FMRP in FXS fibroblasts ameliorates DSB formation. FMRP, not the I304N mutant, abates R-loop-induced DSBs during programmed replication-transcription conflict. These results suggest that FMRP is a genome maintenance protein that prevents R-loop accumulation. Our study provides insights into the etiological basis for FXS.


Assuntos
Quebra Cromossômica , Replicação do DNA , Síndrome do Cromossomo X Frágil/genética , Genoma Humano , Estresse Fisiológico , Afidicolina/farmacologia , Linhagem Celular , Quebra Cromossômica/efeitos dos fármacos , DNA/metabolismo , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Modelos Biológicos , Mutação/genética , Estruturas R-Loop , RNA/metabolismo , Estresse Fisiológico/efeitos dos fármacos
3.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784829

RESUMO

The past two decades have seen extensive research done to pinpoint the role of microRNAs (miRNAs) that have led to discovering thousands of miRNAs in humans. It is not, therefore, surprising to see many of them implicated in a number of common as well as rare human diseases. In this review article, we summarize the progress in our understanding of miRNA-related research in conjunction with different types of cancers and neurodegenerative diseases, as well as their potential in generating more reliable diagnostic and therapeutic approaches.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Animais , Apoptose/genética , Ciclo Celular/genética , Sobrevivência Celular/genética , Ontologia Genética , Humanos , Neoplasias/patologia , Neoplasias/terapia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia
4.
Proc Natl Acad Sci U S A ; 117(28): 16527-16536, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601218

RESUMO

Folate deprivation drives the instability of a group of rare fragile sites (RFSs) characterized by CGG trinucleotide repeat (TNR) sequences. Pathological expansion of the TNR within the FRAXA locus perturbs DNA replication and is the major causative factor for fragile X syndrome, a sex-linked disorder associated with cognitive impairment. Although folate-sensitive RFSs share many features with common fragile sites (CFSs; which are found in all individuals), they are induced by different stresses and share no sequence similarity. It is known that a pathway (termed MiDAS) is employed to complete the replication of CFSs in early mitosis. This process requires RAD52 and is implicated in generating translocations and copy number changes at CFSs in cancers. However, it is unclear whether RFSs also utilize MiDAS and to what extent the fragility of CFSs and RFSs arises by shared or distinct mechanisms. Here, we demonstrate that MiDAS does occur at FRAXA following folate deprivation but proceeds via a pathway that shows some mechanistic differences from that at CFSs, being dependent on RAD51, SLX1, and POLD3. A failure to complete MiDAS at FRAXA leads to severe locus instability and missegregation in mitosis. We propose that break-induced DNA replication is required for the replication of FRAXA under folate stress and define a cellular function for human SLX1. These findings provide insights into how folate deprivation drives instability in the human genome.


Assuntos
Endodesoxirribonucleases/metabolismo , Ácido Fólico/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Mitose , Rad51 Recombinase/metabolismo , DNA/genética , DNA/metabolismo , Reparo do DNA , Endodesoxirribonucleases/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Rad51 Recombinase/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinases/genética , Recombinases/metabolismo
5.
Genes (Basel) ; 10(7)2019 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-31284605

RESUMO

A conspicuous cell-shape phenotype known as "screwy" was reported to result from mutations at two or three uncharacterized loci in the ciliate Paramecium tetraurelia. Here, we describe a new screwy mutation, Spinning Top, which appeared spontaneously in the cross of an unrelated mutant with reference strain 51. The macronuclear (MAC) genome of the Spinning Top mutant is shown to lack a ~28.5-kb segment containing 18 genes at the end of one chromosome, which appears to result from a collinear deletion in the micronuclear (MIC) genome. We tested several candidate genes from the deleted locus by dsRNA-induced silencing in wild-type cells, and identified a single gene responsible for the phenotype. This gene, named Spade, encodes a 566-aa glutamine-rich protein with a C2HC zinc finger. Its silencing leads to a fast phenotype switch during vegetative growth, but cells recover a wild-type phenotype only 5-6 divisions after silencing is stopped. We analyzed 5 independently-obtained mutant alleles of the Sc1 locus, and concluded that all of them also lack the Spade gene and a number of neighboring genes in the MAC and MIC genomes. Mapping of the MAC deletion breakpoints revealed two different positions among the 5 alleles, both of which differ from the Spinning Top breakpoint. These results suggest that this MIC chromosome region is intrinsically unstable in strain 51.


Assuntos
Genes de Protozoários , Paramecium tetraurellia/genética , Proteínas de Protozoários/genética , Fragilidade Cromossômica , Mutação , Fenótipo
6.
Cell Cycle ; 14(14): 2251-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26030591

RESUMO

Although every organism shares some common features of replication, this process varies greatly among eukaryotic species. Current data show that mathematical models of the organization of origins based on possibility theory may be applied (and remain accurate) in every model organism i.e. from yeast to humans. The major differences lie within the dynamics of origin firing and the regulation mechanisms that have evolved to meet new challenges throughout the evolution of the organism. This article elaborates on the relations between chromatin structure, organization of origins, their firing times and the impact that these features can have on genome stability, showing both differences and parallels inside the eukaryotic domain.


Assuntos
Replicação do DNA , Origem de Replicação/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Teóricos , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Exp Cell Res ; 329(1): 85-93, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25281304

RESUMO

DNA replication is a fundamental process of the cell that ensures accurate duplication of the genetic information and subsequent transfer to daughter cells. Various pertubations, originating from endogenous or exogenous sources, can interfere with proper progression and completion of the replication process, thus threatening genome integrity. Coordinated regulation of replication and the DNA damage response is therefore fundamental to counteract these challenges and ensure accurate synthesis of the genetic material under conditions of replication stress. In this review, we summarize the main sources of replication stress and the DNA damage signaling pathways that are activated in order to preserve genome integrity during DNA replication. We also discuss the association of replication stress and DNA damage in human disease and future perspectives in the field.


Assuntos
Dano ao DNA/genética , Replicação do DNA , Doença/genética , Instabilidade Genômica , Animais , Humanos
8.
G3 (Bethesda) ; 1(5): 327-35, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22384343

RESUMO

Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.

9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-529255

RESUMO

0.05).⑥ The incidence of MSI at D3S1234,D3S4103,D3S1300 in recurring cases was 83.33 %,but the ratio of MSI inprimary cases was 30.77 %,the former was remarkablyhigher than the latter(P=0.004).CONCLUSION ①Microsatellite analysis showed that both LOH andMSI of FHIT gene existed in laryngeal carcinoma andhypopharyngeal carcinoma,the former was morecommon.② FHIT gene participates the developmenof laryngeal carcinoma and hypopharyngeal carcinoma and may be one of the candidate tumor suppressor genes.③ MSI of FHIT gene may be correlated with recurrence of laryngeal and hypopharyngeal carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...