Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
1.
Clin Toxicol (Phila) ; 62(7): 468-471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38966917

RESUMO

INTRODUCTION: From at least the fifteenth to late nineteenth centuries, peasants in the Austrian province of Styria ate up to several hundred milligrams of arsenic trioxide or sulfide daily or weekly for periods up to a number of years. Taking these doses of arsenic was believed to increase muscular power and enhance the beauty and sexual attractiveness of peasant girls. There do not appear to be contemporaneous records of the known consequences of chronic arsenic exposure. The historical records of arsenic eating there are reviewed and appear to be valid. The benefits are subjective judgements by arsenic eaters. The lack of objective reports of the anticipated external and internal clinical and pathological effects of arsenic poisoning depends on a smaller number of clinical accounts and autopsy reports and the general medical literature of those times, so it is weaker, but it is consistent. CAN THE CLAIMED BENEFITS OF ARSENIC EATING AND THE APPARENT ABSENCE OF HARMFUL TOXIC EFFECTS BE TRUE?: Why the arsenic eaters did not show the well-known consequences of prolonged exposure to high doses of arsenic is not known. Possible explanations include increases in detoxifying metabolism in the consumers due to induced genomic changes and selection in people and in the gut microbiome, as shown in other populations. Whether these effects would suffice to protect people against their high doses of arsenic has not been explored. CONCLUSION: Although the nature and mechanisms of arsenic toxicity have been extensively described, much still remains to be discovered.


Assuntos
Intoxicação por Arsênico , Humanos , História do Século XIX , História do Século XVII , História do Século XVIII , História do Século XV , História do Século XVI , Arsênio/toxicidade , Feminino , Contaminação de Alimentos , História do Século XX , Trióxido de Arsênio , Arsenicais/efeitos adversos
2.
Mar Pollut Bull ; 206: 116749, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032215

RESUMO

The rejected brines from desalination plants contain significant amounts of heavy metals. In this study, we evaluated the effectiveness of Phallusia nigra Savigny, 1816 (P. nigra) in removing vanadium from the rejected brines of desalination plants through the bioaccumulation process. Initial assessments revealed a remarkably high accumulation rate of vanadium in P. nigra with a bioaccumulation factor exceeding 4.7 × 104 in the tunic and 5.1 × 105 in the mantle body. Acclimation experiments demonstrated that P. nigra could survive salinities up to 56 practical salinity units (psu), temperatures of ≤32 °C, and pH of 6.5-8.5. We employed the L-16 Taguchi approach in experimental design to optimize environmental conditions for vanadium removal by P.nigra. Our results indicated that temperature has the most significant effect on increasing vanadium bioaccumulation in P. nigra, followed by salinity and pH. Under optimal conditions, the vanadium concentration reached 1892.30 ppm in the entire body of P. nigra compared to 350 ppm in natural conditions. Considering that, a high concentration of vanadium is toxic to the environment and the conventional methods of its removal from brine are costly and include the use of chemicals that pollute the environment, therefore, vanadium removal from brine using P. nigra can be considered a cost-effective and environmentally friendly method in the future, as opposed to some chemical methods.

3.
Environ Toxicol Chem ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980263

RESUMO

The long-term impacts of radiocontaminants (and the associated risks) for ecosystems are still subject to vast societal and scientific debate while wildlife is chronically exposed to various sources and levels of either environmental or anthropogenic ionizing radiation from the use of nuclear energy. The present study aimed to assess induced phenotypical responses in both male and female gammarids after short-term continuous γ-irradiation, acting as a typical well-characterized genotoxic stressor that can interact directly with living matter. In particular, we started characterizing the effects using standardized measurements for biological effects on few biological functions for this species, especially feeding inhibition tests, molting, and reproductive ability, which have already been proven for chemical substances and are likely to be disturbed by ionizing radiation. The results show no significant differences in terms of the survival of organisms (males and females), of their short-term food consumption which is linked to the general health status (males and females), and of the molting cycle (females). In contrast, exposure significantly affected fecundity (number of embryos produced) at the highest dose rates for irradiated females (51 mGy h-1) and males (5 and 51 mGy h-1). These results showed that, in gammarids, reproduction, which is a critical endpoint for population dynamics, is the most radiosensitive phenotypic endpoint, with significant effects recorded on male reproductive capacity, which is more sensitive than in females. Environ Toxicol Chem 2024;00:1-9. © 2024 SETAC.

4.
J Hazard Mater ; 476: 135038, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38941840

RESUMO

Nanoplastics (NPs) interact with cooccurring chemicals and natural organic matter (NOM) in the environment, forming complexes that can change their bioavailability and interfacial toxicity in aquatic organisms. This study aims to elucidate the single and combined impacts of 21-day chronic exposure to low levels of polystyrene NPs (size 80 nm) at 1 mg/L and 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES or F53B) at 200 µg/L in the presence and absence of NOM (humic acid-HA and bovine serum albumin-BSA at 10 mg/L) in adult zebrafish (Danio rerio). Our findings through multiple bioassays, revealed that the mixture group (M), comprising of NPs, F53B, HA, and BSA, caused a higher level of toxicity compared to the single NPs (AN), single F53B (AF), and combined NPs+F53B (ANF) groups. The mixture exposure caused the highest level of vacuolization and nuclear condensation in hepatocytes, and most of the intestinal villi were fused and highly reduced in villi length and crypt depth. Further, the T-AOC levels were significantly lower (p < 0.05), while the MDA levels in the liver and intestine were significantly higher (p < 0.05) in the M group with downregulation of nfkbiaa, while upregulation of prkcda, csf1ra, and il1b apoptosis genes in the liver. Pairwise comparison of gut microbiota showed significantly higher (p < 0.05) abundances of various genera in the M group, including Gordonia, Methylobacterium, Tundrisphaera, GKS98, Pedomicrobium, Clostridium, Candidatus and Anaerobacillus, as well as higher abundance of genera including pathogenic strains, while control group showed higher abundance of probiotic genus ZOR0006 than exposed group (p < 0.01). The transcriptomic analysis revealed highest number of DEGs in the M group (2815), followed by the AN group (506) and ANF group (206) with the activation of relaxin signaling pathway-RSP (slc9a1, slc9a2) and AMP-activated protein kinase (AMPK) pathway (plin1), and suppression of the toll-like receptor (TLR) pathway (tlr4a, tlr2, tlr1), cytokine-cytokine receptor interaction (CCRI) pathway (tnfb, il21r1, il21, ifng1), and peroxisome proliferator-activated receptors (PPAR) pathway (pfkfb3). Overall, toxicity in the M group was higher, indicating that the HA and BSA elevated the interfacial impacts of NPs and F53B in adult zebrafish after chronic environmentally relevant exposure, implying the revisitation of the critical interaction of NOM with co-occurring chemicals and associated impacts.

5.
Chemosphere ; 361: 142578, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857631

RESUMO

Cadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 µg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 µg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 µg/L Cd2+, and Maribacter at 300 µg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 µg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.


Assuntos
Cádmio , Metaboloma , Penaeidae , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Penaeidae/efeitos dos fármacos , Penaeidae/crescimento & desenvolvimento , Penaeidae/microbiologia , Penaeidae/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Metaboloma/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Aquicultura , Microbioma Gastrointestinal/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/efeitos dos fármacos
6.
Parasitol Res ; 123(5): 204, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709330

RESUMO

In recent years, there has been growing concern on the potential weakening of honey bees and their increased susceptibility to pathogens due to chronic exposure to xenobiotics. The present work aimed to study the effects on bees undergoing an infection by Nosema ceranae and being exposed to a frequently used in-hive acaricide, amitraz. To achieve this, newly emerged bees were individually infected with N. ceranae spores and/or received a sublethal concentration of amitraz in their diets under laboratory conditions. Mortality, food intake, total volume excrement, body appearance, and parasite development were registered. Bees exposed to both stressors jointly had higher mortality rates compared to bees exposed separately, with no difference in the parasite development. An increase in sugar syrup consumption was observed for all treated bees while infected bees fed with amitraz also showed a diminishment in pollen intake. These results coupled with an increase in the total number of excretion events, alterations in behavior and body surface on individuals that received amitraz could evidence the detrimental action of this molecule. To corroborate these findings under semi-field conditions, worker bees were artificially infected, marked, and released into colonies. Then, they were exposed to a commercial amitraz-based product by contact. The recovered bees showed no differences in the parasite development due to amitraz exposure. This study provides evidence to which extent a honey bee infected with N. ceranae could potentially be weakened by chronic exposure to amitraz treatment.


Assuntos
Nosema , Toluidinas , Animais , Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Abelhas/parasitologia , Nosema/efeitos dos fármacos , Nosema/fisiologia , Acaricidas
7.
J Environ Radioact ; 276: 107444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723324

RESUMO

The conceptual dynamic ecosystem model was developed to evaluate the self-organization of trophic structure in ecosystems during the course of biogenic succession. This model was applied to analyze the possible changes in the ecosystem under impact of the anthropogenic physical stressor - chronic exposure to ionizing irradiation. The model predicts that amount of the limiting biogenic nutrient in the environment can modify the ecological effects of ionizing radiation. Negative effects of the chronic exposure are less significant in ecosystems with high food supply. The model does not show presence of any ecological effect of radiation at the exposure rates less than the derived consideration reference levels, obtained by International Commission on Radiological Protection for individual nature organisms. If the dose rates are higher than those levels, radiation exposure can affect ecological interactions between species. The model shows that environmental hormesis can exist in the ecosystems, impacted by the chronic radiation exposure. The reason of this effect is change of the ecological coefficients (for example, decrease of the predation rate), which in the certain range of parameters leads to the increase of biomasses of all species at the same amount of the limiting biogenic nutrient in ecosystem. Trigger regimes exist in the model ecosystem with mixed-feeding consumers. Within the trigger area, the realization of a particular trophic structure depends on initial species biomasses. A hysteresis phenomenon exists in such ecosystems, which means that the successive changes in the trophic structures realized following the increase of the influencing factor are not reproduced in the same order if the influencing factor was gradually decreased back to its previous values. The model predicts for this case, that the radioactively contaminated ecosystem does not necessarily return to its initial trophic structure, despite the dose rate decreases to the initial levels.


Assuntos
Ecossistema , Cadeia Alimentar , Monitoramento de Radiação , Exposição à Radiação , Modelos Teóricos
8.
Ecotoxicol Environ Saf ; 279: 116486, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820877

RESUMO

Human exposure to radiofrequency electromagnetic fields (RF-EMF) is restricted to prevent thermal effects in the tissue. However, at very low intensity exposure "non-thermal" biological effects, like oxidative stress, DNA or chromosomal aberrations, etc. collectively termed genomic-instability can occur after few hours. Little is known about chronic (years long) exposure with non-thermal RF-EMF. We identified two neighboring housing estates in a rural region with residents exposed to either relatively low (control-group) or relatively high (exposed-group) RF-EMF emitted from nearby mobile phone base stations (MPBS). 24 healthy adults that lived in their homes at least for 5 years volunteered. The homes were surveyed for common types of EMF, blood samples were tested for oxidative status, transient DNA alterations, permanent chromosomal damage, and specific cancer related genetic markers, like MLL gene rearrangements. We documented possible confounders, like age, sex, nutrition, life-exposure to ionizing radiation (X-rays), occupational exposures, etc. The groups matched well, age, sex, lifestyle and occupational risk factors were similar. The years long exposure had no measurable effect on MLL gene rearrangements and c-Abl-gene transcription modification. Associated with higher exposure, we found higher levels of lipid oxidation and oxidative DNA-lesions, though not statistically significant. DNA double strand breaks, micronuclei, ring chromosomes, and acentric chromosomes were not significantly different between the groups. Chromosomal aberrations like dicentric chromosomes (p=0.007), chromatid gaps (p=0.019), chromosomal fragments (p<0.001) and the total of chromosomal aberrations (p<0.001) were significantly higher in the exposed group. No potential confounder interfered with these findings. Increased rates of chromosomal aberrations as linked to excess exposure with ionizing radiation may also occur with non-ionizing radiation exposure. Biological endpoints can be informative for designing exposure limitation strategies. Further research is warranted to investigate the dose-effect-relationship between both, exposure intensity and exposure time, to account for endpoint accumulations after years of exposure. As established for ionizing radiation, chromosomal aberrations could contribute to the definition of protection thresholds, as their rate reflects exposure intensity and exposure time.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Instabilidade Genômica , Estresse Oxidativo , Humanos , Masculino , Feminino , Campos Eletromagnéticos/efeitos adversos , Alemanha , Adulto , Pessoa de Meia-Idade , Instabilidade Genômica/efeitos da radiação , Aberrações Cromossômicas , Exposição Ambiental , Ondas de Rádio/efeitos adversos , Dano ao DNA
9.
Environ Int ; 187: 108651, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648692

RESUMO

BACKGROUND: Air pollution is a recognized risk factor for cardiovascular disease (CVD). Temperature is also linked to CVD, with a primary focus on acute effects. Despite the close relationship between air pollution and temperature, their health effects are often examined separately, potentially overlooking their synergistic effects. Moreover, fewer studies have performed mixture analysis for multiple co-exposures, essential for adjusting confounding effects among them and assessing both cumulative and individual effects. METHODS: We obtained hospitalization records for residents of 14 U.S. states, spanning 2000-2016, from the Health Cost and Utilization Project State Inpatient Databases. We used a grouped weighted quantile sum regression, a novel approach for mixture analysis, to simultaneously evaluate cumulative and individual associations of annual exposures to four grouped mixtures: air pollutants (elemental carbon, ammonium, nitrate, organic carbon, sulfate, nitrogen dioxide, ozone), differences between summer and winter temperature means and their long-term averages during the entire study period (i.e., summer and winter temperature mean anomalies), differences between summer and winter temperature standard deviations (SD) and their long-term averages during the entire study period (i.e., summer and winter temperature SD anomalies), and interaction terms between air pollutants and summer and winter temperature mean anomalies. The outcomes are hospitalization rates for four prevalent CVD subtypes: ischemic heart disease, cerebrovascular disease, heart failure, and arrhythmia. RESULTS: Chronic exposure to air pollutant mixtures was associated with increased hospitalization rates for all CVD subtypes, with heart failure being the most susceptible subtype. Sulfate, nitrate, nitrogen dioxide, and organic carbon posed the highest risks. Mixtures of the interaction terms between air pollutants and temperature mean anomalies were associated with increased hospitalization rates for all CVD subtypes. CONCLUSIONS: Our findings identified critical pollutants for targeted emission controls and suggested that abnormal temperature changes chronically affected cardiovascular health by interacting with air pollution, not directly.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Hospitalização , Estações do Ano , Temperatura , Hospitalização/estatística & dados numéricos , Doenças Cardiovasculares/epidemiologia , Humanos , Poluentes Atmosféricos/análise , Estados Unidos/epidemiologia , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Material Particulado/análise , Adulto
10.
Environ Pollut ; 351: 124024, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38685554

RESUMO

Organisms are generally exposed to target contaminant with stable concentrations in traditional ecotoxicological studies. However, it is difficult to truly represent the dynamics and complexity of actual aquatic pollution for risk management. Contaminants may enter nearby aquatic systems in pulsed exposure, thus resulting in that aquatic organisms will be exposed to contaminants at fluctuating concentrations. Especially during the season of summer, due to the changes in displacement or periodic emissions of veterinary antibiotics in aquaculture, algal blooms occur frequently in surrounding waters, thus leading to eutrophication of the water. Florfenicol (FFC) is currently widely used as a veterinary antibiotic, but the aquatic ecological risks of FFC under concentration fluctuations are still unknown. Therefore, the acute exposure, chronic exposure and pulsed exposure effects of FFC on Microcystis aeruginosa were investigated to comprehensively evaluate the ecological risk of FFC and raise awareness of the pulsed exposure mode. Results indicated that the toxic effects of FFC on M. aeruginosa were dominated by exposure mode, exposure duration, exposure frequency, and exposure concentration. The maximum growth inhibition rate of the 10 µg/L FFC treatment amounted to 4.07% during chronic exposure of 18 days. However, the growth inhibition rate decreased from 55.1% to 19.31% when algae was exposure to 10 µg/L FFC during the first pulsed exposure (8 h). Therefore, when the concentration of FFC was equal under chronic and pulsed exposure, FFC exhibited greater toxicity on M. aeruginosa in short pulsed exposure than in continuous exposure. In addition, repetitive pulsed exposure strengthened the resistance of M. aeruginosa on FFC. The adaptive regulation of algae was related to the duration and frequency of exposure. Above results suggested that traditional toxicity assessments lacked consideration for fluctuating concentrations during pollutant emissions, thus underestimating the environmental risk of contaminant. This investigation aims to facilitate the standardization of pulsed exposure.


Assuntos
Antibacterianos , Aquicultura , Poluentes Químicos da Água , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Microcystis/crescimento & desenvolvimento , Tianfenicol/análogos & derivados , Tianfenicol/toxicidade , Eutrofização , Monitoramento Ambiental/métodos
11.
BMC Public Health ; 24(1): 988, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594672

RESUMO

BACKGROUND: Emerging evidence has suggested significant associations between ambient air pollution and changes in hemoglobin levels or anemia in specific vulnerable groups, but few studies have assessed this relationship in the general population. This study aimed to evaluate the association between long-term exposure to air pollution and hemoglobin concentrations or anemia in general adults in South Korea. METHODS: A total of 69,830 Korean adults from a large-scale nationwide survey were selected for our final analysis. Air pollutants included particulate matter with an aerodynamic diameter less than or equal to 10 micrometers (PM10), particulate matter with an aerodynamic diameter less than or equal to 2.5 micrometers, nitrogen dioxide, sulfur dioxide (SO2), and carbon monoxide (CO). We measured the serum hemoglobin concentration to assess anemia for each participant. RESULTS: In the fully adjusted model, exposure levels to PM10, SO2, and CO for one and two years were significantly associated with decreased hemoglobin concentrations (all p < 0.05), with effects ranging from 0.15 to 0.62% per increase in interquartile range (IQR) for each air pollutant. We also showed a significant association of annual exposure to PM10 with anemia (p = 0.0426); the odds ratio (OR) [95% confidence interval (CI)] for anemia per each increase in IQR in PM10 was estimated to be 1.039 (1.001-1.079). This association was also found in the 2-year duration of exposure (OR = 1.046; 95% CI = 1.009-1.083; adjusted Model 2). In addition, CO exposure during two years was closely related to anemia (OR = 1.046; 95% CI = 1.004-1.091; adjusted Model 2). CONCLUSIONS: This study provides the first evidence that long-term exposure to air pollution, especially PM10, is significantly associated with reduced hemoglobin levels and anemia in the general adult population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Anemia , Adulto , Humanos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , República da Coreia/epidemiologia , Anemia/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
12.
Environ Pollut ; 349: 123901, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556147

RESUMO

Acetamiprid is the only neonicotinoid registered in the European Union because the risks of neonicotinoids to honey bees and other pollinators are strictly regulated. Herein, we orally exposed honey bee colonies to sublethal concentrations of acetamiprid (20 µg/L) under isolated conditions. After one month of continuous exposure, the emerging bees and queens were collected and analyzed via high-throughput label-free quantitative proteomics using a data-independent acquisition strategy. Six and 34 significantly differentially expressed proteins (DEPs) were identified in the emerging bees and queens, respectively. Mrjp3 was the only DEP found in both sample types/castes, and its opposite regulation illustrated a differential response. The DEPs in the emerging bees (H/ACA RNP, Rap1GAP, Mrjp3, and JHE) suggested that sublethal exposure to acetamiprid affected cell cycle-related signaling, which may affect the life history of workers in the colony. The DEPs with increased levels in queens, such as Mrjps 1-4 and 6-7, hymenoptaecin, and apidaecin 22, indicated an activated immune response. Additionally, the level of farnesyl pyrophosphate synthase (FPPS), which is essential for the mevalonate pathway and juvenile hormone biosynthesis, was significantly decreased in queens. The impaired utilization of juvenile hormone in queens supported the identification of additional DEPs. Furthermore, the proteome changes suggested the existence of increased neonicotinoid detoxification by UDP-glucuronosyltransferase and increased amino acid metabolism. The results suggest that the continuous exposure of bee colonies to acetamiprid at low doses (nanograms per gram in feed) may pose a threat to the colonies. The different exposure routes and durations for the emerging bees and queens in our experiment must be considered, i.e., the emerging bees were exposed as larvae via feeding royal jelly and beebread provided by workers (nurse bees), whereas the queens were fed royal jelly throughout the experiment. The biological consequences of the proteomic changes resulting from sublethal/chronic exposure require future determination.


Assuntos
Hormônios Juvenis , Neonicotinoides , Animais , Abelhas/efeitos dos fármacos , Neonicotinoides/toxicidade , Feminino , Inseticidas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Proteômica
13.
Environ Int ; 185: 108521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38508052

RESUMO

Electronic cigarettes (e-cigarettes) have rapidly gained popularity as alternatives to traditional combustible cigarettes. However, their long-term health impact remains uncertain. This study aimed to investigate the effects of chronic exposure to e-cigarette aerosol (ECA) in mice compared to conventional cigarette smoke (CS) exposure. The mice were exposed to air (control), low, medium, or high doses of ECA, or a reference CS dose orally and nasally for eight months. Various cardiovascular and pulmonary assessments have been conducted to determine the biological and prosthetic effects. Histopathological analysis was used to determine structural changes in the heart and lungs. Biological markers associated with fibrosis, inflammation, and oxidative stress were investigated. Cardiac proteomic analysis was applied to reveal the shared and unique protein expression changes in ECA and CS groups, which related to processes such as immune activation, lipid metabolism, and intracellular transport. Overall, chronic exposure to ECA led to adverse cardiovascular and pulmonary effects in mice, although they were less pronounced than those of CS exposure. This study provides evidence that e-cigarettes may be less harmful than combustible cigarettes for the long-term health of the cardiovascular and respiratory systems in mice. However, further human studies are needed to clarify the long-term health risks associated with e-cigarette use.


Assuntos
Fumar Cigarros , Sistemas Eletrônicos de Liberação de Nicotina , Animais , Humanos , Camundongos , Aerossóis/toxicidade , Pulmão , Proteômica
14.
Front Psychol ; 15: 1330469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469220

RESUMO

Introduction: It is well-established that chronic exposure to environmental toxins can have adverse effects on neuropsychological health, particularly in developing youths. However, home radon, a ubiquitous radiotoxin, has been seldom studied in this context. In the present study, we investigated the degree to which chronic everyday home radon exposure was associated with alterations in transdiagnostic mental health outcomes. Methods: A total of 59 children and adolescents ages 6- to 14-years-old (M = 10.47 years, SD = 2.58; 28 males) completed the study. Parents completed questionnaires detailing aspects of attention and executive function. We used a principal components analysis to derive three domains of neuropsychological functioning: 1) task-based executive function skills, 2) self-and emotion-regulation abilities, and 3) inhibitory control. Additionally, parents completed a home radon test kit and provided information on how long their child had lived in the tested home. We computed a radon exposure index per person based on the duration of time that the child had lived in the home and their measured home radon concentration. Youths were divided into terciles based on their radon exposure index score. Using a MANCOVA design, we determined whether there were differences in neuropsychological domain scores across the three groups, controlling for age, sex, and socioeconomic status. Results: There was a significant multivariate effect of radon group on neuropsychological dysfunction (λ = 0.77, F = 2.32, p = 0.038, ηp2 = 0.12). Examination of univariate effects revealed specific increases in self-and emotion-regulation dysfunction among the youths with the greatest degree of chronic home radon exposure (F = 7.21, p = 0.002, ηp2 = 0.21). There were no significant differences by group in the other tested domains. Discussion: The data suggest potential specificity in the neurotoxic effects of everyday home radon exposure in developing youths, with significant aberrations in self-and emotion-regulation faculties. These findings support the need for better public awareness and public health policy surrounding home radon safety and mitigation strategies.

15.
Ecotoxicol Environ Saf ; 273: 116149, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412632

RESUMO

It is still a serious public health issue that chronic kidney disease of uncertain etiology (CKDu) in Sri Lanka poses challenges in identification, prevention, and treatment. What environmental factors in drinking water cause kidney damage remains unclear. This study aimed to investigate the risks of various environmental factors that may induce CKDu, including water hardness, fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM). The research focused on comprehensive metabolome analysis, and correlation with transcriptomic and gut microbiota changes. Results revealed that chronic exposure led to kidney damage and pancreatic toxicity in adult zebrafish. Metabolomics profiling showed significant alterations in biochemical processes, with enriched metabolic pathways of oxidative phosphorylation, folate biosynthesis, arachidonic acid metabolism, FoxO signaling pathway, lysosome, pyruvate metabolism, and purine metabolism. The network analysis revealed significant changes in metabolites associated with renal function and diseases, including 20-Hydroxy-LTE4, PS(18:0/22:2(13Z,16Z)), Neuromedin N, 20-Oxo-Leukotriene E4, and phenol sulfate, which are involved in the fatty acyls and glycerophospholipids class. These metabolites were closely associated with the disrupted gut bacteria of g_ZOR0006, g_Pseudomonas, g_Tsukamurella, g_Cetobacterium, g_Flavobacterium, which belonged to dominant phyla of Firmicutes and Proteobacteria, etc., and differentially expressed genes (DEGs) such as egln3, ca2, jun, slc2a1b, and gls2b in zebrafish. Exploratory omics analyses revealed the shared significantly changed pathways in transcriptome and metabolome like calcium signaling and necroptosis, suggesting potential biomarkers for assessing kidney disease.


Assuntos
Água Potável , Insuficiência Renal Crônica , Animais , Água Potável/análise , Peixe-Zebra , Sri Lanka , Insuficiência Renal Crônica/etiologia , Metaboloma
16.
Environ Toxicol Pharmacol ; 106: 104387, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364936

RESUMO

Worldwide, disorders of the thyroid gland are a growing concern; such can be caused by exposure to contaminants, including agrochemicals used in conventional agriculture, which act as endocrine disruptors. The purpose of this study is to evaluate whether or not exposure to an environment with conventional agriculture leads to thyroid disruption. Mus musculus were used as bioindicator species, captured in two sites: a farm where conventional agriculture is practiced, and a place without agriculture. Thyroid histomorphometric and morphologic data were analyzed. The impacts of the agricultural environment over the thyroid were revealed, as indications of hypothyroidism were observed in exposed mice: the area and volume of epithelial cells were much lower. Alterations in thyroid histomorphology were also observed: lower follicular sphericity, irregularly delimited epithelium and increased exfoliation into the colloid. These results highlight the need for transition from current conventional agricultural systems towards organic systems.


Assuntos
Disruptores Endócrinos , Hipotireoidismo , Animais , Camundongos , Fazendas , Agricultura , Hipotireoidismo/induzido quimicamente
17.
Environ Pollut ; 346: 123544, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367689

RESUMO

A plethora of studies have shown the prominent hepatotoxicity caused by perfluorooctane sulfonate (PFOS), yet the research on the causality of F-53 B (an alternative for PFOS) exposure and liver toxicity, especially in mammals, is largely limited. To investigate the effects that chronic exposure to F-53 B exert on livers, in the present study, male SD rats were administrated with F-53 B in a certain dose range (0, 1, 10, 100, 1000 µg/L, eight rats per group) for 6 months via drinking water and the hepatotoxicity resulted in was explored. We reported that chronic exposure to 100 and 1000 µg/L F-53 B induced remarkable histopathological changes in liver tissues such as distinct swollen cells and portal vein congestion. In addition, the increase of cytokines IL-6, IL-2, and IL-8 upon long-term administration of F-53 B demonstrated the high level of inflammation. Moreover, F-53 B exposure was revealed to disrupt the lipid metabolism in the rat livers, mainly manifesting as the upregulation of some proteins involved in lipid synthesis and degradation, including ACC, FASN, SREBP-1c as well as ACOX1. These findings provided new evidence for the adverse effects caused by chronic exposure to F-53 B in rodents. It is crucial for industries, regulatory agencies as well as the public to remain vigilant about the adverse health effects associated with the emerging PFOS substitutes such as F-53 B. Implementation of regular monitoring and risk assessments is of great importance to alleviate environmental concerns towards PFOS alternatives exposure, and furthermore, to minimize the latent health risks to the public health.


Assuntos
Ácidos Alcanossulfônicos , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fluorocarbonos , Ratos , Masculino , Animais , Peixe-Zebra/metabolismo , Ratos Sprague-Dawley , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Mamíferos
18.
Environ Res ; 246: 118175, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215924

RESUMO

BACKGROUND: The relationship between long-term exposure to PM2.5 and mortality is well-established; however, the role of individual species is less understood. OBJECTIVES: In this study, we assess the overall effect of long-term exposure to PM2.5 as a mixture of species and identify the most harmful of those species while controlling for the others. METHODS: We looked at changes in mortality among Medicare participants 65 years of age or older from 2000 to 2018 in response to changes in annual levels of 15 PM2.5 components, namely: organic carbon, elemental carbon, nickel, lead, zinc, sulfate, potassium, vanadium, nitrate, silicon, copper, iron, ammonium, calcium, and bromine. Data on exposure were derived from high-resolution, spatio-temporal models which were then aggregated to ZIP code. We used the rate of deaths in each ZIP code per year as the outcome of interest. Covariates included demographic, temperature, socioeconomic, and access-to-care variables. We used a mixtures approach, a weighted quantile sum, to analyze the joint effects of PM2.5 species on mortality. We further looked at the effects of the components when PM2.5 mass levels were at concentrations below 8 µg/m3, and effect modification by sex, race, Medicaid status, and Census division. RESULTS: We found that for each decile increase in the levels of the PM2.5 mixture, the rate of all-cause mortality increased by 1.4% (95% CI: 1.3%-1.4%), the rate of cardiovascular mortality increased by 2.1% (95% CI: 2.0%-2.2%), and the rate of respiratory mortality increased by 1.7% (95% CI: 1.5%-1.9%). These effects estimates remained significant and slightly higher when we restricted to lower concentrations. The highest weights for harmful effects were due to organic carbon, nickel, zinc, sulfate, and vanadium. CONCLUSIONS: Long-term exposure to PM2.5 species, as a mixture, increased the risk of all-cause, cardiovascular, and respiratory mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Respiratórias , Humanos , Idoso , Estados Unidos/epidemiologia , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Poluição do Ar/análise , Níquel , Vanádio/análise , Medicare , Doenças Respiratórias/etiologia , Carbono/análise , Sulfatos , Zinco/análise , Exposição Ambiental/análise
19.
Sci Total Environ ; 918: 170366, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280605

RESUMO

Both NPs and PCBs are emerging contaminants widely distributed in the environment, and it is worth exploring whether the combination of the two contaminants causes serious pollution and harm. Therefore, we studied the effects of PS-NPs and PCB-44 alone and together after 96 h and 21 d of exposure to C. pyrenoidosa. The results showed that PS-NPs and PCB-44 affected the cell cycle of C. pyrenoidosa and inhibited its normal growth. Under PS-NPs and PCB-44 stress, the relative conductivity of the algal solution increased, the hydrophobicity of the algal cell surface decreased, and the synthesis of chlorophyll a and chlorophyll b was reduced. In addition to physiological, there are biochemical effects on C. pyrenoidosa. PS-NPs and PCB-44 exposure induced oxidative stress with significant changes in the enzymatic activities of SOD and CAT together with MDA content. Moreover, the relative expression of photosynthesis-related genes (psbA, rbcL, rbcS) all responded, negatively affecting photosynthesis. In particular, significant toxic effects were observed with single exposure to PCB-44 and co-exposure to PS-NPs and PCB-44, with similar trends of effects in acute and chronic experiments. Taken together, exposure to PS-NPs and PCB-44 caused negative effects on the growth and physiological biochemistry of C. pyrenoidosa. These results provide scientific information to further explore the effects of NPs and PCBs on aquatic organisms and ecosystems.


Assuntos
Chlorella vulgaris , Bifenilos Policlorados , Poluentes Químicos da Água , Poliestirenos/toxicidade , Clorofila A , Microplásticos , Bifenilos Policlorados/toxicidade , Ecossistema , Poluentes Químicos da Água/análise
20.
Food Chem Toxicol ; 183: 114305, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052405

RESUMO

Triclosan (TCS) is an antimicrobial compound incorporated into more than 2000 consumer products. This compound is frequently detected in the human body and causes ubiquitous contamination in the environment, thereby raising concerns about its impact on human health and environmental pollution. Here, we demonstrated that 20 weeks' exposure of TCS drove the development of glucose intolerance by inducing compositional and functional alterations in intestinal microbiota in rats. Fecal-transplantation experiments corroborated the involvement of gut microbiota in TCS-induced glucose-tolerance impairment. 16S rRNA gene-sequencing analysis of cecal contents showed that TCS disrupted the gut microbiota composition in rats and increased the ratio of Firmicutes to Bacteroidetes. Cecal metabolomic analyses detected that TCS altered host metabolic pathways that are linked to host glucose and amino acid metabolism, particularly branched-chain amino acid (BCAA) biosynthesis. BCAA measurement confirmed the increase in serum BCAAs in rats exposed to TCS. Western blot and immunostaining results further confirmed that elevated BCAAs stimulated mTOR, a nutrient-sensing complex, and following IRS-1 serine phosphorylation, resulted in insulin resistance and glucose intolerance. These results suggested that TCS may induce glucose metabolism imbalance by regulating BCAA concentration by remodeling the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Intolerância à Glucose , Triclosan , Humanos , Ratos , Animais , Intolerância à Glucose/induzido quimicamente , Triclosan/toxicidade , RNA Ribossômico 16S/genética , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...