Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.132
Filtrar
1.
Protein J ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980535

RESUMO

In the realm of parasitology, autophagy has emerged as a critical focal point, particularly in combating Leishmaniasis. Central to this endeavour is the recognition of the protein ATG8 as pivotal for the survival and infectivity of the parasitic organism Leishmania major, thereby making it a potential target for therapeutic intervention. Consequently, there is a pressing need to delve into the structural characteristics of ATG8 to facilitate the design of effective drugs. In this study, our efforts centered on the purification of ATG8 from Leishmania major, which enabled novel insights into its structural features through meticulous spectroscopic analysis. We aimed to comprehensively assess the stability and behaviour of ATG8 in the presence of various denaturants, including urea, guanidinium chloride, and SDS-based chemicals. Methodically, our approach included secondary structural analysis utilizing CD spectroscopy, which not only validated but also augmented computationally predicted structures of ATG8 reported in previous investigations. Remarkably, our findings unveiled that the purified ATG8 protein retained its folded conformation, exhibiting the anticipated secondary structure. Moreover, our exploration extended to the influence of lipids on ATG8 stability, yielding intriguing revelations. We uncovered a nuanced perspective suggesting that targeting both the lipid composition of Leishmania major and ATG8 could offer a promising strategy for future therapeutic approaches in combating leishmaniasis. Collectively, our study underscores the importance of understanding the structural intricacies of ATG8 in driving advancements towards the development of targeted therapies against Leishmaniasis, thereby providing a foundation for future investigations in this field.

2.
Chem ; 10(7): 2074-2088, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39006239

RESUMO

Circular dichroism (CD) based enantiomeric excess (ee) determination assays are optical alternatives to chromatographic ee determination in high-throughput screening (HTS) applications. However, the implementation of these assays requires calibration experiments using enantioenriched materials. We present a data-driven approach that circumvents the need for chiral resolution and calibration experiments for an octahedral Fe(II) complex (1) used for the ee determination of α-chiral primary amines. By computationally parameterizing the imine ligands formed in the assay conditions, a model of the circular dichroism (CD) response of the Fe(II) assembly was developed. Using this model, calibration curves were generated for four analytes and compared to experimentally generated curves. In a single-blind ee determination study, the ee values of unknown samples were determined within 9% mean absolute error, which rivals the error using experimentally generated calibration curves.

3.
Photochem Photobiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961565

RESUMO

Here, we report a novel kind of protein nanoparticles of 11 nm in size, which have a central protein core surrounded by two layers of lipid. One layer of the lipid was covalently attached to the protein, while the other layer has been physically assembled around the protein core. Particle synthesis is highly modular, while both the size and charge of the protein nanoparticles are controlled in a predictable manner. Circular dichroism studies of the conjugate showed that the protein secondary structure is retained, while biophysical characterizations indicated the particle purity, size, and charge. The conjugate had a high thermal stability to steam sterilization conditions at 121°C (17 psi). After labeling the protein core with few different fluorescent dyes, they were strongly fluorescent with the corresponding colors independent of their size, unlike quantum dots. They are readily digested by proteases, and these water-soluble, non-toxic, highly stable, biocompatible, and biodegradable conjugates are suitable for cell imaging and drug delivery applications.

4.
Nano Lett ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976602

RESUMO

Circular dichroism (CD) spectroscopy has been extensively utilized for detecting and distinguishing the chirality of diverse substances and structures. However, CD spectroscopy is inherently weak and conventionally associated with chiral sensing, thus constraining its range of applications. Here, we report a DNA-origami-empowered metasurface sensing platform through the collaborative effect of metasurfaces and DNA origami, enabling achiral/slightly chiral sensing with high sensitivity via the enhanced ΔCD. An anapole metasurface, boasting over 60 times the average optical chirality enhancement, was elaborately designed to synergize with reconfigurable DNA origami. We experimentally demonstrated the detection of achiral/slightly chiral DNA linker strands via the enhanced ΔCD of the proposed platform, whose sensitivity was a 10-fold enhancement compared with the platform without metasurfaces. Our work presents a high-sensitivity platform for achiral/slightly chiral sensing through chiral spectroscopy, expanding the capabilities of chiral spectroscopy and inspiring the integration of multifunctional artificial nanostructures across diverse domains.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124684, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38981290

RESUMO

Human telomeres (HTs) can form DNA G-quadruplex (G4), an attractive target for anticancer and antiviral drugs. HT-G4s exhibit inherent structural polymorphism, posing challenges for understanding their specific recognition by ligands. Here, we aim to explore the impact of different topologies within a small segment of the HT (Tel22) on its interaction with BRACO19, a rationally designed G4 ligand with high quadruplex affinity, already employed in in-vivo treatments. Our multi-technique approach is based on the combined use of a set of contactless spectroscopic tools. Circular dichroism and UV resonance Raman spectroscopy probe ligand-induced conformational changes in the G4 sequence, while UV-visible absorption, coupled with steady-state fluorescence spectroscopy, provides further insights into the electronic features of the complex, exploiting the photoresponsive properties of BRACO19. Overall, we find that modifying the topology of the unbound Tel22 through cations (K+ or Na+), serves as a critical determinant for ligand interactions and binding modes, thus influencing the HT-G4's assembly capabilities. Furthermore, we show how fluorescence serves as a valuable probe for recognizing cation-driven multimeric structures, which may be present in living organisms, giving rise to pathological forms.

6.
Macromol Rapid Commun ; : e2400149, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38973657

RESUMO

A combination of atomistic molecular dynamics (aMD) simulations and circular dichroism (CD) analysis is used to explore supramolecular structures of amphiphilic ABA-type triblock polymer peptide conjugates (PPC). Using the example of a recently introduced PPC with pH- and temperature responsive self-assembling behavior [Otter et al., Macromolecular Rapid Communications 2018, 39, 1800459], this study shows how molecular dynamics simulations of simplified fragment molecules can add crucial information to CD data, which helps to correctly identify the self-assembled structures and monitor the folding/unfolding pathways of the molecules. The findings offer insights into the nature of structural transitions induced by external stimuli, thus contributing to the understanding of the connection of microscopic structures with macroscopic properties.

7.
Chem Pharm Bull (Tokyo) ; 72(7): 658-663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987173

RESUMO

In recent years, there has been a growing focus on the development of medium-sized drugs based on peptides or nucleic acids owing to their potential therapeutic benefits. As some of these medium-sized drugs exert their therapeutic effects by adopting specific secondary structures, evaluating their conformational states is crucial to ensure the efficacy, quality, and safety of the drug products. It is important to assess the structural integrity of biomolecular therapeutics to guarantee their intended pharmacological activity and maintain the required standards for drug development and manufacturing. One widely utilized technique for quality evaluation is secondary structural analysis using circular dichroism (CD) spectroscopy. Given the higher production and quality control costs associated with medium-sized drugs compared with small-molecule drugs, developing analytical techniques that enable CD analysis with reduced sample volumes is highly desirable. Herein, we focused on a microsampling disk-type cell as a potential solution for reducing the required sample volume. We investigated whether CD spectral analysis using a microsampling disk could provide equivalent spectra compared with the standard cell (sample volume: approx. 300 µL). Our findings demonstrated that the microsampling disk (sample volume: 2-10 µL) could be successfully applied to CD spectral analysis of peptide and nucleic acid drugs, paving the way for more efficient and cost-effective quality evaluation processes.


Assuntos
Dicroísmo Circular , Ácidos Nucleicos , Peptídeos , Peptídeos/química , Peptídeos/análise , Ácidos Nucleicos/análise , Ácidos Nucleicos/química
8.
Phytochemistry ; 226: 114217, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972442

RESUMO

Anemone vitifolia is a small herb found in Asia that is used to treat a range of diseases in Chinese traditional medicine. GNPS-based molecular networking of an Anemone vitifolia specimen revealed the presence of a network containing numerous ions indicating the presence of lignans, several of which suggested that there might be previously undescribed compounds in the extract. Fractionation of the organic extract yielded five undescribed lignans, the vitifolignans, together with one known. The structures were identified based on extensive spectroscopic data analysis (NMR, HR-ESI-MS, and UV), coupling constant calculation and comparison with reported data. Their absolute configurations were determined by comparison of experimental ECD spectra with calculated spectra. Compounds 4/5 showed weak inhibition of LPS-induced NO production in mouse mononuclear macrophages.

9.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891911

RESUMO

The wide use of mono- or bis-styryl fluorophores in biomedical applications prompted the presented design and study of a series of trimeric and tetrameric homo-analogues, styryl moieties arranged around a central aromatic core. The interactions with the most common biorelevant targets, ds-DNA and ds-RNA, were studied by a set of spectrophotometric methods (UV-VIS, fluorescence, circular dichroism, thermal denaturation). All studied dyes showed strong light absorption in the 350-420 nm range and strongly Stokes-shifted (+100-160 nm) emission with quantum yields (Φf) up to 0.57, whereby the mentioned properties were finely tuned by the type of the terminal cationic substituent and number of styryl components (tetramers being red-shifted in respect to trimers). All studied dyes strongly interacted with ds-DNA and ds-RNA with 1-10 nM-1 affinity, with dye emission being strongly quenched. The tetrameric analogues did not show any particular selectivity between ds-DNA or ds-RNA due to large size and consequent partial, non-selective insertion into DNA/RNA grooves. However, smaller trimeric styryl series showed size-dependent selective stabilization of ds-DNA vs. ds-RNA against thermal denaturation and highly selective or even specific recognition of several particular ds-DNA or ds-RNA structures by induced circular dichroism (ICD) bands. The chiral (ICD) selectivity was controlled by the size of a terminal cationic substituent. All dyes entered efficiently live human cells with negligible cytotoxic activity. Further prospects in the transfer of ICD-based selectivity into fluorescence-chiral methods (FDCD and CPL) is proposed, along with the development of new analogues with red-shifted absorbance properties.


Assuntos
Cátions , Dicroísmo Circular , DNA , Corantes Fluorescentes , RNA de Cadeia Dupla , Humanos , DNA/química , Corantes Fluorescentes/química , RNA de Cadeia Dupla/química , Cátions/química , Espectrometria de Fluorescência , Estirenos/química , Desnaturação de Ácido Nucleico
10.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928181

RESUMO

A simplified molecular-dynamics-based electronic circular dichroism (ECD) approach was tested on three condensed derivatives with limited conformational flexibility and an isochroman-2H-chromene hybrid, the ECD spectra of which could not be precisely reproduced by the conventional ECD calculation protocol. Application of explicit solvent molecules at the molecular mechanics (MD) level in the dynamics simulations and subsequent TDDFT-ECD calculation for the unoptimized MD structures was able to improve the agreements between experimental and computed spectra. Since enhancements were achieved even for molecules with limited conformational flexibility, deformations caused by the solvent molecules and multitudes of conformers produced with unoptimized geometries seem to be key factors for better agreement. The MD approach could confirm that aggregation of the phenanthrene natural product luzulin A had a significant contribution to a specific wavelength range of the experimental ECD. The MD approach has proved that dimer formation occurred in solution and this was responsible for the anomalous ECD spectrum. The scope and limitations of the method have also been discussed.


Assuntos
Dicroísmo Circular , Simulação de Dinâmica Molecular , Dicroísmo Circular/métodos , Fenantrenos/química , Conformação Molecular , Solventes/química
11.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930995

RESUMO

Since the discovery of metal-catalyzed azide-alkyne cycloadditions, 1,2,3-triazoles have been widely used as linkers for various residues. 1,2,3-Triazole is an aromatic five-membered cyclic compound consisting of three nitrogen and two carbon atoms with large dipoles that absorb UV light. In the past decade, we have been working on the synthesis of dense triazole polymers possessing many 1,2,3-triazole residues linked through a carbon atom in their backbone as a new type of functional polymer. Recently, we reported that stereoregular dense triazole uniform oligomers exhibit a circular dichroism signal based on the chiral arrangement of two neighboring 1,2,3-triazole residues. In this study, to investigate the chiral conformation of two neighboring 1,2,3-triazole residues in stereoregular dense triazole uniform oligomers, density functional theory (DFT) calculations were performed using 1,2,3-triazole diads with different substitution positions and conformations as model compounds and compared with our previous results.

12.
Angew Chem Int Ed Engl ; : e202409790, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880778

RESUMO

A reaction-based optical relay sensing strategy that enables accurate determination of the concentration and enantiomeric ratio (er) of challenging chiral alcohols exhibiting stereocenters at the α-, ß-, γ- or even δ-position or hard-to-detect cryptochirality arising from H/D substitution is described. This unmatched application scope is achieved with a conceptually new sensing approach by which the alcohol moiety is replaced with an optimized achiral sulfonamide chromophore to minimize the distance between the covalently attached chiroptical reporter unit and the stereogenic center in the substrate. The result is a remarkably strong, red-shifted CD induction that increases linearly with the sample er. The CD sensing part of the tandem assay is seamlessly coupled to a redox reaction with a quinone molecule to generate a characteristic UV response that is independent of the enantiopurity of the alcohol and thus allows determination of the total analyte concentration. The robustness and utility of the CD/UV relay are further verified by chromatography-free asymmetric reaction analysis with small aliquots of crude product mixtures, paving the way toward high-throughput chiral compound screening workflows which is a highly sought-after goal in the pharmaceutical industry.

13.
ACS Appl Mater Interfaces ; 16(26): 33935-33942, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899863

RESUMO

Simultaneous circular dichroism and wavefront manipulation have gained considerable attention in various applications, such as chiroptical spectroscopy, chiral imaging, sorting and detection of enantiomers, and quantum optics, which can improve the miniaturization and integration of the optical system. Typically, structures with n-fold rotational symmetry (n ≥ 3) are used to improve circular dichroism, as they induce stronger interactions between the electric and magnetic fields. However, manipulating the wavefront with these structures remains challenging because they are commonly considered isotropic and lack a geometric phase response in linear optics. Here, we propose and experimentally demonstrate an approach to achieve simultaneous circular dichroism (with a maximum value of ∼0.62) and wavefront manipulation using a plasmonic metasurface made up of C3 Archimedes spiral nanostructures. The circular dichroism arises from the magnetic dipole-dipole resonance and strong interactions between adjacent meta-atoms. As a proof of concept, two metadevices are fabricated and characterized in the near-infrared regime. This configuration possesses the potential for future applications in photodetection, chiroptical spectroscopy, and the customization of linear and nonlinear optical responses.

14.
NanoImpact ; 35: 100515, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857755

RESUMO

This study explored the response of superoxide dismutase (SOD) under superparamagnetic iron oxide nanoparticles (SPIONs)-induced oxidative stress using combined cellular and molecular methods. Results found that SPIONs induced the inhibition of catalase activity, the U-inverted change of SOD activity and the accumulation of reactive oxygen species (ROS), leading to oxidative damage and cytotoxicity. The change of intracellular SOD activity was resulted from the increase of molecular activity induced by directly interacting with SPIONs and ROS-inhibition of activity. The increase of molecular activity could be attributed to the structural and conformational changes of SOD, which were caused by the direct interaction of SOD with SPIONs. The SOD-SPIONs interaction and its interacting mechanism were explored by multi-spectroscopy, isothermal titration calorimetry and zeta potential assays. SOD binds to SPIONs majorly via hydrophobic forces with the involvement of electrostatic forces. SPIONs approximately adsorb 11 units of SOD molecule with the binding affinity of 2.99 × 106 M-1. The binding sites on SOD were located around Tyr residues, whose hydrophilicity increased upon interacting with SPIONs. The binding to SPIONs loosened the peptide chains, changed the secondary structure and reduced the aggregation state of SOD.

15.
J Appl Glycosci (1999) ; 71(2): 55-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863951

RESUMO

Cellobiohydrolase (CBH), belonging to glycoside hydrolase family 6 (GH6), plays an essential role in cellulose saccharification, but its low thermotolerance presents a challenge in improving the reaction efficiency. Based on a report that chimeric CBH II (GH6) engineered to remove non-disulfide-bonded free Cys shows increased thermotolerance, we previously mutated the two free Cys residues to Ser in GH6 CBH from the basidiomycete Phanerochaete chrysosporium (PcCel6A) and obtained a thermotolerant double mutant, C240S/C393S (Yamaguchi et al., J. Appl. Glycosci. 2020; 67: 79-86). Here, characterization of the double mutant revealed that its activity towards both amorphous and crystalline cellulose was higher than that of the wild-type enzyme at elevated temperature, suggesting that the catalytic domain is the major contributor to the increased thermotolerance. To investigate the role of each free Cys residue, we prepared both single mutants, C240S and C393S, of the catalytic domain of PcCel6A and examined their residual activity at high temperature and the temperature-dependent changes of folding by means of circular dichroism measurements and thermal shift assay. The results indicate that the C393S mutation is the main contributor to both the increased thermotolerance of C240S/C393S and the increased activity of the catalytic domain at high temperature.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124381, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838602

RESUMO

Adenosine is one of the building blocks of nucleic acids and other biologically important molecules. Spectroscopic methods have been among the most utilized techniques to study adenosine and its derivatives. However, most of them deal with adenosine in solution. Here, we present the first vibrational circular dichroism (VCD) spectroscopic study of adenosine crystals in solid state. Highly regular arrangement of adenosine molecules in a crystal resulted in a strongly enhanced supramolecular VCD signal originating from long-range coupling of vibrations. The data suggested that adenosine crystals, in contrast to guanosine ones, do not imbibe atmospheric water. Relatively large dimensions of the adenosine crystals resulted in scattering and substantial orientational artifacts affecting the spectra. Several strategies for tackling the artifacts have been proposed and tested. Atypical features in IR absorption spectra of crystalline adenosine (e.g., extremely low absorption in mid-IR spectral range) were observed and attributed to refractive properties of adenosine crystals.

17.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892285

RESUMO

The diterpene cafestol represents the most potent cholesterol-elevating compound known in the human diet, being responsible for more than 80% of the effect of coffee on serum lipids, with a mechanism still not fully clarified. In the present study, the interaction of cafestol and 16-O-methylcafestol with the stabilized ligand-binding domain (LBD) of the Farnesoid X Receptor was evaluated by fluorescence and circular dichroism. Fluorescence quenching was observed with both cafestol and 16-O-methylcafestol due to an interaction occurring in the close environment of the tryptophan W454 residue of the protein, as confirmed by docking and molecular dynamics. A conformational change of the protein was also observed by circular dichroism, particularly for cafestol. These results provide evidence at the molecular level of the interactions of FXR with the coffee diterpenes, confirming that cafestol can act as an agonist of FXR, causing an enhancement of the cholesterol level in blood serum.


Assuntos
Colesterol , Café , Diterpenos , Receptores Citoplasmáticos e Nucleares , Diterpenos/farmacologia , Diterpenos/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Colesterol/metabolismo , Humanos , Café/química , Simulação de Acoplamento Molecular , Ligação Proteica , Simulação de Dinâmica Molecular , Dicroísmo Circular
18.
Biochem Biophys Res Commun ; 723: 150199, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38824807

RESUMO

Rab3A is a member of the Rab GTPase family involved in synaptic vesicle trafficking. Recent evidence has demonstrated that Rab3A is phosphorylated by leucine-rich repeat kinase 2 (LRRK2) that is implicated in both familial and sporadic forms of Parkinson's disease (PD), and an abnormal increase in Rab3A phosphorylation has been proposed as a cause of PD. Despite the potential importance of Rab3A in PD pathogenesis, its structural information is limited and the effects of bound nucleotides on its biophysical and biochemical properties remain unclear. Here, we show that GDP-bound Rab3A is preferentially phosphorylated by LRRK2 compared with GTP-bound Rab3A. The secondary structure of Rab3A, measured by circular dichroism (CD) spectroscopy, revealed that Rab3A is resistant to heat-induced denaturation at pH 7.4 or 9.0 regardless of the nucleotides bound. In contrast, Rab3A underwent heat-induced denaturation at pH 5.0 at a lower temperature in its GDP-bound form than in its GTP-bound form. The unfolding temperature of Rab3A was studied by differential scanning fluorimetry, which showed a significantly higher unfolding temperature in GTP-bound Rab3A than in GDP-bound Rab3A, with the highest at pH 7.4. These results suggest that Rab3A has unusual thermal stability under physiologically relevant conditions and that bound nucleotides influence both thermal stability and phosphorylation by LRRK2.


Assuntos
Guanosina Difosfato , Guanosina Trifosfato , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Estrutura Secundária de Proteína , Proteína rab3A de Ligação ao GTP , Fosforilação , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteína rab3A de Ligação ao GTP/metabolismo , Proteína rab3A de Ligação ao GTP/química , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Estabilidade Proteica
19.
Nat Prod Res ; : 1-6, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853409

RESUMO

Activation of silencing gene clusters is an important way to discover structurally novel compounds. In this study, three undescribed compounds were obtained from an engineered strain of Streptomyces sp. S35-LAL1. They include a polysubstituted cyclopentane with an unprecedented 10-carbon skeleton (1) and two glycerol esters (2 and 3). The structures of compounds 1-3 were elucidated through analysis of their spectroscopic data including 1D, 2D NMR, optical rotation, and electronic circular dichroism (ECD).

20.
Prep Biochem Biotechnol ; : 1-9, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832778

RESUMO

Thermophilic Geobacillus kaustophilus HTA426 genome possesses a monoacylglycerol lipase (MAGL) gene. MAGLs can synthesize emulsifiers for use in the food and pharmaceutical industries from fatty acids and glycerol. They can also be used to analyze monoacylglycerol (MAG) levels in serum and food. The MAGL gene from strain HTA426 was artificially synthesized and heterologously expressed in Escherichia coli BL21(DE3). The recombinant His-tag fused MAGL (GkMAGL) was purified using a Ni2+-affinity column. The purified enzyme showed a temperature optimum at 65 °C and was stable up to 75 °C after 30 min incubation. In addition, the enzyme exhibited a pH optimum of 7.5 and was stable from pH 5.0 to 11.0. The enzyme hydrolyzed monoacylglycerols and showed the highest activity toward 1-monolauroylglycerol. The enzyme was stable in the presence of various organic solvents and detergents. The addition of Triton X-100 significantly increased GkMAGL activity. The thermal stability of the enzyme was higher than that of thermostable MAGL from Geobacillus sp. 12AMOR1 (12AMOR1_MAGL). Circular dichroism spectral analysis showed that the conformational stability of the GkMAGL was higher than that of 12AMOR1_MAGL at higher temperatures. These results indicate that the GkMAGL has useful features that can be used for various biotechnological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...