Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Ethnopharmacol ; 317: 116764, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315650

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Vetiver (Chrysopogon zizanioides) is indigenous to India where it is traditionally used to relief rheumatisms, lumbagos and sprains. Vetiver anti-inflammatory activity has not been previously investigated, and its specific interactions with body inflammation cascade remain largely unknown. AIM OF THE STUDY: The present work was performed to validate the ethnobotanical use of the plant and compare the anti-inflammatory activities of the ethanolic extracts of the most traditionally used part (aerial part) to that of the root. Furthermore, we attempt to reveal the molecular mechanism of this anti-inflammatory activity in correlation to the chemical composition of C. zizanioides aerial (CA) and root parts (CR). MATERIALS AND METHODS: Ultraperformance liquid chromatography coupled to high resolution mass spectrometry (UHPLC/HRMS) was used for comprehensive analysis of both CA and CR. The anti-inflammatory effect of both extracts was evaluated in complete Freund's adjuvant (CFA)-induced RA model in Wistar rats. RESULTS: Phenolic metabolites were predominant in CA and 42 were identified for the first time, while only 13 were identified in CR. Meanwhile, triterpenes and sesquiterpenes were confined to the root extract. In CFA arthritis model, CA showed better anti-inflammatory activity than CR marked by an increase in serum level of IL-10 with simultaneous decrease in pro-inflammatory markers; IL-6, ACPA and TNF-α and was evident in histopathological examination. This anti-inflammatory effect was accompanied by down-regulation of JAK2/STAT3/SOCs3, ERK1/ERK2, TRAF6/c-FOS/NFATC1, TRAF6/NF-κB/NFATC1 and RANKL pathways which were all upregulated after CFA injection. These pathways were modulated to larger extent by CA, except for ERK1/ERK2 which was downregulated more effectively by CR. This differential effect between CA and CR can be explained by the variability in their phytoconstituents profile. CONCLUSION: In agreement with the ethnobotanical preference, CA extract was more effective than CR extract in reducing the symptoms of RA probably due to its enrichment with flavonoids, lignans, and flavolignans. Both CA and CR reduced the production of inflammatory cytokines through modulating various biological signaling pathways. These findings support the traditional use of vetiver leaves as a remedy for RA and suggest that the use of the whole plant may offer advantage by synergistically affecting more inflammatory pathways.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Adjuvante de Freund , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Fator 6 Associado a Receptor de TNF/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Componentes Aéreos da Planta
2.
Environ Sci Pollut Res Int ; 30(20): 58967-58985, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37002522

RESUMO

Lead (Pb), nickel (Ni), and cadmium (Cd) are known for its harmful effects on the environment. Microbial community related to soil plays a pivotal role in configuring several properties of the ecosystem. Thus, remediation of such heavy metals using multiple biosystems had shown excellent bioremoval potential. The current study demonstrates the integrated approach of Chrysopogon zizanioides in combination with earthworm Eisenia fetida augmented with VITMSJ3 potent strain for the uptake of metals like Pb, Ni, and Cd from the contaminated soil. For the uptake of heavy metals, Pb, Ni, and Cd with the concentrations of 50, 100, and 150 mg kg-1 were supplemented in pots with plants and earthworms. C. zizanioides was used for bioremoval due to their massive fibrous root system which can absorb heavy metals. A substantial increase of 70-80% Pb, Ni, and Cd was found for VITMSJ3 augmented setup. A total of 12 earthworms were introduced in each setup and were tested for the toxicity and damages in the various internal structures. Reduction in malondialdehyde (MDA) content was observed in the earthworms with VITMSJ3 strain proving less toxicity and damages. Metagenomic analysis of the soil associated bacterial diversity was assessed by amplifying the V3V4 region of the 16S rRNA gene and the annotations were studied. Firmicutes were found to be the predominant genus with 56.65% abundance in the bioaugmented soil R (60) proving the detoxification of metals in the bioaugmented soil. Our study proved that a synergistic effect of plant and earthworm in association with potent bacterial strain had higher uptake of Pb, Ni, and Cd. Metagenomic analysis revealed the changes in microbial abundance in the soil before and after treatment.


Assuntos
Metais Pesados , Microbiota , Oligoquetos , Poluentes do Solo , Animais , Cádmio/análise , Níquel/análise , Chumbo/análise , RNA Ribossômico 16S , Metais Pesados/análise , Biodegradação Ambiental , Bactérias , Solo/química , Poluentes do Solo/análise
3.
J Environ Manage ; 337: 117723, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958280

RESUMO

Application of plant growth-promoting rhizobacteria plays a vital role in enhancing phytoremediation efficiency. In this study, multiple approaches were employed to investigate the underlying mechanisms of Burkholderia sp. SRB-1 (SRB-1) on elevating Cd uptake and accumulation. Inoculation experiment indicated that SRB-1 could facilitate plant growth and Cd tolerance, as evidenced by the enhanced plant biomass and antioxidative enzymes activities. Cd content in plant shoots and roots increased about 36.56%-39.66% and 25.97%-130.47% assisted with SRB-1 when compared with control. Transcriptomics analysis revealed that SRB-1 upregulated expression of amiE, AAO1-2 and GA2-ox related to auxin and gibberellin biosynthesis in roots. Auxin and gibberellin, as hormone signals, regulated plant Cd tolerance and growth through activating hormone signal transduction pathways, which might also contribute to 67.94% increase of dry weight. The higher expression levels of ATP-binding cassette transporter subfamilies (ABCB, ABCC, ABCD and ABCG) in Chrysopogon zizanioides roots contributed to higher Cd uptake in Cd15 B (323.83 mg kg-1) than Cd15 (136.28 mg kg-1). Further, SRB-1 facilitated Cd migration from roots to shoots via upregulating the expression of Nramp, ZIP and HMA families. Our integrative analysis provided a molecular-scale perspective on Burkholderia sp. SRB-1 contributing to C. zizanioides performance.


Assuntos
Burkholderia , Vetiveria , Poluentes do Solo , Humanos , Cádmio/farmacologia , Cádmio/metabolismo , Vetiveria/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Giberelinas/farmacologia , Transcriptoma , Antioxidantes/análise , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biodegradação Ambiental , Raízes de Plantas/química , Hormônios/análise , Hormônios/metabolismo , Hormônios/farmacologia , Poluentes do Solo/análise
4.
Environ Sci Pollut Res Int ; 30(4): 8647-8656, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35060055

RESUMO

The high pollutant load of sanitary landfill leachates poses a huge challenge in the search for efficient and environment friendly solutions for their treatment. The objective of this work was to study an integrated solution of environmentally friendly technologies - immediate one-step lime precipitation (IOSLP), carbonation (CB), and phytoremediation (Phyt) - to treat a sanitary landfill leachate. In the leachate sample treatment by IOSLP, the influence of CaO concentration (18.2-33.3 gCaO L-1) and stirring time (2-60 min) on the sludge sedimentability and pollutant removal was studied. Organic load and ammonia nitrogen (AN) removal increases with CaO added, as well as sludge volume. Stirring time has a small influence on organic load and AN removal, presenting a minimum for sludge volume. Thus, the best operational conditions were chosen as 27.6 gCaO L-1, and 40-min stirring time, with 64% chemical oxygen demand (COD) removal. Sludge humidity was 2.1%, making dewatering needless. IOSLP supernatant was submitted to CB by atmospheric CO2, and 100% removals in AN and hardness were attained. Effluents from IOSLP and IOSLP + CB were utilized in Phyt tests, with Vetiver (Chrysopogon zizanioides (L.) Roberty). The best COD removal (37%) during Phyt was attained for the samples treated by IOSLP + CB.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Esgotos , Biodegradação Ambiental , Óxidos , Nitrogênio
5.
Environ Sci Pollut Res Int ; 30(12): 34775-34792, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36520290

RESUMO

The objectives of the present study were to characterize and evaluate a pilot treatment unit (PTU) for dairy cattle wastewater (DCW) in relation to its efficiency in reducing the physicochemical and microbiological parameters and possible application of this fertilizer in organic production. A PTU was set up, composed of the following elements: a dung pit of 7.8 m3, already in place; a septic tank; a set of anaerobic biological filters comprising an upflow filter and a downward-flow filter filled with fragments PVC corrugated conduit; and two constructed wetland systems (CWSs) of horizontal subsurface flow in two parallel routes (Routes 1 and 2), controlled by means of a flow rate divider box. Route 1 passed through CWS 1 cultivated with cattail (Typha domingensis) and Route 2 passed through CWS 2 cultivated with vetiver grass (Chrysopogon zizanioides). To evaluate the treatment stages, biweekly investigations were carried out to collect effluent samples. The results of monitoring, in absolute values, were evaluated by means of the medians and variation coefficients and compared by means of Kruskal-Wallis non-parametric test followed by the Student Newman Keuls test. The treatment efficiencies of Routes 1 and 2 were calculated. The influence of vetiver on the removal of nutrients from the DCW was analyzed and the productivity estimate (t.ha-1) was performed. CWS 1 was not able to reduce the organic load indices, but it was able to retain fatty material and sodium. CWS 2 showed a reduction in nitrogenous forms and also for other nutrients, achieving the greatest removal of sodium and greatest decay of fecal contamination indicators, thermotolerant coliforms (56.13%), and E. coli (46.82%).


Assuntos
Vetiveria , Typhaceae , Animais , Bovinos , Águas Residuárias , Escherichia coli , Áreas Alagadas , Nitrogênio , Eliminação de Resíduos Líquidos/métodos
6.
J Environ Manage ; 325(Pt A): 116443, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228396

RESUMO

The shortage of water resources and generation of large quantum of wastewater has posed a significant concern to the environment and public health. Recent research on wastewater treatment has started to focus on reusing wastewater for different activities to reduce the stress on natural water resources. Constructed wetland (CWs) is a low-cost wastewater treatment option. However, some drawbacks include large areal requirements and the need for tertiary treatment units for reusable effluent. In this study, a novel composite baffled horizontal flow CW filter unit (BHFCW-FU) was developed to overcome the drawbacks of the conventional CW. The BHFCW-FU planted with Chrysopogon zizanioides provided a nine times longer flow path, and the adjoined variable depth dual media filter reduced the total area requirement and served as a polishing unit. On average, the BHFCW-FU with horizontal sub-surface flow regime could efficiently remove around 93.93%, 87.20%, and 66.25% of turbidity, phenol, and COD, respectively, from real petrochemical wastewater (initial turbidity: 29.6 NTU, phenol: 4.52 mg/L, and COD: 381 mg/L) and rendered the effluent quality reusable for irrigation, industrial, and other environmental purposes. In synthetic wastewater (initial turbidity: 754 NTU, phenol: 10.87 mg/L, and COD: 1691 mg/L), the removal efficiency of turbidity, phenol, and COD were 99.50%, 93.73%, and 87.05%, respectively. In-depth substrate characterization was done to study the removal mechanism. The developed BHFCW-FU required less space and maintenance, provided reusable effluent, and overcame the drawbacks of conventional CWs. Hence, it may show immense potential as an effective wastewater treatment.


Assuntos
Águas Residuárias , Purificação da Água , Águas Residuárias/análise , Áreas Alagadas , Eliminação de Resíduos Líquidos , Fenóis
7.
Chemosphere ; 311(Pt 1): 136889, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257390

RESUMO

The current study investigated the plant growth promoting (PGP) characteristics of multi-metal-tolerant Bacillus cereus and their positive effect on the physiology, biomolecule substance, and phytoremediation ability of Chrysopogon zizanioides in metal-contaminated soil. The test soil sample was detrimentally contaminated by metals including Cd (31 mg kg-1), Zn (7696 mg kg-1), Pb (326 mg kg-1), Mn (2519 mg kg-1) and Cr (302 mg kg-1) that exceeded Indian standards. The multi-metal-tolerant B. cereus seemed to have superb PGP activities including fabrication of hydrogen cyanide, siderophore, Indole Acetic Acid, N2 fixation, as well as P solubilisation. Such multi-metal-tolerant B. cereus attributes can dramatically reduce or decontaminate metals in contaminated soils, and their PGP attributes significantly improve plant growth in contaminated soils. Hence, without (study I) and with (study II) the blending of B. cereus, this strain vastly enhances the growth and phytoremediation potency of C. zizanioides on metal contaminated soil. The results revealed that the physiological data, biomolecule components, and phytoremediation efficiency of C. zizanioides (Cr: 7.74, Cd: 12.15, Zn: 16.72, Pb: 11.47, and Mn: 14.52 mg g-1) seem to have been greatly effective in study II due to the metal solubilizing and PGP characteristics of B. cereus. This is a one-of-a-kind report on the effect of B. cereus's multi-metal tolerance and PGP characteristics on the development and phytoextraction effectiveness of C. zizanioides in metal-polluted soil.


Assuntos
Bacillus , Vetiveria , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Cádmio , Chumbo , Metais Pesados/toxicidade , Metais Pesados/análise
8.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36015115

RESUMO

This study aimed to investigate the chemical composition as well as the antibacterial, antiparasitic, and cytotoxic potentialities of the Brazilian Chrysopogon zizanioides root essential oil (CZ-EO) In addition, CZ-EO cytotoxicity to LLCMK2 adherent epithelial cells was assessed. The major compounds identified in CZ-EO were khusimol (30.0 ± 0.3%), ß-eudesmol (10.8 ± 0.3%), α-muurolene (6.0 ± 0.1%), and patchouli alcohol (5.6 ± 0.2%). CZ-EO displayed optimal antibacterial activity against Prevotella nigrescens, Fusobacterium nucleatum, Prevotella melaninogenica, and Aggregatibacter actinomycetemcomitans, with Minimum Inhibitory Concentration (MIC) values between 22 and 62.5 µg/mL and Minimum Bactericidal Concentration (MBC) values between 22 and 400 µg/mL. CZ-EO was highly active against the L. amazonensis promastigote and amastigote forms (IC50 = 7.20 and 16.21 µg/mL, respectively) and the T. cruzi trypomastigote form (IC50 = 11.2 µg/mL). Moreover, CZ-EO showed moderate cytotoxicity to LLCMK2 cells, with CC50 = 565.4 µg/mL. These results revealed an interesting in vitro selectivity of CZ-EO toward the L. amazonensis promastigote and amastigote forms (Selectivity Index, SI = 78.5 and 34.8, respectively) and the T. cruzi trypomastigote form (SI = 50.5) compared to LLCMK2 cells. These results showed the promising potential of CZ-EO for developing new antimicrobial, antileishmanial, and antitrypanosomal drugs.

9.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335308

RESUMO

Vetiver (Chrysopogon zizanioides (L.) Roberty) is a major tropical perfume crop. Access to its essential oil (EO)-filled roots is nevertheless cumbersome and land-damaging. This study, therefore, evaluated the potential of vetiver cultivation under soilless high-pressure aeroponics (HPA) for volatile organic compound (VOC) production. The VOC accumulation in the roots was investigated by transmission electron microscopy, and the composition of these VOCs was analyzed by gas chromatography coupled with mass spectrometry (GC/MS) after sampling by headspace solid-phase microextraction (HS-SPME). The HPA-grown plants were compared to plants that had been grown in potting soil and under axenic conditions. The HPA-grown plants were stunted, demonstrating less root biomass than the plants that had been grown in potting soil. The roots were slender, thinner, more tapered, and lacked the typical vetiver fragrance. HPA cultivation massively impaired the accumulation of the less-volatile hydrocarbon and oxygenated sesquiterpenes that normally form most of the VOCs. The axenic, tissue-cultured plants followed a similar and more exacerbated trend. Ultrastructural analyses revealed that the HPA conditions altered root ontogeny, whereby the roots contained fewer EO-accumulating cells and hosted fewer and more immature intracellular EO droplets. These preliminary results allowed to conclude that HPA-cultivated vetiver suffers from altered development and root ontology disorders that prevent EO accumulation.


Assuntos
Vetiveria , Óleos Voláteis , Perfumes , Vetiveria/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/química , Microextração em Fase Sólida/métodos
10.
Environ Sci Pollut Res Int ; 29(29): 44998-45012, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35146608

RESUMO

The chemical composition of root exudates and root extracts from Chrysopogon zizanioides (L.) Roberty cv KS-1 was determined in the presence of lead [Pb(II)]. Hitherto, no information is available in the literature concerning the phytochemical components of root exudates of C. zizanioides. Significantly higher concentrations of total carbohydrates (26.75 and 42.62% in root exudates and root extract, respectively), reducing sugars (21.46 and 56.11% in root exudates and root extract, respectively), total proteins (9.22 and 23.70% in root exudates and root extract, respectively), total phenolic acids (14.69 and 8.33% in root exudates and root extract, respectively), total flavonoids (14.30 and 12.28% in root exudates and root extract, respectively), and total alkaloids (12.48 and 7.96% in root exudates and root extract, respectively) were observed in samples from plants growing under Pb(II) stress in comparison to the respective controls. GC-MS profiling showed the presence of a diverse group of compounds in root exudates and extracts, including terpenes, alkaloids, flavonoids, carotenoids, plant hormones, carboxylic/organic acids, and fatty acids. Among the detected compounds, many have an important role in plant development, regulating rhizosphere microbiota and allelopathy. Furthermore, the results indicated that C. zizanioides exudates possess a chemotactic response for rhizospheric bacterial strains Bacillus licheniformis, Bacillus subtilis, and Acinetobacter junii Pb1.


Assuntos
Vetiveria , Bactérias , Ácidos Carboxílicos/análise , Vetiveria/metabolismo , Exsudatos e Transudatos , Flavonoides/farmacologia , Chumbo/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Raízes de Plantas/metabolismo
11.
Mitochondrial DNA B Resour ; 7(1): 25-27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34912960

RESUMO

Vetiver grass (Chrysopogon zizanioides), is a perennial and tussock C4 grass from the genus Chrysopogon of Poaceae, which has been widely used as a natural and inexpensive resource for multifarious environmental applications. The complete mitogenome of C. zizanioides was 551,622 bp in length, containing 40 protein-coding genes (PCGs), 19 transfer RNA genes (tRNAs), and six ribosomal RNA genes (rRNAs). All PCGs started with ATG and stopped with TNN (TAA, TAG, and TGA). The overall nucleotide composition is: 28.2% A, 28.2% T, 21.7% G, and 21.9% C, with a biased A + T content of 56.4%. Phylogenetic analysis using 14 PCGs of 22 species showed that C. zizanioides display a close relationship with Saccharum officinarum (LC107874) and Sorghum bicolor (DQ984518) in Poaceae.

12.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070487

RESUMO

Since ancient times, plant roots have been widely used in traditional medicine for treating various ailments and diseases due to their beneficial effects. A large number of studies have demonstrated that-besides their aromatic properties-their biological activity can often be attributed to volatile constituents. This review provides a comprehensive overview of investigations into the chemical composition of essential oils and volatile components obtained from selected aromatic roots, including Angelica archangelica, Armoracia rusticana, Carlina sp., Chrysopogon zizanioides, Coleus forskohlii, Inula helenium, Sassafras albidum, Saussurea costus, and Valeriana officinalis. Additionally, their most important associated biological impacts are reported, such as anticarcinogenic, antimicrobial, antioxidant, pesticidal, and other miscellaneous properties. Various literature and electronic databases-including PubMed, ScienceDirect, Springer, Scopus, Google Scholar, and Wiley-were screened and data was obtained accordingly. The results indicate the promising properties of root-essential oils and their potential as a source for natural biologically active products for flavor, pharmaceutical, agricultural, and fragrance industries. However, more research is required to further establish the mechanism of action mediating these bioactivities as well as essential oil standardization because the chemical composition often strongly varies depending on external factors.


Assuntos
Óleos Voláteis/química , Óleos Voláteis/farmacologia , Raízes de Plantas/química , Animais , Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Humanos , Inseticidas/farmacologia , Testes de Sensibilidade Microbiana , Especificidade da Espécie
13.
Artigo em Inglês | MEDLINE | ID: mdl-33406983

RESUMO

The objective of this study was to evaluate the productivity of shoot dry biomass and the capacity of nitrogen (N), phosphorus (P) and potassium (K) extraction by the Vetiver and Tifton 85 grasses when cultivated in horizontal subsurface flow constructed wetlands (HSSF-CWs) whose porous medium was saturated with solutions containing different nutrient availability. The grass shoots were cut every 30 days to determine the productivity and N, P and K contents in the plant tissue. Models of productivity and the extraction capacity of each nutrient were obtained as a function of the nutrient concentration. Based on the results obtained, it was verified that the productivity of shoot dry biomass and the extractions of N, P and K by the Vetiver grass increased linearly with the nutrient availability of the nutritive solution. In relation to Tifton 85, quadratic models of productivity and N and K extraction were adjusted. The maximum productivity, N, P and K extraction by Vetiver grass were 513.4, 8.2, 1.9 and 10.39 g m-2 month-1, respectively. In relation to Tifton 85 grass, these values were 739.4, 30.8, 3.0 and 15.59 g m-2 month-1 for productivity, N, P and K extraction, respectively.


Assuntos
Vetiveria/metabolismo , Cynodon/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Biomassa , Vetiveria/crescimento & desenvolvimento , Cynodon/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Áreas Alagadas
14.
Chemosphere ; 263: 128345, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297270

RESUMO

Acid mine drainage (AMD) is one of an important pollution sources associated with mining activities and often inhibits plant growth. Plant growth promoting bacteria has received extensive attention for enhancing adaptability of plants growing in AMD polluted soils. The present study investigated the effect of plant growth promoting Bacillus spp. (strains UM5, UM10, UM13, UM15 and UM20) to improve vetiver (Chrysopogon zizanioides L.) adaptability in a soil irrigated with 50% AMD. Bacillus spp. exhibited P-solubilization, IAA and siderophore production. The Bacillus spp. strains UM10 and UM13 significantly increased shoot (4.2-2.5%) and root (3.4-1.9%) biomass in normal and AMD-impacted soil, respectively. Bacillus sp. strain UM20 significantly increased soil AP (379.93 mg/kg) while strain UM13 increased TN (1501.69 mg/kg) and WEON (114.44 mg/kg) than control. Proteobacteria, Chloroflexi, Acidobacteria and Bacteroidetes are the dominant phyla, of which Acidobacteria (12%) and Bacteroidetes (8.5%) were dominated in soil inoculated with Bacillus sp. strain UM20 while Proteobacteria (70%) in AMD soil only. However, the Chao1 and evenness indices were significantly increased in soil inoculated with Bacillus sp. strain UM13. Soil pH, AP and N fractions were positively correlated with the inoculation of bacterial strains UM13 and UM20. Plant growth promoting Bacillus spp. strains UM13 and UM20 were the main contributors to the variations in the rhizosphere bacterial community structure, improving soil available P, TN, WEON, NO3--N thus could be a best option to promote C. zizanioides adaptability in AMD-impacted soils.


Assuntos
Bacillus , Rizosfera , Bactérias/genética , Biodegradação Ambiental , Nutrientes , Raízes de Plantas , Solo , Microbiologia do Solo
15.
Molecules ; 24(18)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540161

RESUMO

The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men's fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid-liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid-liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L-1 and productivity of 3.2 mg L-1 h-1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.


Assuntos
Escherichia coli/genética , Óleos Voláteis/química , Sesquiterpenos Policíclicos/metabolismo , Adsorção , Reatores Biológicos , Vetiveria/química , Eficiência , Escherichia coli/metabolismo , Fermentação , Microbiologia Industrial , Engenharia Metabólica , Sesquiterpenos Policíclicos/isolamento & purificação , Volatilização
16.
Indian J Microbiol ; 59(2): 137-146, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31031427

RESUMO

Restoration of salt-affected soil through cultivation Chrysopogon zizanioides is a promising approach. The two way benefit of such an approach is that reclamation of salt-affected soil concomitant to improve plant growth and increased yield of essential oil produced in the plants roots. Earlier studies showed physiological changes and reduced growth of C. zizanioides under salinity. In the present study, plant growth promoting microorganisms viz. Pseudomonas monteilii, Bacillus megaterium, Azotobacter chroococcum and Rhizophagus intraradices were used as bio-inoculants for cultivation of C. zizanioides under salt-affected soil. Bio-inoculants in combination with vermicompost significantly increased the growth and productivity of C. zizanioides under salt-affected soil, and simultaneously improved soil health. When compared to control, the soil physico-chemical and biological properties of bio-inoculants treated plants was significantly improved. The reclamation of salt-affected soil was evident by the significant decrease in the level of soil pH (11.0%), electrical conductivity (23.5%), sodium adsorption ratio (15.3%), and exchangeable sodium percent (12.4%) of bio-inoculants treated plants. The improvement of soil cation exchange capacity indicated the decrease in soil salinity. Whereas increase in the microbial count (four-fold), AMF spores (447 spores), dehydrogenase (six-fold), acid (two-fold) and alkaline phosphatase (five-fold) activities in rhizosphere soil of bio-inoculant treated plants indicated the improved biological properties. A positive correlation of plant biomass production to soil organic carbon, total Kjeldahl nitrogen, available phosphorus and cation exchange capacity depicted improved nutrients content in rhizosphere soil of bio-inoculant treated plants. The findings of this study suggest that P. monteilii and R. intraradices with vermicompost can be effectively used as bio-inoculants for encouragement of phytoremediation in salt-affected soil.

17.
Environ Sci Pollut Res Int ; 26(10): 10057-10069, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30756356

RESUMO

A common approach for waste management is their disposal in landfills, which is usually associated with the production of dangerous gases and of liquid leachate. Due to its toxicity, polluted liquid negatively impacts on the environment with the possible contamination of large volumes of soil, groundwater, and surface water. Leachate remediation is therefore subject of intensive research, and phytoremediation has been achieving increasing interest in recent decades. We describe here the suitability of vetiver grass for the remediation of two leachates collected in urban landfills of northern Italy, characterized by different composition. Our objective was measuring the accumulation/tolerance potential of this species and the evapotranspiration ability in a pot experiment, to evaluate applicability of vetiver plants for the reduction and decontamination of landfill leachate. Plants were grown for 4 months in pots with a zeolite growth bed and watered with either tap water (control) or undiluted landfill leachate. Plant growth and fitness and elemental content in shoots and roots were evaluated at the end of the experiment. In these experimental conditions, the high bioaccumulation of metals highlights the suitability of this species for its employment in phytoremediation; however, vetiver growth under leachate treatment was strongly dependent on leachate composition, making a case-to-case evaluation of plant tolerance necessary before large-scale application.


Assuntos
Biodegradação Ambiental , Vetiveria/metabolismo , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/metabolismo , Itália , Metais/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/metabolismo , Eliminação de Resíduos , Solo , Poluentes do Solo/metabolismo , Gerenciamento de Resíduos
18.
Eng. sanit. ambient ; 22(1): 123-132, jan.-fev. 2017. tab, graf
Artigo em Português | LILACS | ID: biblio-840391

RESUMO

RESUMO No presente estudo avaliou-se a remoção de demanda bioquímica de oxigênio (DBO), nitrogênio total (NT) e fósforo total (PT) da água residuária de suinocultura (ARS) em sistemas alagados construídos (SACs) de escoamento horizontal subsuperficial, além da contribuição das espécies vegetais cultivadas: Polygonum punctatum (erva-de-bicho) e Chrysopogon zizanioides (capim-vetiver). Foram implantados três SACs, utilizando-se argila expandida como meio suporte, sendo um cultivado com P. punctatum (SACE), outro cultivado com C. zizanioides (SACV) e um mantido como controle, sem cultivo (SACC). Para um tempo de retenção hidráulica nominal (τ) de 3,2 dias, observou-se remoção de DBO, NT e PT, ao longo do período experimental, com eficiências médias de 85, 38 e 51% (SACC), 89, 48 e 69% (SACE) e 81, 36 e 45% (SACV), respectivamente. O melhor desempenho foi observado no SACE. Foram obtidas, em termos de matéria seca, produtividades de 2,79 e 1,91 g m-2 d-1 e remoções de NT de 1,54 e 1,01% e de PT de 0,81 e 1,19%, da carga aplicada, para a erva-de-bicho e o capim-vetiver, respectivamente.


ABSTRACT The objective of this study was to evaluate the pollutant removal of swine wastewater in horizontal-flow constructed wetlands (CW) and the contribution of vegetable species Polygonum punctatum (smartweed) and Chrysopogon zizanioides (vetiver grass). Three CW's were implanted with expanded clay as support bed, one cultivated with P. punctatum (CWE), another cultivated with C. zizanioides (CWV) and one without cultivation, used as control (CWC). Using a nominal hydraulic retention time (τ) of 3.21 days, theaverage removal efficiencies of BOD, NT and PT obtained were 85, 38 e 51% (CWC), 89, 48 e 69% (CWE) and 81, 36 e 45% (CWV), respectively. The best performance was observed on CWE. The dry mass productivities were 2.79 and 1.91 g m-2 d-1. NT removals were 1.54 and 1.01% and PT removals were 0.81 and 1.19%, respectively for Polygonum punctatum and Chrysopogon zizanioides .

19.
Environ Sci Pollut Res Int ; 23(13): 13521-30, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27030238

RESUMO

Phytoremediation of contaminated mine soils requires the use of fast-growing, deep-rooted, high-biomass, and metal-tolerant plants with the application of soil amendments that promote metal uptake by plants. A pot experiment was performed to evaluate the combined use of vetiver grass (Chrysopogon zizanioides) and humic acid for phytoremediation of Cu and Zn in mine soils. Vetiver plants were grown in soil samples collected from two mine sites of Spain mixed with a commercial humic acid derived from leonardite at doses of 0, 2, 10, and 20 g kg(-1). Plant metal concentrations and biomass were measured and metal bioavailability in soils was determined by a low molecular weight organic acid extraction. Results showed that humic acid addition decreased organic acid-extractable metals in soil. Although this extraction method is used to estimate bioavailability of metals, it was not a good estimator under these conditions due to competition with the strong chelators in the added humic acid. High doses of humic acid also promoted root growth and increased Cu concentrations in plants due to formation of soluble metal-organic complexes, which enhanced removal of this metal from soil and its accumulation in roots. Although humic acid was not able to improve Zn uptake, it managed to reduce translocation of Zn and Cu to aerial parts of plants. Vetiver resulted unsuitable for phytoextraction, but our study showed that the combined use of this species with humic acid at 10-20 g kg(-1) could be an effective strategy for phytostabilization of mine soils.


Assuntos
Biodegradação Ambiental , Vetiveria/metabolismo , Cobre , Substâncias Húmicas/análise , Poluentes do Solo , Zinco , Cobre/análise , Cobre/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Zinco/análise , Zinco/metabolismo
20.
Chem Biodivers ; 11(11): 1821-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25408325

RESUMO

Vetiver oil is a highly esteemed basic ingredient of modern perfumery, but the nature of the constituents that really impart its typical and most sought woody-earthy scent has remained controversial. Indeed, vetiver oil is considered as one of the most complex essential oils, being mostly composed of several hundreds of sesquiterpene derivatives with a large structural diversity. Its complexity has hindered the direct identification of its odoriferous components. We thus aimed at using a combination of GC×GC/MS and GC-Olfactometry in order to identify most of its odor-impact constituents. The olfactory analysis of vetiver oil and vetiveryl acetate revealed a huge variety of odors in both products. While khusimone has almost unanimously been recognized as the most characteristic vetiver odorant, we have identified several even more important contributors to the typical vetiver character.


Assuntos
Vetiveria/química , Odorantes/análise , Óleos de Plantas/química , Cromatografia Gasosa , Espectrometria de Massas , Conformação Molecular , Olfatometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...