Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Pharmacol Biochem Behav ; 239: 173757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574898

RESUMO

Depression is a major chronic mental illness worldwide, characterized by anhedonia and pessimism. Exposed to the same stressful stimuli, some people behave normally, while others exhibit negative behaviors and psychology. The exact molecular mechanisms linking stress-induced depressive susceptibility and resilience remain unclear. Connexin 43 (Cx43) forms gap junction channels between the astrocytes, acting as a crucial role in the pathogenesis of depression. Cx43 dysfunction could lead to depressive behaviors, and depression down-regulates the expression of Cx43 in the prefrontal cortex (PFC). Besides, accumulating evidence indicates that inflammation is one of the most common pathological features of the central nervous system dysfunction. However, the roles of Cx43 and peripheral inflammation in stress-susceptible and stress-resilient individuals have rarely been investigated. Thus, animals were classified into the chronic unpredictable stress (CUS)-susceptible group and the CUS-resilient group based on the performance of behavioral tests following the CUS protocol in this study. The protein expression of Cx43 in the PFC, the Cx43 functional changes in the PFC, and the expression levels including interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, IL-2, IL-10, and IL-18 in the peripheral serum were detected. Here, we found that stress exposure triggered a significant reduction in Cx43 protein expression in the CUS-susceptible mice but not in the CUS-resilient mice accompanied by various Cx43 phosphorylation expression and the changes of inflammatory signals. Stress resilience is associated with Cx43 in the PFC and fluctuation in inflammatory signaling, showing that therapeutic targeting of these pathways might promote stress resilience.


Assuntos
Conexina 43 , Inflamação , Córtex Pré-Frontal , Estresse Psicológico , Animais , Córtex Pré-Frontal/metabolismo , Conexina 43/metabolismo , Camundongos , Estresse Psicológico/metabolismo , Masculino , Inflamação/metabolismo , Resiliência Psicológica , Camundongos Endogâmicos C57BL , Depressão/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças , Comportamento Animal
2.
Brain Sci ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38672009

RESUMO

Stress-related mental disorders have become increasingly prevalent, thus endangering mental health worldwide. Exploring stress-associated brain alterations is vital for understanding the possible neurobiological mechanisms underlying these changes. Based on existing evidence, the brain endogenous cannabinoid system (ECS) plays a significant role in the stress response, and disruptions in its function are associated with the neurobiology of various stress-related disorders. This study primarily focuses on investigating the impact of chronic unpredictable stress (CUS) on the expression of hippocampal cannabinoid type 1 (CB1) receptors, part of the ECS, in adult male and female Wistar rats. Additionally, it explores whether environmental enrichment (EE) initiated during adolescence could mitigate the CUS-associated alterations in CB1 expression. Wistar rats, shortly after weaning, were placed in either standard housing (SH) or EE conditions for a duration of 10 weeks. On postnatal day 66, specific subgroups of SH or EE animals underwent a 4-week CUS protocol. Western blot (WB) analysis was conducted in the whole hippocampus of the left brain hemisphere to assess total CB1 protein expression, while immunohistochemistry (IHC) was performed on the right hemisphere to estimate the expression of CB1 receptors in certain hippocampal areas (i.e., CA1, CA3 and dentate gyrus-DG). The WB analysis revealed no statistically significant differences in total CB1 protein levels among the groups; however, reduced CB1 expression was found in specific hippocampal sub-regions using IHC. Specifically, CUS significantly decreased CB1 receptor expression in the CA1 and DG of both sexes, whereas in CA3 the CUS-associated decrease was limited to SH males. Interestingly, EE housing proved protective against these reductions. These findings suggest a region and sex-specific endocannabinoid response to chronic stress, emphasizing the role of positive early experiences in the protection of the adolescent brain against adverse conditions later in life.

3.
Neurobiol Stress ; 30: 100621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516563

RESUMO

Astrocytes have been implicated in stress responses and produce ciliary neurotrophic factor (CNTF), which we have shown in the mouse medial amygdala (MeA) to promote passive stress coping response only in females. Pharmacological inhibition of focal adhesion kinase (FAK) upregulates CNTF expression. Here, we found that inducible knockout of FAK in astrocytes or systemic treatment with an FAK inhibitor increased passive coping behavior, i.e., immobility, in an acute forced swim stress test in female, but not male, mice. Strikingly, four weeks of chronic unpredictable stress (CUS) did not further increase passive coping in female astrocytic FAK knockout mice, whereas it exacerbated it in female wildtype mice and male mice of both genotypes. These data suggest that astrocyte FAK inhibition is required for chronic stress-induced passive coping in females. Indeed, CUS reduced phospho-FAK and increased CNTF in the female MeA. Progesterone treatment after ovariectomy activated amygdala FAK and alleviated ovariectomy-induced passive coping in wildtype, but not astrocytic FAK knockout females. This suggests that progesterone-mediated activation of FAK in astrocytes reduces female stress responses. Finally, astrocytic FAK knockout or FAK inhibitor treatment increased CNTF expression in the MeA of both sexes, although not in the hippocampus. As mentioned, MeA CNTF promotes stress responses only in females, which may explain the female-specific role of astrocytic FAK inhibition. Together, this study reveals a novel female-specific progesterone-astrocytic FAK pathway that counteracts CNTF-mediated stress responses and points to opportunities for developing treatments for stress-related disorders in women.

4.
Brain Res Bull ; 208: 110903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367676

RESUMO

Chronic stress is a pervasive and complex issue that contributes significantly to various mental and physical health disorders. Using the previously established chronic unpredictable stress (CUS) model, which simulates human stress situations, it has been shown that chronic stress induces major depressive disorder (MDD) and memory deficiency. However, this established model is associated with several drawbacks, such as limited research reproducibility and the inability to sustain stress response. To resolve these issues, we developed a new CUS model (CUS+C) that included exogenous corticosterone exposure to induce continuous stress response. Thereafter, we evaluated the effect of this new model on brain health. Thus, we observed that the use of the CUS+C model decreased body and brain weight gain and induced an uncontrolled coat state as well as depressive-like behavior in adult mice. It also impaired learning memory function and cognitive abilities, reduced adult hippocampal neurogenesis as well as the number of hippocampal astrocytes, and downregulated glial fibrillary acidic protein expression in the brains of adult mice. These findings can promote the utilization and validity of the animal stress model and provide new information for the treatment of chronic stress-induced depressive and memory disorders.


Assuntos
Corticosterona , Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Corticosterona/farmacologia , Corticosterona/metabolismo , Transtorno Depressivo Maior/metabolismo , Astrócitos/metabolismo , Reprodutibilidade dos Testes , Hipocampo/metabolismo , Neurogênese/fisiologia , Estresse Psicológico , Depressão/metabolismo , Modelos Animais de Doenças
5.
Biochem Biophys Res Commun ; 699: 149564, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38277725

RESUMO

Psychosocial stress is increasing, causing a growing number of people to suffer from hair loss. Stress-related corticotropin-releasing hormone (CRH) is associated with hair loss, but the mechanism by which hair follicles respond to stress and CRH remain poorly understood. The aim of the study is to elucidate the association between CRH and stress-related hair regenerative disorders, and reveal the potential pathological mechanisms. A chronic unpredictable stress mouse model and a chronic social defeat stress mouse model were used to examine the role of CRH and stress-related hair regrowth. Chronic unpredictable stress and chronic social defeat stress increased the expression of CRH and CRH receptors (CRHRs), and contributed to the onset of hair-cycle abnormalities. Psychoemotional stress and stress-related CRH blocked hair follicle regrowth, which could be restored by astressin, a CRHR antagonist. Long-term exposure to either chronic unpredictable stress or CRH induced a decrease in autophagy, which could be partially rescued by astressin. Activating CRHR, by stress or CRH administration, decreased autophagy via the mTOR-ULK1 signaling pathway to mediate hair regenerative disorders, which could be partially reversed through enhancing autophagy by administration of brefeldin A. These findings indicate that CRH-mediated autophagy inhibition play an important role in stress-induced hair regenerative disorders. CRH regulates the local hypothalamic-pituitary-adrenal axis of hair follicles, but also plays an independent pathogenic role in stress-related hair regenerative disorders through CRH-mediated autophagy inhibition. This work contributes to the present understanding of hair loss and suggests that enhancing autophagy may have a therapeutic effect on stress-induced hair loss.


Assuntos
Hormônio Liberador da Corticotropina , Sistema Hipotálamo-Hipofisário , Camundongos , Animais , Humanos , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Folículo Piloso/metabolismo , Alopecia/metabolismo
6.
Food Sci Nutr ; 12(1): 459-470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268911

RESUMO

Depression is a global public health issue that is widely studied due to the large number of people it affects and its serious consequences. Clinical studies have shown that regular tea consumption may reduce depression risk. (-)-Epigallocatechin gallate (EGCG), the main tea polyphenol, was observed to alleviate depression, but the underlying mechanism has not been elucidated. In this study, chronic unpredictable mild stress (CUMS) was used to induce depression-like behavior in mice, and behavioral tests, such as sucrose preference test and forced swim test, were performed. Then, ELISA, western blot and QT-PCR tests were used to assess the expression of the key components of the NLRP3 inflammasome and its downstream inflammatory effectors (e.g., IL-1ß, IL-18), autophagy markers (Beclin-1, LC3, P62) and apoptosis markers (Bax, Bcl-2) in mouse brain tissues. Changes in serum lipid levels were also assessed. EGCG alleviated CUMS-induced depression-like behavioral changes in mice, reduced activation of the NLRP3 inflammasome, inhibited the mTOR signaling pathway, restored autophagy levels, reduced apoptosis marker expression and attenuated abnormal changes in blood lipid levels. Our study demonstrates that EGCG exerts antidepressive effects through multiple mechanisms, providing new insight into the pathological mechanism of depression and laying the foundation for the development of new therapeutic measures.

7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 281-303, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421431

RESUMO

Chronically stressed patients often have low vagal tone and increased levels of proinflammatory cytokines, which increase their risk for developing cardiac dysfunction. Transcutaneous vagus nerve stimulation (taVNS) is a way to activate the parasympathetic system, which has the ability to reduce inflammation and antagonize excessive sympathetic responses. However, the effectiveness of taVNS in treating cardiac dysfunction caused by chronic unpredictable stress (CUS) has not been studied. To investigate this, we first validated a rat model of CUS, in which the rats were exposed to random stressors daily for 8 weeks. Post CUS, the rats were treated with taVNS (1.0 ms, 6 V, 6 Hz, for 40 min × 2 weeks, alternatively) and their cardiac function and cholinergic flow were evaluated. Furthermore, serum cardiac troponin I (cTnI), cardiac caspase-3, inducible nitric oxide synthase (iNOS), and transforming growth factor (TGF)-ß1 expression in rats were also assessed. The chronically stressed rats showed depressed behavior with increased levels of serum corticosterone and proinflammatory cytokines. Electrocardiogram (ECG) and heart rate variability (HRV) studies revealed elevated heart rate, diminished vagal tone, and altered sinus rhythm in CUS rats. Furthermore, the CUS rats demonstrated cardiac hypertrophy and fibrosis with increased caspase-3, iNOS, and TGF-ß expression in their myocardium and increased levels of serum cTnI. Interestingly, alternate taVNS therapy for 2 weeks, post CUS, helped alleviate these cardiac abnormalities. These suggest that taVNS could be a useful adjunctive and non-pharmacological approach for managing CUS induced cardiac dysfunction.


Assuntos
Cardiopatias , Estimulação do Nervo Vago , Humanos , Ratos , Animais , Caspase 3 , Nervo Vago/fisiologia , Citocinas
8.
Toxicol Mech Methods ; 34(4): 335-349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38084769

RESUMO

Parkinson's disease (PD) is often accompanied by depression, which may appear before motor signs. Oleanolic acid (OA), a pentacyclic triterpenoid substance, have many pharmacological properties. However, its efficacy in treating PD-related chronic unpredictable stress (CUS) is unknown. Our study used behavioral, biochemical, and immunohistochemical techniques to assess how OA affected PDrelated CUS. Rotenone (1 mg/kg i.p. for first 21 days) was used to induce Parkinsonism, and modest psychological & environmental stresses generated CUS (from day 22 to day 43) in animals. The study included daily i.p.administration of OA (5, 10, and 20 mg/kg) from day 1 to day 57 in male swiss albino mice. Animals were evaluated for behavioral, biochemical parameters, neurotransmitters, and immunohistochemical expression following the treatment. Results of the study revealed that treatment with OA at all doses alleviated the core symptoms of CUS linked to PD and improved motor and non-motor function. OA therapy significantly lowered IL-1ß, TNF-α (p < 0.01, < 0.01, < 0.001), IL-6 (p < 0.05, < 0.01, < 0.001), oxidative stress (p < 0.05, < 0.01, < 0.01), and elevated norepinephrine (p < 0.05, < 0.01, < 0.01), dopamine, and serotonin (p < 0.05, < 0.01, < 0.001) levels. Moreover, OA therapy substantially reduced α-synuclein (p < 0.05, < 0.01, < 0.01) aggregation and increased BDNF (p < 0.05, < 0.01, < 0.001) & Nrf-2 (p < 0.05, < 0.01, < 0.01) levels, which boosts neuronal dopamine survival. The study's findings indicated that OA ameliorates depressive-like behavior persuaded by CUS in PD, decreases neuroinflammation, and improves neurotransmitter concentration via activating Nrf2-BDNF-dopaminergic pathway.


Oleanolic acid reversed the CUS-induced depressive behaviors in Parkinson's diseaseOleanolic acid alleviated oxidative stress, neuroinflammation, and improved brain neurotransmitter concentrationOleanolic acid reduced the α-synuclein aggregation and activated Nrf2-BDNF-dopaminergic signaling pathways to ameliorate motor and depressive behaviors in parkinsonian mice.

9.
Life Sci ; 334: 122222, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084673

RESUMO

AIM: Deep brain stimulation (DBS) is currently under investigation as a potential therapeutic approach for managing major depressive disorder (MDD) and ventromedial prefrontal cortex (vmPFC) is recognized as a promising target region. Therefore, the present study aimed to investigate a preclinical paradigm of bilateral vmPFC DBS and examine the molecular mechanisms underlying its antidepressant-like effects using chronic unpredictable stress (CUS) model in rats. MAIN METHODS: Male rats were subjected to stereotaxic surgery and deep brain stimulation paradigm in non-stressed and CUS rats respectively, and the therapeutic effect of DBS were assessed by a series of behavioral tests including sucrose preference test, open field test, elevated plus maze test, and forced swim test. The potential involvement of the BDNF/TrkB signaling pathway and its downstream effects in this process were also investigated using western blot. KEY FINDINGS: We identified that a stimulation protocol consisting of 130 Hz, 200 µA, 90 µs pulses administered for 5 h per day over a period of 7 days effectively mitigated CUS-induced depressive-like and anxiety-like behaviors in rats. These therapeutic effects were associated with the enhancement of the BDNF/TrkB signaling pathway and its downstream ERK1/2 activity. SIGNIFICANCE: These findings provide valuable insights into the potential clinical utility of vmPFC DBS as an approach of improving the symptoms experienced by individuals with MDD. This evidence contributes to our understanding of the neurobiological basis of depression and offers promise for the development of more effective treatments.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Maior , Ratos , Masculino , Animais , Depressão/tratamento farmacológico , Estimulação Encefálica Profunda/métodos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Transdução de Sinais , Estresse Psicológico/tratamento farmacológico , Hipocampo/metabolismo , Modelos Animais de Doenças
10.
Dev Psychobiol ; 65(7): e22422, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37796476

RESUMO

This study aims at investigating whether environmental enrichment (EE) initiated in adolescence can alter chronic unpredictable stress (CUS)-associated changes in astroglial and synaptic plasticity markers in male and female rats. To this end, we studied possible alterations in hippocampal glial fibrillary acidic protein (GFAP) and synaptophysin (SYN) in CUS rats previously housed in EE. Wistar rats on postnatal day (PND) 23 were housed for 10 weeks in standard housing (SH) or enriched conditions. On PND 66, animals were exposed to CUS for 4 weeks. SYN and GFAP expressions were evaluated in CA1 and CA3 subfields and dentate gyrus (DG). CUS reduced the expression of SYN in all hippocampal areas, whereas lower GFAP expression was evident only in CA1 and CA3. The reduced expression of SYN in DG and CA3 was evident to male SH/CUS rats, whereas the reduced GFAP expression in CA1 and CA3 was limited to SH/CUS females. EE housing increased the hippocampal expression of both markers and protected against CUS-associated decreases. Our findings indicate that the decreases in the expression of SYN and GFAP following CUS are region and sex-specific and underline the neuroprotective role of EE against these CUS-associated changes.


Assuntos
Hipocampo , Ratos , Masculino , Feminino , Animais , Ratos Wistar , Sinaptofisina/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo
11.
Neurobiol Stress ; 26: 100563, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37654512

RESUMO

Postpartum depression (PPD) is a major psychiatric complication of childbirth, affecting up to 20% of mothers, yet remains understudied. Mitochondria, dynamic organelles crucial for cell homeostasis and energy production, share links with many of the proposed mechanisms underlying PPD pathology. Brain mitochondrial function is affected by stress, a major risk factor for development of PPD, and is linked to anxiety-like and social behaviors. Considering the importance of mitochondria in regulating brain function and behavior, we hypothesized that mitochondrial dysfunction is associated with behavioral alterations in a chronic stress-induced rat model of PPD. Using a validated and translationally relevant chronic mild unpredictable stress paradigm during late gestation, we induced PPD-relevant behaviors in adult postpartum Wistar rats. In the mid-postpartum, we measured mitochondrial function in the prefrontal cortex (PFC) and nucleus accumbens (NAc) using high-resolution respirometry. We then measured protein expression of mitochondrial complex proteins and 4-hydroxynonenal (a marker of oxidative stress), and Th1/Th2 cytokine levels in PFC and plasma. We report novel findings that gestational stress decreased mitochondrial function in the PFC, but not the NAc of postpartum dams. However, in groups controlling for the effects of either stress or parity alone, no differences in mitochondrial respiration measured in either brain regions were observed compared to nulliparous controls. This decrease in PFC mitochondrial function in stressed dams was accompanied by negative behavioral consequences in the postpartum, complex-I specific deficits in protein expression, and increased Tumor Necrosis Factor alpha cytokine levels in plasma and PFC. Overall, we report an association between PFC mitochondrial respiration, PPD-relevant behaviors, and inflammation following gestational stress, highlighting a potential role for mitochondrial function in postpartum health.

12.
J Psychiatr Res ; 166: 100-114, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37757703

RESUMO

Major depressive disorder (MDD) is the most common and widespread mental disorder. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for MDD. The relation between the inhibition of serotonin reuptake in the central nervous system and remission from MDD remains controversial, as reuptake inhibition occurs rapidly, but remission from MDD takes weeks to months. Myelination-related deficits and white matter abnormalities were shown to be involved in psychiatric disorders such as MDD. This may explain the delay in remission following SSRI administration. The raphe nuclei (RN), located in the brain stem, consist of clusters of serotonergic (5-HT) neurons that project to almost all regions of the brain. Thus, the RN are an intriguing area for research of the potential effect of SSRI on myelination, and their involvement in MDD. MicroRNAs (miRNAs) regulate many biological features that might be altered by antidepressants. Two cohorts of chronic unpredictable stress (CUS) mouse model for depression underwent behavioral tests for evaluating stress, anxiety, and depression levels. Following application of the CUS protocol and treatment with the SSRI, citalopram, 48 mice of the second cohort were tested via magnetic resonance imaging and diffusion tensor imaging for differences in brain white matter tracts. RN and superior colliculus were excised from both cohorts and measured for changes in miRNAs, mRNA, and protein levels of candidate genes. Using MRI-DTI scans we found lower fractional anisotropy and axial diffusivity in brains of stressed mice. Moreover, both miR-30b-5p and miR-101a-3p were found to be downregulated in the RN following CUS, and upregulated following CUS and citalopram treatment. The direct binding of these miRNAs to Qki, and the subsequent effects on mRNA and protein levels of myelin basic protein (Mbp), indicated involvement of these miRNAs in myelination ultrastructure processes in the RN, in response to CUS followed by SSRI treatment. We suggest that SSRIs are implicated in repairing myelin deficits resulting from chronic stress that leads to depression.

13.
Front Cell Neurosci ; 17: 1254923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771931

RESUMO

Background: Microglia play an important role in the maintenance of brain and behavioral homeostasis. The protective effect of microglial replenishment was reported in neurological diseases, but whether microglial therapy would benefit psychiatric disorders such as schizophrenia has been unclear. As schizophrenia is a stress-vulnerable disorder and psychosocial stress promotes inflammation and microglial activation, we aim to understand how microglial replenishment works in stress-associated schizophrenia. Methods: We used a CSF1R-mediated pharmacological approach to study repopulated microglia (repMg) in a cohort of mice (n = 10/group) undergoing chronic unpredictable stress (CUS). We further studied a cohort of first-episode schizophrenia (FES, n = 74) patients who had higher perceived stress scores (PSS) than healthy controls (HCs, n = 68). Results: Reborn microglia attenuated CUS-induced learned hopelessness and social withdrawal but not anxiety in mice. Compared to control, CUS- or repMg-induced differentially expressed genes (DEGs) in the prefrontal cortex regulated nervous system development and axonal guidance. CUS also caused microglial hyper-ramification and increased engulfment of synaptophysin and vesicular glutamate transporter-2 by microglia and astrocytes, which were recovered in CUS + repMg (all p < 0.05). Moreover, FES patients had smaller hippocampal fimbria than HCs (p < 1e-7), which were negatively associated with PSS (r = -0.397, p = 0.003). Blood DEGs involved in immune system development were also associated with PSS and the right fimbria more prominently in FES patients than HCs (Zr, p < 0.0001). The KCNQ1 was a partial mediator between PSS and fimbria size (ß = -0.442, 95% CI: -1.326 ~ -0.087). Conclusion: Microglial replenishment may potentially benefit psychiatric disorders such as schizophrenia.

14.
Heliyon ; 9(7): e18369, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539192

RESUMO

Depression and anxiety are the most common mental health disorders. Though they affect people at any age and occur more often in females, the pathophysiological changes under these conditions are less investigated. In the present study, we examined the effects of age and stress on depression- and anxiety-related behaviors in female mice. Saccharin preference and the open field test were carried out before and after chronic unpredictable stress in 4-, 14- and 25-month-old female mice. After behavioral tests, mRNA levels of monoamine receptors in the hippocampus were measured by real-time RT-PCR. Chronic unpredictable stress decreased saccharin preference in 4-, 14- and 25-month-old mice and the time spent in the center in the open field test in 25-month-old mice. For monoamine receptors, analysis of variance revealed significant effects of age on mRNA levels of Htr1a, Htr2a, Htr6, Adra1a, Adrb2, and Adrb3, significant effects of stress on mRNA levels of Htr4, Adra2c, Adrb1, and Adrb2, and interactions of age × stress on mRNA levels of Htr1a, Htr5b, Adra1d, Adra2a, Adra2c, and Adrb1. Chronic unpredictable stress decreased mRNA levels of Htr4, Htr5b, Adra2c, and Adrb1 in 4-month-old female mice. Correlations were observed between saccharin preference and mRNA levels of Htr4, Htr5b, Htr6, Adra1d, Adra2a, and Adra2c in 4-month-old mice and between the time spent in the center in the open field test and mRNA levels of Htr1b in 4-month-old mice, Htr3a, Htr7, and Adrb2 in 14-month-old mice, and Drd2 in 4- and 14-month-old mice. Our findings support that stress induces depression- and anxiety-related behaviors and the expression of hippocampal monoamine receptors in an age-dependent manner in female mice.

15.
Psychopharmacology (Berl) ; 240(12): 2499-2513, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555927

RESUMO

BACKGROUND: Depression, one of the most significant mental disorders, is still poorly understood in terms of its pathogenetic mechanisms despite its well-recognized association with stress. OBJECTIVES: The current study's goal was to ascertain how the novel antidepressant drug vortioxetine (VOR) affected the BDNF (brain-derived neurotrophic factor), S100, amyloid ß (Aß), CREB (cAMP response element-binding protein), and NR2B, as well as its impact on depression-like behaviors, and tissue damage in an experimental rodent model of depression caused by chronic unpredictable stress. METHODS: We employed twenty-eight Wistar albino male rats, and we randomly divided them into four groups, each consisting of 7 rats: control, CUMS (chronic unpredictable mild stress), CUMS+vortioxetine (CUMS+VOR), and CUMS+fluoxetine (CUMS+FLU). Sucrose preference and forced swimming tests (SPT and FST, respectively), PCR, ELISA, and histopathological and immunohistochemical evaluation were made on brains. RESULTS: The behaviors of reduced immobility in the FST and increased sucrose preference were observed in the CUMS group and they improved in the groups treated with VOR and FLU. Compared with the control group, the group exposed to CUMS showed increased Aß and decreased BDNF, CREB, and S-100 expressions, as well as neuronal degeneration (p<0.001). VOR and FLU treatment ameliorate the findings. CONCLUSIONS: This study demonstrated significant ameliorative effects of VOR in an experimental model of chronic unpredictable depression to reduce brain tissue damage and depression-like behaviors in rats. Effects of CUMS on the brain and possible effects of VOR.


Assuntos
Peptídeos beta-Amiloides , Depressão , Humanos , Ratos , Animais , Vortioxetina/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos Wistar , Sacarose/farmacologia , Glutamatos/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia
16.
J Neurosci Methods ; 395: 109910, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394102

RESUMO

BACKGROUND: Exposing rats to repeated unpredictable stressors is a popular method for modelling depression. The sucrose preference test is used to assess the validity of this method, as it measures a rat´s preference for a sweet solution as an indicator of its ability to experience pleasure. Typically, if stressed rats show a lower preference compared to unstressed rats, it is concluded they are experiencing stress-induced anhedonia. METHODS: While conducting a systematic review, we identified 18 studies that used thresholds to define anhedonia and to distinguish "susceptible" from "resilient" individuals. Based on their definitions, researchers either excluded "resilient" animals from further analyses or treated them as a separate cohort. We performed a descriptive analysis to understand the rationale behind these criteria. RESULTS: we found that the methods used for characterizing the stressed rats were largely unsupported. Many authors failed to justify their choices or relied exclusively on referencing previous studies. When tracing back the method to its origins, we converged on a pioneering article that, although employed as a universal evidence-based justification, cannot be regarded as such. What is more, through a simulation study, we provided evidence that removing or splitting data, based on an arbitrary threshold, introduces statistical bias by overestimating the effect of stress. CONCLUSION: Caution must be exercised when implementing a predefined cut-off for anhedonia. Researchers should be aware of potential biases introduced by their data treatment strategies and strive for transparent reporting of methodological decisions.


Assuntos
Anedonia , Sacarose , Ratos , Animais , Depressão/etiologia , Preferências Alimentares , Estresse Psicológico , Modelos Animais de Doenças
17.
Artigo em Inglês | MEDLINE | ID: mdl-37301417

RESUMO

Andrographis paniculata (A. paniculata) showed an anti-depressive effect in rodent models. Zebrafish has recently emerged as a worthy complementary translational model for antidepressant drug discovery study. This study investigates the anti-depressive effect of A. paniculata extract and andrographolide in the chronic unpredictable stress (CUS)- zebrafish model. Four groups of zebrafish (n = 10/group), i.e. control, CUS (stressed, untreated), CUS + A. paniculata (100 mg/L) and CUS + fluoxetine (0.01 mg/L) were assessed in open-field and social interaction tests, 24 h after treatment. After extract screening, behavioural and cortisol analysis of andrographolide (5, 25 and 50 mg/kg, i.p.) and fluoxetine (10 mg/kg, i.p.) were evaluated. Before the behavioural study, acute toxicity and characterization of A. paniculata extract using UHPLC-ESI-MS/MS were performed. A significant reduction in freezing duration was found in A. paniculata- (t-test, p = 0.0234) and fluoxetine-treated groups (t-test, p < 0.0001) compared to the CUS group. A significant increase in total distance travelled, and contact duration was observed only in the fluoxetine-treated group (t-test, p = 0.0007) and (t-test, p = 0.0207), respectively. A significant increase in highly mobile duration was observed in both treatment groups. Andrographolide (50 mg/kg, i.p.) acute treatment showed a significant reduction in freezing duration (p = 0.0042), duration in a dark area (p = 0.0338) and cortisol level (p = 0.0156) and increased total distance travelled (p = 0.0144). Twenty-six compounds were tentatively characterized by LC-MS/MS method, and andrographolide content is 0.042 µg/g. According to cortisol analysis, A. paniculata's LC50 is 627.99 mg/L, while andrographolide's EC50 was determined as 26.915 mg/kg. Further assessment of the cellular and molecular underpinnings of the anti-depressive effect of andrographolide is strongly recommended to evaluate the potential as an antidepressant.


Assuntos
Andrographis paniculata , Andrographis , Animais , Peixe-Zebra , Hidrocortisona , Fluoxetina/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Antidepressivos/farmacologia
18.
Front Cell Dev Biol ; 11: 919297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123418

RESUMO

Introduction: Chronic stress exposure is the main environmental factor leading to cognitive impairment, but the detailed molecular mechanism is still unclear. Adenosine Deaminase acting on double-stranded RNA1(ADAR1) is involved in the occurrence of chronic stress-induced cognitive impairment. In addition, dopamine and Adenosine 3'5'-monophosphate-regulated phospho-protein (DARPP-32) gene variation affects cognitive function. Therefore, we hypothesized that ADAR1 plays a key role in chronic stress-induced cognitive impairment by acting on DARPP-32. Methods: In this study, postnatal 21-day-old male BALB/c mice were exposed to chronic unpredictable stressors. After that, the mice were treated with ADAR1 inducer/inhibitor. The cognitive ability and cerebral DARPP-32 protein expression of BALB/c mice were evaluated. In order to explore the link between ADAR1 and DARPP-32, the effects of ADAR1 high/low expression on DARPP-32 protein expression in vitro were detected. Results: ADAR1 inducer alleviates cognitive impairment and recovers decreased DARPP-32 protein expression of the hippocampus and prefrontal cortex in BALB/c mice with chronic unpredictable stress exposure. In vivo and in vitro studies confirm the results predicted by bio-informatics; that is, ADAR1 affects DARPP-32 expression via miR-874-3p. Discussion: The results in this study demonstrate that ADAR1 affects the expression of DARPP-32 via miR-874-3p, which is involved in the molecular mechanism of pathogenesis in chronic unpredictable stress-induced cognitive impairment. The new findings of this study provide a new therapeutic strategy for the prevention and treatment of stress cognitive impairment from epigenetics.

19.
Behav Brain Res ; 450: 114502, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37211222

RESUMO

Several pieces of evidence suggest that the monoaminergic theory of depression cannot fully explain all behavioral and neuroplastic changes observed after antidepressant chronic treatment. Other molecular targets, such as the endocannabinoid system, have been associated with the chronic effects of these drugs. In the present study, we hypothesized that the behavioral and neuroplastic effects observed after repeated treatment with the antidepressants (AD) Escitalopram (ESC) or venlafaxine (VFX) in chronically stressed mice depend on CB1 receptor activation. Male mice submitted to the chronic unpredictable stress (CUS) paradigm for 21 days were treated with Esc (10 mg/kg) or VFX (20 mg/kg) once a day in the presence or not of AM251 (0.3 mg/kg), a CB1 receptor antagonist/inverse agonist. At the end of the CUS paradigm, we conducted behavior tests to evaluate depressive- and anxiety-like behaviors. Our results demonstrated that chronic blockade of the CB1 receptor does not attenuate the antidepressant- or the anxiolytic-like effects of ESC nor VFX. ESC increased the expression of CB1 in the hippocampus, but AM251 did not change the pro-proliferative effects of ESC in the dentate gyrus or the increased expression of synaptophysin induced by this AD in the hippocampus. Our results suggest that CB1 receptors are not involved in behavioral and hippocampal neuroplastic effects observed after repeated antidepressant treatment in mice submitted to CUS.


Assuntos
Ansiolíticos , Agonismo Inverso de Drogas , Camundongos , Masculino , Animais , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Hipocampo/metabolismo , Depressão/tratamento farmacológico , Endocanabinoides/metabolismo , Ansiolíticos/farmacologia , Cloridrato de Venlafaxina/farmacologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Receptor CB1 de Canabinoide/metabolismo
20.
Front Pharmacol ; 14: 1135497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033640

RESUMO

Purpose: Chronic unpredictable stress (CUS) induces long-term neuronal and synaptic plasticity with a neurohormonal disbalance leading to the development of co-existing anxiety, depression, and cognitive decline. The side effects and delayed onset of current clinically used antidepressants has prompted a quest for antidepressants with minimum drawbacks. Fraxetin is a natural coumarin derivative with documented antioxidant and neuroprotective activity though its effects on stress are unknown. This study therefore aimed to investigate any possible acute effect of fraxetin in behavioral tests including a CUS paradigm in correlation with brain regional neurochemical changes. Methods: Mice were subjected to a series of mild stressors for 14 days to induce CUS. Furthermore, behavioral performance in the open field test, forced swim test (FST), Y-maze and elevated plus-maze were evaluated. Postmortem frontal cortical, hippocampal and striatal tissues were analyzed via high-performance liquid chromatography (HPLC) for neurochemical changes. Result: Acute administration of fraxetin (20-60 mg/kg, orally) decreased depression-like behavior in the FST and behavioral anxiety in both the open field test and elevated plus-maze. Memory deficits induced during the CUS paradigm were markedly improved as reflected by enhanced Y maze performance. Concurrent biochemical and neurochemical analyses revealed that only the two higher fraxetin doses decreased elevated serum corticosterone levels while diminished serotonin levels in the frontal cortex, striatum and hippocampus were reversed, though noradrenaline was only raised in the striatum. Concomitantly, dopamine levels were restored by fraxetin at the highest dose exclusively in the frontal cortex. Conclusion: Acute treatment with fraxetin attenuated CUS-induced behavioral deficits, ameliorated the increased corticosterone level and restored altered regional neurotransmitter levels and this may indicate a potential application of fraxetin in the management of anxiety and depression modeled by CUS. However, further studies are warranted regarding the chronic effects of fraxetin behaviorally and neurochemically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...