Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731465

RESUMO

Chrysoeriol is an active ingredient derived from the Chinese medicinal herb (CMH) "Lonicerae japonicae flos" in the dried flower bud or bloomed flower of Lonicera japonica Thunberg. Dermatoses are the most common diseases in humans, including eczema, acne, psoriasis, moles, and fungal infections, which are temporary or permanent and may be painless or painful. Topical corticosteroids are widely used in Western medicine, but there are some side effects when it is continuously and regularly utilized in a large dosage. Chrysoeriol is a natural active ingredient, nontoxic, and without any adverse reactions in the treatment of dermatological conditions. METHODS: Nine electronic databases were searched, including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. The pharmacological activities of chrysoeriol from Lonicerae japonicae flos to fight against skin diseases were explained and evaluated through the literature review of either in vitro or in vivo studies. RESULTS: Chrysoeriol decreased the mRNA levels of proinflammatory cytokines IL-6, IL-1ß, and TNF-α. These were transcriptionally regulated by NF-κB and STAT3 to combat skin inflammation. It also showed promising actions in treating many skin ailments including wound healing, depigmentation, photoprotection, and antiaging. CONCLUSION: The cutaneous route is the best delivery approach to chrysoeriol across the skin barrier. However, toxicity, dosage, and safety assessments of chrysoeriol in a formulation or nanochrysoeriol on the human epidermis for application in skin diseases must be further investigated.


Assuntos
Lonicera , Dermatopatias , Lonicera/química , Humanos , Dermatopatias/tratamento farmacológico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Flores/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Antioxidants (Basel) ; 13(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275647

RESUMO

Our previous study established that chrysoeriol (CHE) can reduce reactive oxygen species (ROS) accumulation, apoptosis, and autophagy in vitro culture (IVC) of porcine embryos. However, the role of CHE in oocyte maturation and lipid homeostasis is unclear. Herein, we aimed to elucidate the effect of CHE on porcine oocyte competence in vitro maturation (IVM) and subsequent embryo development. The study chooses parthenogenetic activated porcine oocytes as the research model. The study revealed that the cumulus expansion index and related gene expressions are significantly elevated after supplementing 1 µM CHE. Although there were no significant differences in nuclear maturation and cleavage rates, the blastocyst formation rate and total cell numbers were significantly increased in the 1 µM CHE group. In addition, CHE improved the expression of genes related to oocyte and embryo development. ROS was significantly downregulated in all CHE treatment groups, and intracellular GSH (glutathione) was significantly upregulated in 0.01, 0.1, and 1 µM CHE groups. The immunofluorescence results indicated that mitochondrial membrane potential (MMP) and lipid droplet (LD), fatty acid (FA), ATP, and functional mitochondria contents significantly increased with 1 µM CHE compared to the control. Furthermore, CHE increased the expression of genes related to lipid metabolism, mitochondrial biogenesis, and ß-oxidation.

3.
Food Chem Toxicol ; 180: 114043, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722616

RESUMO

The current study was designed to evaluate the protective role of chrysoeriol against polyethylene microplastics (PE-MP) induced testicular damage. Forty eight male rats were distributed into 4 equal groups: vehicle control, PE-MP administrated, PE-MP + chrysoeriol co-administrated and only chrysoeriol supplemented group. The administration of PE-MP significantly reduced the activities of anti-oxidant enzymes, i.e., glutathione peroxidase, catalase, glutathione reductase and superoxide dismutase, whereas the levels of reactive oxygen species and malondialdehyde were increased. PE-MP exposure increased the levels of inflammatory markers (TNF-α, 1L-1ß, NF-κß, IL-6 & COX-2). Additionally, a considerable increase was observed in dead sperms number, abnormality of sperms (tail, midpiece and head), while a potential decrease was noticed in sperm motility in PE-MP treated rats. The expressions of steroidogenic enzymes were also decreased in PE-MP administrated group. The levels of plasma testosterone, luteinizing & follicle stimulating hormone were decreased in PE-MP treated group. Moreover, Bax and Caspase-3 expressions were increased, whereas Bcl-2 expressions were reduced. Furthermore, histopathological analysis showed that PE-MP exposure considerably damaged the testicular tissues. However, chrysoeriol supplementation potentially decreased all the adverse effects induced by PE-MP. Taken together, our findings indicate that chrysoeriol holds significant potential to avert PE-MP-induced testicular damage due to its androgenic, anti-apoptotic, anti-oxidant and anti-inflammatory nature.


Assuntos
Antioxidantes , Microplásticos , Masculino , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Microplásticos/metabolismo , Plásticos , Polietileno/toxicidade , Estresse Oxidativo , Motilidade dos Espermatozoides , Testículo
4.
Vet Sci ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36851447

RESUMO

Chrysoeriol (CHE) is a flavonoid substance that exists in many plants. It has various physiological and pharmacological effects, including anti-inflammatory, antioxidant, anti-tumor, and protective activity, especially for the cardiovascular system and liver. Among common livestock embryos, porcine embryos are often considered high-quality objects for studying the antioxidant mechanisms of oocytes. Because porcine embryos contain high levels of lipids, they are more vulnerable to external stimuli, which affect development. Our study explored the influence of CHE supplementation on oxidative stress in porcine oocytes and its possible mechanisms. Different concentrations of CHE (0, 0.1, 1, and 3 µM) were supplemented in the in vitro culture medium of the porcine oocytes. The results showed that supplementation with 1 µM CHE significantly increased the blastocyst rate and total cell number of embryos in vitro. After finding the beneficial effects of CHE, we measured reactive oxygen species (ROS), glutathione (GSH), and mitochondrial membrane potential (MMP) when the oocytes reached the 4-cell stage of development and determined the levels of apoptosis, cell proliferation, and autophagy at the blastocyst stage of development. The expression levels of some related genes were preliminarily detected by qRT-PCR. The results showed that the apoptosis of blastocysts in the CHE-treated culture also decreased compared with the untreated culture. Furthermore, CHE downregulated intracellular ROS and increased GSH in the embryos. CHE was also shown to improve the activity of mitochondria and inhibit the occurrence of autophagy. In addition, antioxidant-related genes (SOD1, SOD2, and CAT) and cell pluripotency-related genes (SOX2, OCT4, and NANOG) were upregulated. At the same time, apoptosis-related (Caspase 3) and autophagy-related (LC3B) genes showed a downward trend after supplementation with CHE. These results indicate that CHE improved the development of porcine embryos in vitro by reducing oxidative stress and autophagy levels.

5.
Appl Microbiol Biotechnol ; 107(5-6): 1663-1672, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719434

RESUMO

O-Methylation catalyzed by O-methyltransferases (OMTs) is an important modification of flavonoids for improving the transport efficiency across membranes and metabolic stability in mammalian cells. Chrysoeriol, also known as 3'-O-methylated luteolin, is a methylated flavonoid compound with health-promoting activities. The generation of chrysoeriol from luteolin can be catalyzed by a rice-derived 3'-OMT named ROMT-9, which has a high regiospecificity and activity toward flavonoids in vitro. Herein, we explored the potential of ROMT-9 for in vivo biosynthesis of chrysoeriol in Escherichia coli and adopted semi-rational enzyme engineering guided by homology modeling and molecular docking to improve the bio-production. Two positive variants including L34Q and W284A were obtained which promoted chrysoeriol formation to more than 85 mg/L from 200 mg/L of luteolin in 24 h compared with a titer of 55 mg/L for the strain expressing the native enzyme. Further biochemical analysis confirmed that such improvement in production stemmed from a higher enzyme expression level for the L34Q variant and higher efficiency in substrate binding and catalysis for the W284A variant. This study provides some insights into the engineering of other flavonoid OMTs and will facilitate high-level biosynthesis of methylated flavonoids in engineered microorganisms. KEY POINTS: • Biosynthesis of chrysoeriol from luteolin in E. coli using ROMT-9 • Engineering of ROMT-9 for better bio-production • ROMT-9 variants promote production via better expression or better catalysis.


Assuntos
Flavonoides , Metiltransferases , Animais , Flavonoides/metabolismo , Metiltransferases/metabolismo , Escherichia coli/metabolismo , Luteolina/metabolismo , Simulação de Acoplamento Molecular , Mamíferos/metabolismo
6.
Phytomedicine ; 109: 154572, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610164

RESUMO

BACKGROUND: Melanoma is an aggressive malignancy with a high mortality rate. Signal transducer and activator of transcription 3 (STAT3), an oncoprotein, is considered as an effective target for treating melanoma. Chrysoeriol is a flavonoid compound, and possesses anti-tumor activity in lung cancer, breast cancer and multiple myeloma; while whether it has anti-melanoma effects is still not known. Chrysoeriol has been shown to restrain STAT3 signaling in an inflammation mouse model. PURPOSE: In this study, the anti-melanoma effects of chrysoeriol and the involvement of STAT3 signaling in these effects were investigated. STUDY DESIGN AND METHODS: CCK8 assays, 5-ethynyl-2'-deoxyuridine (EdU) staining, Annexin V-FITC/PI staining, Western blot analyses of cleaved caspase-9 and wound healing assays were used to study the anti-melanoma effects of chrysoeriol in cell models. A B16F10 melanoma bearing mouse model was used to evaluate the in vivo anti-melanoma effects of chrysoeriol. Indicators of cell proliferation, cell apoptosis and angiogeneis in melanoma tissues were detected by immunohistochemistry (IHC) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Immune cells in melanoma tissues were analyzed by flow cytometry. STAT3-overactivated cell models were used to investigate the involvement of STAT3 signaling in the anti-melanoma effects of chrysoeriol. Molecular dynamics (MD) simulations and surface plasmon resonance (SPR) assays were conducted to determine whether chrysoeriol binds to Src, an upstream kinase of STAT3. RESULTS: The results of cell experiments showed that chrysoeriol dose-dependently inhibited viability, proliferation and migration of, and induced apoptosis in, A375 and B16F10 melanoma cells. Chrysoeriol inhibited the phosphorylation of STAT3, and downregulated the expression of STAT3-target genes involved in melanoma growth and metastasis. Mouse studies showed that chrysoeriol restrained melanoma growth and tumor-related angiogenesis, and altered compositions of immune cells in melanoma microenvironment. Chrysoeriol also inhibited STAT3 signaling in B16F10 allografts. Chrysoeriol's viability-inhibiting effects were attenuated by over-activating STAT3 in A375 cells. Furthermore, chrysoeriol bound to the protein kinase domain of Src, and suppressed Src phosphorylation in melanoma cells and tissues. CONCLUSION: This study, for the first time, demonstrates that chrysoeriol has anti-melanoma effects, and these effects are partially due to inhibiting STAT3 signaling. Our findings indicate that chrysoeriol has the potential to be developed into an anti-melanoma agent.


Assuntos
Flavonas , Melanoma , Animais , Camundongos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Melanoma/tratamento farmacológico , Flavonas/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Microambiente Tumoral
7.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36015121

RESUMO

A flavone, chrysoeriol is synthetized in several plant species. It comes from several natural sources, especially medicinal plants. The identification and isolation of this compound has been carried out and verified by several research teams using different spectral methods. It seems that the concentration of this molecule is variable and fluctuating depending on the source, the part extracted, the region, and the methods of extraction and characterization. The aim of this paper is to highlight the in vitro and in vivo pharmacological properties of chrysoeriol and to provide insight into its pharmacokinetics. Anticancer, anti-inflammatory, antibacterial, antifungal, anti-osteoporosis, anti-insecticide, and neuroprotective actions have been shown in a number of studies on this chemical. Different mechanisms in theses pharmacological effects include subcellular, cellular, and molecular targets. In vivo pharmacokinetic analysis has proved the good stability of this molecule, showing its promising potential to prevent or treat diseases including cancer, diabetes, inflammation, osteoporosis, Parkinson's disease, and cardiovascular diseases.

8.
Plants (Basel) ; 11(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890428

RESUMO

Metabolic syndrome is a constellation of abnormalities related to insulin resistance with an unfortunately high prevalence worldwide. Tecoma stans (L.) Juss. Ex Kunth. is a well-known medicinal plant that has been studied in several biological models related to diabetes mellitus. The aim of this study was to evaluate the effects of T. stans on a hypercaloric diet-induced metabolic syndrome model. An organic fraction obtained using liquid-liquid separation from the hydroalcoholic extract of T. stans and four subfractions of this organic fraction were administered for ten weeks to C57BL6J male mice previously fed with a hypercaloric diet. The hypercaloric diet caused changes in glucose levels (from 65.3 to 221.5 mg/dL), body weight (31.3 to 42.2 g), triglycerides (91.4 to 177.7 mg/dL), systolic (89.9 to 110.3 mmHg) and diastolic (61.6 to 73.7 mg/dL) blood pressure, and insulin resistance (4.47 to 5.16). Treatment with T. stans resulted in improvements in triglycerides (83.4-125.0 mg/dL), systolic blood pressure (75.1-91.8 mmHg), and insulin resistance (4.72-4.93). However, the organic fraction and hydroalcoholic extract produced a better response in diastolic blood pressure (52.8-56.4 mmHg). Luteolin, apigenin, and chrysoeriol were the major constituents in the most active subfractions. Treatment with T. stans, particularly a luteolin-rich organic fraction, achieved an improvement in metabolic syndrome alterations.

9.
BMC Complement Med Ther ; 22(1): 73, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296317

RESUMO

BACKGROUND: Fibroblast-like synoviocytes (FLS) have cancer cell-like characteristics, such as abnormal proliferation and resistance to apoptosis, and play a pathogenic role in rheumatoid arthritis (RA). Hyperproliferation of RA-FLS that can be triggered by the activation of interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling destructs cartilage and bone in RA patients. Chrysoeriol is a flavone found in medicinal herbs such as Chrysanthemi Indici Flos (the dried capitulum of Chrysanthemum indicum L.). These herbs are commonly used in treating RA. Chrysoeriol has been shown to exert anti-inflammatory effects and inhibit STAT3 signaling in our previous studies. This study aimed to determine whether chrysoeriol inhibits hyperproliferation of RA-FLS, and whether inhibiting STAT3 signaling is one of the underlying mechanisms. METHODS: IL-6/soluble IL-6 receptor (IL-6/sIL-6R)-stimulated RA-FLS were used to evaluate the effects of chrysoeriol. CCK-8 assay and crystal violet staining were used to examine cell proliferation. Annexin V-FITC/PI double staining was used to detect cell apoptosis. Western blotting was employed to determine protein levels. RESULTS: Chrysoeriol suppressed hyperproliferation of, and evoked apoptosis in, IL-6/sIL-6R-stimulated RA-FLS. The apoptotic effect of chrysoeriol was verified by its ability to cleave caspase-3 and caspase-9. Mechanistic studies revealed that chrysoeriol inhibited activation/phosphorylation of Janus kinase 2 (JAK2, Tyr1007/1008) and STAT3 (Tyr705); decreased STAT3 nuclear level and down-regulated protein levels of Bcl-2 and Mcl-1 that are transcriptionally regulated by STAT3. Over-activation of STAT3 significantly diminished anti-proliferative effects of chrysoeriol in IL-6/sIL-6R-stimulated RA-FLS. CONCLUSIONS: We for the first time demonstrated that chrysoeriol suppresses hyperproliferation of RA-FLS, and suppression of JAK2/STAT3 signaling contributes to the underlying mechanisms. This study provides pharmacological and chemical justifications for the traditional use of chrysoeriol-containing herbs in treating RA, and provides a pharmacological basis for developing chrysoeriol into a novel anti-RA agent.


Assuntos
Artrite Reumatoide , Flavonas , Sinoviócitos , Artrite Reumatoide/tratamento farmacológico , Fibroblastos , Flavonas/farmacologia , Humanos , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia
10.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163461

RESUMO

Brown planthopper (BPH, Nilaparvata lugens Stal.) is the most damaging rice pest affecting stable rice yields worldwide. Currently, methods for controlling BPH include breeding a BPH-resistant cultivar and using synthetic pesticides. Nevertheless, the continuous cultivation of resistant cultivars allows for the emergence of various resistant races, and the use of synthetic pesticides can induce environmental pollution as well as the emergence of unpredictable new pest species. As plants cannot migrate to other locations on their own to combat various stresses, the production of secondary metabolites allows plants to protect themselves from stress and tolerate their reproduction. Pesticides using natural products are currently being developed to prevent environmental pollution and ecosystem disturbance caused by synthetic pesticides. In this study, after BPH infection in rice, chrysoeriol7 (C7), a secondary metabolite that induces resistance against BPH, was assessed. After C7 treatment and BPH infection, relative expression levels of the flavonoid-related genes were elevated, suggesting that in plants subjected to BPH, compounds related to flavonoids, among the secondary metabolites, play an important role in inducing resistance. The plant-derived natural compound chrysoeriol7 can potentially thus be used to develop environmentally friendly pesticides. The suggested control of BPH can be effectively used to alleviate concerns regarding environmental pollution and to construct a relatively safe rice breeding environment.


Assuntos
Resistência à Doença , Flavonas/isolamento & purificação , Hemípteros/crescimento & desenvolvimento , Repelentes de Insetos/isolamento & purificação , Oryza/crescimento & desenvolvimento , Animais , Vias Biossintéticas , Flavonas/química , Flavonas/farmacologia , Regulação da Expressão Gênica de Plantas , Química Verde , Hemípteros/efeitos dos fármacos , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Oryza/química , Oryza/parasitologia , Proteínas de Plantas/genética , Metabolismo Secundário
11.
In Vitro Cell Dev Biol Anim ; 58(1): 29-36, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34907494

RESUMO

Chrysoeriol, a dietary methoxyflavonoid which is found in tropical medicinal plants, has been shown to have antioxidant, anti-inflammatory, and antineoplastic properties. The present study aimed to investigate the effects of chrysoeriol and its related mechanisms in rat C6 glioma cells. Cell viability in rat C6 glioma cells were measured by MTT assay. The protein expression levels of cleaved caspase-3, caspase-3, pro-apoptotic (Bax), anti-apoptotic protein (Bcl-2), and Annexin V were detected by Western blot analysis and immunocytochemical staining. Results showed that chrysoeriol significantly decreased cell viability and induced apoptosis in rat C6 glioma cells. Chrysoeriol significantly increased the levels of Bax/Bcl-2 ratio and cleaved caspase-3/caspase-3 ratio. Moreover, treatment with chrysoeriol significantly reduced the phosphorylation of PI3K, Akt, and mTOR expression in ratios. These results suggest that chrysoeriol promote apoptosis in rat C6 glioma cells via suppression of the PI3K/Akt/mTOR signaling pathway, thereby demonstrating the potential antineoplastic effects of chrysoeriol on glioma cells.


Assuntos
Glioma , Doenças dos Roedores , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Flavonas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo
12.
Foods ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36613388

RESUMO

We examined the effect of chrysoeriol on adipogenesis and lipolysis and elucidated the underlying molecular mechanisms. Chrysoeriol inhibited fat deposition in adipocytes. Treatment with chrysoeriol suppressed the expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, fatty acid-binding protein, CCAAT/enhancer-binding proteins (C/EBP) α, C/EBPß, and sterol regulatory element-binding protein-1. In addition, chrysoeriol significantly elevated the activation of 5'-adenosine monophosphate-activated protein kinase. Moreover, chrysoeriol increased free glycerol and fatty acid levels and promoted lipolysis in adipocytes. Overexpression of adipose triglyceride lipase and hormone-sensitive lipase by chrysoeriol led to increased lipolysis in 3T3-L1 adipocytes. Taken together, chrysoeriol showed anti-adipogenic and lipolytic properties in adipocytes.

13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1014774

RESUMO

Chrysoeriol is a natural flavonoid compound, which is widely present in many kinds of traditional Chinese medicine and medicinal herbs. In recent years, studies of Chrysoeriol on the pharmacological effects and its glycosides have gradually increased, especially in anti-tumor, anti-oxidative damage and anti-inflammatory immune regulation, etc., showing good pharmacological effects, and it has prospective potency as a candidate to develop new drug in those domain. This article briefly reviews the pharmacological effects and underlying mechanisms of chrysoeriol, so that researchers can understand the pharmacological characteristics of this compound, and also provide references for the development of new drugs based on this ingredient.

14.
Int J Biol Macromol ; 190: 463-473, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506859

RESUMO

Xanthine oxidase (XO) plays a vital role in inducing hyperuricemia and increasing the level of superoxide free radicals in blood, and is proved as an important target for gout. Chrysoeriol (CHE) is a natural flavone with potent XO inhibitory activity (IC50 = 2.487 ± 0.213 µM), however, the mechanism of interaction is still unclear. Therefore, a comprehensive analysis of the interaction between CHE and XO was accomplished by enzyme kinetics, isothermal titration calorimetry (ITC), multi-spectroscopic methods, molecular simulation and ADMET. The results showed that CHE acted as a rapid reversible and competitive-type XO inhibitor and its binding to XO was driven by hydrogen bonding and hydrophobic interaction. Moreover, CHE exhibited a strong fluorescence quenching effect through a static quenching procedure and induced conformational changes of XO. Its binding pattern with XO was revealed by docking study and the binding affinity to XO was enhanced by the interactions with key amino acid residues in the active pocket of XO. Further, CHE showed good stability and pharmacokinetic behavior properties in molecule dynamic simulation and ADMET prediction. Overall, this study shed some light on the mechanism of interaction between CHE and XO, also provided some valuable information concerning the future therapeutic application of CHE as natural XO inhibitor.


Assuntos
Biologia Computacional , Flavonas/química , Flavonas/metabolismo , Xantina Oxidase/química , Xantina Oxidase/metabolismo , Alopurinol/farmacologia , Animais , Calorimetria , Bovinos , Dicroísmo Circular , Inibidores Enzimáticos/farmacologia , Febuxostat/química , Febuxostat/farmacologia , Corantes Fluorescentes/metabolismo , Hemólise/efeitos dos fármacos , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Coelhos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Fatores de Tempo , Xantina Oxidase/antagonistas & inibidores
15.
Exp Ther Med ; 22(1): 718, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34007327

RESUMO

Chrysoeriol is a flavonoid that has diverse biological properties, including antioxidation, anti-inflammation, chemoprevention and immunomodulation. Despite its reported anti-inflammatory activity, the exact underlying molecular mechanism has not yet been elucidated. In the current study, the anti-inflammatory mechanism of chrysoeriol involving lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2) and its upstream signaling molecules was investigated in RAW 264.7 cells. The mechanism was evaluated via ELISA and western blotting assays. Chrysoeriol significantly inhibited LPS-induced prostaglandin E2 (PGE2) production and COX-2 expression without cytotoxicity. Activated transcription factors that further induced the inflammation response, including nuclear factor (NF)-κB and activator protein-1 (AP-1), were significantly attenuated by chrysoeriol treatment. Furthermore, LPS-induced phosphorylation levels of phosphoinositide-3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) were abolished by chrysoeriol treatment, which was confirmed by selective inhibitors. Additionally, chrysoeriol significantly inhibited the LPS-induced activation of adaptor molecules in RAW 264.7 cells, including toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88. Therefore, the results suggested that chrysoeriol ameliorates TLR4-mediated inflammatory responses by inhibiting NF-κB and AP-1 activation as well as suppressing PI3K/Akt and MAPK phosphorylation in LPS-stimulated RAW 264.7 cells.

16.
Molecules ; 26(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435366

RESUMO

Retinal pigment epithelium (RPE) cell dysfunction caused by excessive oxidative damage is partly involved in age-related macular degeneration, which is among the leading causes of visual impairment in elderly people. Here, we investigated the protective role of chrysoeriol against hydrogen peroxide (H2O2)-induced oxidative stress in RPE cells. The cellular viability, reactive oxygen species (ROS) generation, and mitochondrial function of retinal ARPE-19 cells were monitored under oxidative stress or pre-treatment with chrysoeriol. The expression levels of mitochondrial-related genes and associated transcription factors were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Moreover, the protein expression of antioxidant signal molecules was characterized by Western blot analysis. Chrysoeriol significantly increased cell viability, reduced ROS generation, and increased the occurrence of antioxidant molecules in H2O2-treated ARPE-19 cells. Additionally, mitochondrial dysfunction caused by H2O2-induced oxidative stress was also considerably diminished by chrysoeriol treatment, which reduced the mitochondrial membrane potential (MMP) and upregulated mitochondrial-associated genes and proteins. Chrysoeriol also markedly enhanced key transcription factors (Nrf2) and antioxidant-associated genes (particularly HO-1 and NQO-1). Therefore, our study confirms the protective effect of chrysoeriol against H2O2-induced oxidative stress in RPE cells, thus confirming that it may prevent mitochondrial dysfunction by upregulating antioxidant-related molecules.


Assuntos
Antioxidantes/farmacologia , Flavonas/farmacologia , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Antioxidantes/química , Antioxidantes/isolamento & purificação , Linhagem Celular , Flavonas/química , Flavonas/isolamento & purificação , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053908

RESUMO

Estrogen overproduction is closely associated with the development of estrogen receptor-positive breast cancer. Aromatase, encoded by the cytochrome P450 19 (CYP19) gene, regulates estrogen biosynthesis. This study aimed to identify active flavones that inhibit CYP19 expression and to explore the underlying mechanisms. CYP19 expression was evaluated using reverse transcription PCR, quantitative real-time PCR, and immunoblot analysis. The role of transcription factor early growth response gene 1 (EGR-1) in CYP19 expression was assessed using the short-hairpin RNA (shRNA)-mediated knockdown of EGR-1 expression in estrogen receptor-positive MCF-7 breast cancer cells. We screened 39 flavonoids containing 26 flavones and 13 flavanones using the EGR1 promoter reporter activity assay and observed that chrysoeriol exerted the highest inhibitory activity on tumor necrosis factor alpha (TNFα)-induced EGR-1 expression. We further characterized and demonstrated that chrysoeriol inhibits TNFα-induced CYP19 expression through inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated EGR-1 expression. Chrysoeriol may be beneficial as a dietary supplement for the prevention of estrogen receptor-positive breast cancer, or as a chemotherapeutic adjuvant in the treatment of this condition.


Assuntos
Aromatase/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Flavonas/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Aromatase/metabolismo , Produtos Biológicos/farmacologia , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Flavonas/química , Inativação Gênica , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Fator de Necrose Tumoral alfa/farmacologia
18.
Pharmacol Res ; 160: 105188, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32919041

RESUMO

There has always been a keen interest of basic and clinical researchers to search for cancer therapeutics having minimum off-target effects and maximum anticancer activities. In accordance with this approach, there has been an explosion in the field of natural products research in the past few decades because of extra-ordinary list of natural extracts and their biologically and pharmacologically active constituents having significant medicinal properties. Apparently, luteolin-mediated anticancer effects have been investigated in different cancers but there is superfluousness of superficial data. Generalized scientific evidence encompassing apoptosis, DNA damage and anti-inflammatory effects has been reported extensively. However, how luteolin modulates deregulated oncogenic pathways in different cancers has not been comprehensively uncovered. In this review we have attempted to focus on cutting-edge research which has unveiled remarkable abilities of luteolin to modulate deregulated oncogenic pathways in different cancers. We have partitioned the review into various sections to separately discuss advancements in therapeutic targeting of oncogenic protein networks. We have provided detailed mechanistic insights related to JAK-STAT signaling and summarized how luteolin inhibited STAT proteins to inhibit STAT-driven gene network. We have also individually analyzed Wnt/ß-catenin and NOTCH pathway and how luteolin effectively targeted these pathways. Mapping of the signaling landscape has revealed that NOTCH pathway can be targeted therapeutically. NOTCH pathway was noted to be targeted by luteolin. We have also conceptually analyzed how luteolin restored TRAIL-induced apoptosis in resistant cancers. Luteolin induced an increase in pro-apoptotic proteins and efficiently inhibited anti-apoptotic proteins to induce apoptosis. Luteolin mediated regulation of non-coding RNAs is an exciting and emerging facet. Excitingly, there is sequential and systematic accumulation of clues which have started to shed light on intricate regulation of microRNAs by luteolin in different cancers. Collectively, sophisticated information will enable us to develop a refined understanding of the multi-layered regulation of signaling pathways and non-coding RNAs by luteolin in different cancers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Luteolina/farmacologia , MicroRNAs/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Marcação de Genes , Humanos , Luteolina/uso terapêutico , Receptores Notch/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Fatores de Transcrição STAT/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos
19.
Food Chem ; 331: 127362, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32590268

RESUMO

The polyphenol compositions of Thymus × citriodorus and Thymus vulgaris extracts as obtained by exhaustive hydroethanolic (HE) extraction and aqueous decoction (AD) were compared. In addition, their compositions and bioactivities were compared to those of Thymus pulegioides and Thymus mastichina, grown under the same edaphoclimatic conditions, and Thymus carnosus. Rosmarinic acid was the most abundant polyphenol followed by luteolin-hexuronide, salvianolic acids I and K. Cluster analysis suggests a similarity of the polyphenol composition of T. citriodorus and T. vulgaris. A significant antioxidant activity was observed and correlated with their polyphenol levels. The same being observed for the higher anti-proliferative activity/cytotoxicity of HE extracts on Caco-2 and HepG2 cells as compared to AD extracts. Significant association between the total phenolic compounds with the anti-proliferative activity, for both cell lines, was observed. These results support the importance of salvianolic acids levels in Thymus extracts and their in vitro anti-proliferative/cytotoxic activities.


Assuntos
Extratos Vegetais/química , Polifenóis/análise , Polifenóis/farmacologia , Thymus (Planta)/química , Alcenos/análise , Antioxidantes/análise , Antioxidantes/farmacologia , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Cinamatos/análise , Análise por Conglomerados , Depsídeos/análise , Análise de Alimentos/métodos , Análise de Alimentos/estatística & dados numéricos , Células Hep G2 , Humanos , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Ácido Rosmarínico
20.
Phytomedicine ; 68: 153173, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31999977

RESUMO

BACKGROUND: Chrysoeriol is a flavone found in diverse dietary and medicinal herbs such as Lonicerae Japonicae Flos (the dried flower bud or newly bloomed flower of Lonicera japonica Thunb.). These herbs are commonly used for treating inflammatory diseases. Herbal extracts containing chrysoeriol have been shown to have anti-inflammatory effects and inhibit nuclear factor-kappa B (NF-κB) signaling. Some of these extracts can inhibit signal transducers and activators of transcription 3 (STAT3) signaling in cancer cells. PURPOSE: This study aimed to determine whether chrysoeriol has anti-inflammatory effects and whether NF-κB and STAT3 pathways are involved in the effects. STUDY DESIGN AND METHODS: A TPA (12-O-tetradecanoylphorbol-13-acetate)-induced ear edema mouse model and LPS-stimulated RAW264.7 cells were used to evaluate the effects of chrysoeriol. Griess reagent was used to measure the production of nitric oxide (NO). Western blot and enzyme-linked immunosorbent assays were employed to detect protein levels. RT-qPCR analyses were used to detect mRNA levels. Haematoxylin and eosin (H&E) staining was employed to examine the pathological conditions in animal tissues. RESULTS: In the mouse model, chrysoeriol ameliorated acute skin inflammation, evidenced by reduced ear thickness, ear weight and number of inflammatory cells in inflamed ear tissues. The compound lowered protein levels of phospho-p65 (Ser536), phospho-STAT3 (Tyr705), inducible nitric oxide synthases (iNOS), cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), IL-1ß and tumor necrosis factor α (TNF-α) in mouse swollen ears. In LPS-stimulated RAW264.7 cells, chrysoeriol also lowered levels of these proteins. In addition, chrysoeriol decreased the production of NO and prostaglandin E2; inhibited the phosphorylation of inhibitor of κB (Ser32), p65 (Ser536) and Janus kinase 2 (Tyr1007/1008); decreased nuclear localization of p50, p65 and STAT3; and down-regulated mRNA levels of pro-inflammatory cytokines IL-6, IL-1ß and TNF-α that are transcriptionally regulated by NF-κB and STAT3 in the cell model. CONCLUSION: We for the first time demonstrated that chrysoeriol ameliorates TPA-induced ear edema in mice, and that inhibition of JAK2/STAT3 and IκB/p65 NF-κB pathways are involved in the anti-inflammatory effects of chrysoeriol. This study provides chemical and pharmacological justifications for the use of chrysoeriol-containing herbs in treating inflammatory diseases, and provides pharmacological groundwork for developing chrysoeriol as a novel anti-inflammatory agent.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Toxidermias/tratamento farmacológico , Flavonas/farmacologia , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Toxidermias/metabolismo , Toxidermias/patologia , Regulação da Expressão Gênica , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...