Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Heliyon ; 10(10): e31268, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803962

RESUMO

The effects of climate-induced, long-term changes on mesozooplankton biomasses were studied based on monitoring data collected since 1966 in the northern Baltic Sea. We found that the biomasses of marine and brackish mesozooplankton had decreased significantly from 1966 to 2019, and a remarkable biomass and functional biodiversity loss took place in the mesozooplankton community. Our results put emphasis on the impact of two climate-driven regime shifts for the region's mesozooplankton community. The regime shifts took place in 1975 and 1976 and in 1989 and 1990, and they were the most important factor behind the abrupt biomass changes for marine mesozooplankton and total and marine Copepoda. Only the latter regime shift influenced the biomasses of brackish Copepoda, marine Cladocera, and total Rotifera. The decreasing length of the ice-cover period drove the decrease of the biomass of limnic Limnocalanus macrurus (Copepoda), while the winter North Atlantic Oscillation was behind biomass changes in the total and the brackish Cladocera. These findings may have important implications for planktivorous fish, such as Baltic herring, particularly in terms of their impact on commercial fishing.

2.
Environ Sci Pollut Res Int ; 31(24): 35308-35319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727975

RESUMO

Daphnia spinulata Birabén, 1917 is an endemic cladoceran species, frequent in the zooplankton communities of the shallow lakes of the Pampean region of Argentina. These lakes have varying salinity levels and, being located in agricultural areas, are frequently subject to pesticide pollution. This study aimed to determine the effects of the herbicide glyphosate (Panzer Gold®) in combination with different salinity levels on the biological parameters of D. spinulata and its recovery ability after a short exposure. Three types of assays were performed: an acute toxicity test, a chronic assessment to determine survival, growth and reproduction, and recovery assays under optimal salinity conditions (1 g L-1). The LC50-48 h of glyphosate was 7.5 mg L-1 (CL 3.15 to 11.72). Longevity and the number of offspring and clutches were significantly reduced due to the combined exposure of glyphosate and increased salinity. The timing of the first offspring did not recover after glyphosate exposure. Our results reveal that D. spinulata is sensitive to the herbicide Panzer Gold® at concentrations well below those indicated in the safety data sheet of this commercial formulation, which causes stronger negative effects in conditions of higher salinity. Further research is needed to shed light on the sensitivity of this cladoceran to glyphosate and its variability under other interactive stress factors.


Assuntos
Daphnia , Glicina , Glifosato , Herbicidas , Salinidade , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Daphnia/efeitos dos fármacos , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Argentina , Reprodução/efeitos dos fármacos
3.
Glob Chang Biol ; 30(3): e17220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433333

RESUMO

Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L-1 , below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.


Assuntos
Cálcio , Cladocera , Animais , Lagos , Zooplâncton , Água
4.
J Plankton Res ; 45(6): 870-884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084300

RESUMO

Zooplankton in the Barents Sea have been monitored annually with a standard procedure with determination of size-fractioned biomass since the mid-1980s. Biomass of copepods and cladocerans was estimated based on measured abundance and individual weights taken from literature. Calanus species were dominant, making up ~85% of the estimated biomass of copepods. The second most important taxon was Oithona spp. (~0.5 g dry weight (dw) m-2, ~10%), followed by Metridia spp. (~0.15 g dw m-2, 2-3%) and Pseudocalanus spp. (0.10-0.15 g dw m-2, 1-5%). Estimated biomass of cladoceran taxa (Evadne and Podon) was low (0.01 g dw m-2). Calanus spp. contributed most of the biomass of the medium size fraction (1-2 mm), whereas small copepod species (Oithona, Pseudocalanus and others) contributed to the small size fraction (<1 mm). Estimated biomass of Calanus spp. and of the sum of small copepod species were both positively correlated with measured total zooplankton biomass (R2 = 0.72 and 0.34, respectively). The biomass ratio of small copepod species to Calanus was similar in Atlantic and Arctic water masses (~0.15-0.2) but tended to increase with decreasing total biomass. This suggests a shift to relatively larger roles of small copepods as Calanus and total biomass decrease.

5.
Glob Chang Biol ; 29(21): 6066-6076, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609877

RESUMO

Acidification has harmed freshwater ecosystems in Northern Europe since the early 1900s. Stricter regulations aimed at decreasing acidic emissions have improved surface-water chemistry since the late 1980s but the recovery of biotic communities has not been consistent. Generally, the recovery of flora and fauna has been documented only for a few lakes or regions and large-scale assessments of long-term dynamics of biotic communities due to improved water quality are still lacking. This study investigates a large biomonitoring dataset of pelagic and littoral crustacean zooplankton (Cladocera and Copepoda) from 142 acid-sensitive lakes in Norway spanning 24 years (1997-2020). The aims were to assess the changes in zooplankton communities through time, compare patterns of changes across lake types (defined based on calcium and humic content), and identify correlations between abiotic and biological variables. Our results indicate chemical and biological recovery after acidification, as shown by a general increase in pH, acid neutralizing capacity, changes in community composition and increases in the total number of species, number of acid-sensitive species and functional richness through time. However, the zooplankton responses differ across lake types. This indicates that the concentration of calcium (or alkalinity) and total organic carbon (or humic substances) are important factors for the recovery. Therefore, assessment methods and management tools should be adapted to the diverse lake types. Long-term monitoring of freshwater ecosystems is needed to fully comprehend the recovery dynamics of biotic communities from acidification.


Assuntos
Lagos , Zooplâncton , Animais , Zooplâncton/fisiologia , Ecossistema , Cálcio , Concentração de Íons de Hidrogênio
6.
Mitochondrial DNA B Resour ; 8(8): 831-835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560176

RESUMO

Water flea Ceriodaphnia dubia has been widely used for risk assessments of chemicals and environmental contamination. In this study, the complete mitochondrial genome (mitogenome) of this species NIES strain was determined using short-read high throughput and long-read sequencing technologies. The mitogenome of C. dubia was 15,170 bp in length and consisted of 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs), and 22 transfer RNAs (tRNAs). The gene order was identical to the pattern conserved across crustaceans. The complete mitogenome of the NIES strain will serve as genetical reference in ecological risk assessments in Japan, as well as resources for future phylogenetical studies using cladocerans.

7.
Water Res ; 242: 120269, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393812

RESUMO

Invertebrates such as Asellus aquaticus, halacarid mites, copepods and cladocerans are known to regularly occur in drinking water distribution systems (DWDS). An eight-year study investigated the biomass and taxonomic composition of invertebrates in the finished water of nine Dutch drinking water treatment plants (using surface water, ground water or dune-infiltrated water) and their non-chlorinated distribution systems. The main aims of the study were to examine the source waters' influence on invertebrate biomass and composition in the distribution networks and to describe invertebrate ecology in relation to the habitat of filters and the DWDS. Invertebrate biomass of the finished drinking waters of the surface water treatment plants was significantly higher than in the finished waters of the other treatment plants. This difference was due to the higher nutrient levels of the source water. The main part of the biomass in the finished water of the treatment plants consisted of rotifers, harpacticoid copepods, copepod larvae, cladocerans and oligochaetes, which are small-sized, euryoecious and tolerate broad environmental conditions. Most of them reproduce asexually. Most species found in the DWDS are known to be detritivores, but all are benthic and euryoecious organisms, many of which have a cosmopolitan distribution. The euryoeciousness of these freshwater species was also shown by their occurrence in brackish waters and ground or hyporheic waters and the ability of many eurythermic species to overwinter in the DWDS habitat. These species are preadapted to the oligotrophic environment of the DWDS and can develop stable populations there. Most species can reproduce asexually and the sexually reproducing invertebrates (Asellus aquaticus, cyclopoids and probably also halacarids) have obviously overcome the potential problem of finding a mating partner. This study also showed a significant correlation of DOC in the drinking water with the invertebrate biomass. A. aquaticus was the dominant biomass component in six out of nine locations and was highly correlated with the Aeromonas counts in the DWDS. Thus, invertebrate monitoring in DWDS is an important additional parameter in understanding biological stability conditions in non-chlorinated DWDS.


Assuntos
Água Potável , Água Subterrânea , Purificação da Água , Animais , Biomassa , Invertebrados
8.
Mar Biotechnol (NY) ; 25(3): 473-487, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37310522

RESUMO

Moina micrura represents a promising model species for ecological and ecotoxicological investigations in tropical freshwater ecosystems. Illumina NovaSeq™ 6000 sequencing was employed in this study to analyze M. micrura across three distinct developmental stages: juvenile, adult, and male. Current study successfully annotated 51,547 unigenes (73.11%) derived from seven (7) different databases. A total of 554 genes were found to be significantly upregulated, while 452 genes showed significant downregulation between juvenile and male. Moreover, 1001 genes were upregulated, whereas 830 genes exhibited downregulation between the adult and male. Analysis of differentially expressed genes revealed upregulation of chitin, cuticle, myosin (MYO), mitogen-activated protein kinases (MAPK), fibrillin (FBN), cytochrome (CYP), glutathione s-transferase (GST), vitellogenin (VTG), acetylcholinesterase (AChE), and transforming growth factor beta (TGFB) under unfavorable environmental conditions (male), as compared to favorable environmental conditions (juveniles and adults). These alterations in gene expression significantly impact the phenological and life-history traits of M. micrura. Furthermore, the upregulation of hemoglobin (HMB), doublesex (DSX), juvenile hormone analogs (JHA), heat shock protein (HSP), and methyltransferase (METT) genes in males initiates the sex-switching effects observed in M. micrura. These findings hold substantial value for researchers interested in determining M. micrura sequences for future investigations of gene expression and comparative reproductive genome analysis within the Moina genus and cladoceran families.


Assuntos
Cladocera , Transcriptoma , Humanos , Animais , Masculino , Acetilcolinesterase/genética , Ecossistema , Perfilação da Expressão Gênica , Cladocera/genética
9.
Environ Toxicol Pharmacol ; 100: 104161, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37245609

RESUMO

We determined the effects influence of cyanobacterial products metabolites: aeruginosin-A (AER-A), microginin-FR1 (MG-FR1), anabaenopeptin-A (ANA-A), cylindrospermopsin (CYL) and their binary and quadruple mixtures on swimming behavior, heart rate, thoracic limb activity, oxygen consumption and in vivo cell health of Daphnia magna. The study showed that CYL induced mortality of daphnids at the highest concentrations, however three oligopeptides had no lethal effect. All the tested Each single metabolites inhibited swimming speed. The mixtures AER+MG-FR1 and AER-A+ANA-A induced antagonistic and the quadruple mixture synergistic effects. Physiological endpoints were depressed by CYL, however they were simulated by the oligopeptides and their binary mixtures. The quadruple mixture inhibited the physiological parameters with antagonistic interactions between the components were antagonistic. Single CYL, MG-FR1 and ANA-A induced cytotoxicity with synergistic interactions and the metabolites in mixtures showed. The study suggests that swimming behavior and physiological parameters may be affected by single cyanobacterial oligopeptides, however their mixtures may induce different total effects.


Assuntos
Alcaloides , Poluentes Químicos da Água , Animais , Daphnia , Alcaloides/farmacologia , Toxinas de Cianobactérias , Poluentes Químicos da Água/toxicidade
10.
Toxics ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36851051

RESUMO

Cyanobacterial blooms have been recognized as a problem in fresh water for about 150 years. Over the past 50 years, experimental studies on the subject have gained importance considering the increasing need to control toxic cyanobacterial blooms. This article presents information on the different lines of research that have been undertaken on zooplankton-cyanobacteria interactions over the past 50 years. These include information on filtering/ingestion rates and phytoplankton preferences of small and large rotifers, cladocerans, and copepods; growth rates of zooplankton on cyanobacterial diets; feeding rates of other freshwater invertebrates on cyanobacteria; role of zooplankton in top-down biomanipulation efforts; effect of cyanotoxins on zooplankton; bioaccumulation of cyanotoxins; and physical and chemical control of cyanobacterial blooms. We also highlight measures that have led to successful lake management and improvement of water quality in selected waterbodies.

11.
Environ Geochem Health ; 45(6): 3567-3583, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36450975

RESUMO

Bisphenol A (BPA) is a well-known endocrine-disrupting compound that causes several toxic effects on human and aquatic organisms. The restriction of BPA in several applications has increased the substituted toxic chemicals such as bisphenol F (BPF) and bisphenol S (BPS). A native tropical freshwater cladoceran, Moina micrura, was used as a bioindicator to assess the adverse effects of bisphenol analogues at molecular, organ, individual and population levels. Bisphenol analogues significantly upregulated the expressions of stress-related genes, which are the haemoglobin and glutathione S-transferase genes, but the sex determination genes such as doublesex and juvenile hormone analogue genes were not significantly different. The results show that bisphenol analogues affect the heart rate and mortality rate of M. micrura. The 48-h lethal concentration (LC50) values based on acute toxicity for BPA, BPF and BPS were 611.6 µg L-1, 632.0 µg L-1 and 819.1 µg L-1, respectively. The order of toxicity based on the LC50 and predictive non-effect concentration values were as follows: BPA > BPF > BPS. Furthermore, the incorporated method combining the responses throughout the organisation levels can comprehensively interpret the toxic effects of bisphenol analogues, thus providing further understanding of the toxicity mechanisms. Moreover, the output of this study produces a comprehensive ecotoxicity assessment, which provides insights for the legislators regarding exposure management and mitigation of bisphenol analogues in riverine ecosystems.


Assuntos
Compostos Benzidrílicos , Ecossistema , Humanos , Frequência Cardíaca , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/análise , Medição de Risco , Expressão Gênica
12.
Chemosphere ; 313: 137377, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36457264

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are gaining worldwide attention because of their toxicity, bioaccumulative and resistance to biological degradation in the environment. PFAS can be categorised into endocrine disrupting chemicals (EDCs) and identified as possible carcinogenic agents for the aquatic ecosystem and humans. Despite this, only a few studies have been conducted on the aquatic toxicity of PFAS, particularly in invertebrate species such as zooplankton. This study evaluated the acute toxicity of two main PFAS, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), by using freshwater cladocerans (Moina micrura) as bioindicators. This study aimed to assess the adverse effects at different levels of organisations such as organ (heart size and heart rate), individual (individual size and mortality) and population (lethal concentration, LC50). PFOA was shown to be more hazardous than PFOS, with the LC50 values (confidence interval) of 474.7 (350.4-644.5) µg L-1 and 549.6 (407.2-743.9) µg L-1, respectively. As the concentrations of PFOS and PFOA increased, there were declines in individual size and heart rate as compared to the control group. The values of PNECs acquired by using the AF method (PNECAF) for PFOA and PFOS were 0.4747 and 0.5496 µg L-1, respectively. Meanwhile, the PNEC values obtained using the SSD method (PNECSSD) were 1077.0 µg L-1 (PFOA) and 172.5 µg L-1 (PFOS). PNECAF is more protective and conservative compared to PNECSSD. The findings of this study have significant implications for PFOS and PFOA risk assessment in aquatic environments. Thus, it will aid freshwater sustainability and safeguard the human dependency on water resources.


Assuntos
Ácidos Alcanossulfônicos , Cladocera , Fluorocarbonos , Animais , Humanos , Ecossistema , Fluorocarbonos/toxicidade , Medição de Risco , Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade
13.
Ecotoxicol Environ Saf ; 249: 114433, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321655

RESUMO

The ubiquitous presence of microplastics in aquatic environments is considered a global threat to aquatic organisms. Species of the genus Daphnia provide an important link between aquatic primary producers and consumers of higher trophic levels; furthermore, these organisms exhibit high sensitivity to various environmental pollutants. Hence, the biological effects of microplastics on Daphnia species are well documented. This paper reviews the latest research regarding the ecotoxicological effects of microplastics on Daphnia, including the: 1) responses of individual, population, and community attributes of Daphnia to microplastics; 2) influence of the physical and chemical properties of microplastics; and 3) joint toxicity of microplastics and other pollutants on responses of Daphnia. Our literature review found that the published literature does not provide sufficient evidence to reveal the risks of microplastics at the population and community levels. Furthermore, we emphasized that high-level analysis has more general implications for understanding how individual-level research can reveal the ecological hazards of microplastics on Daphnia. Based on this review, we suggest avenues for future research, including microplastic toxicology studies based on both omics-based and community-level methods, especially the latter.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Daphnia , Ecotoxicologia , Poluentes Químicos da Água/toxicidade
14.
PeerJ ; 10: e14113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213509

RESUMO

The Daphnia longispina complex (Crustacea: Cladocera) contains several keystone freshwater species such as D. longispina O.F. Müller (D. rosea Sars is a junior synonym), D. galeata Sars, D. cucullata Sars, and D. dentifera Forbes. The complex is common throughout the Holarctic, but there are several geographic regions where local forms have been assigned to European species names based on a superficial morphological resemblance. Here we examine the species status of a form that was previously assigned to D. rosea from a montane bog pond on Honshu, Japan. We used two nuclear non-coding loci (nDNA), mitochondrial sequences (the ND2 protein-coding region) and morphology for evidence. The mitochondrial gene evidence supported the existence of a divergent lineage that is more closely related to D. galeata than to D. dentifera. However, morphology and the nuclear DNA data indicated a lineage that is most closely related to D. dentifera. As our evidence supported the existence of a cohesive divergent lineage, we described a new species, Daphnia japonica sp. nov. Recognition of local and subalpine diversity in this group is critical as ongoing anthropogenic disturbance has been associated with introductions, local extirpations, and hybridization.


Assuntos
Cladocera , Animais , Cladocera/genética , Daphnia/genética , Filogenia , Mitocôndrias/genética , Genes Mitocondriais , DNA
15.
Data Brief ; 42: 108158, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35496486

RESUMO

We analyzed the taxonomic and fatty-acid (FA) compositions of phytoplankton and zooplankton, and the environmental conditions at three coastal and offshore stations of the northern Baltic Sea. Plankton samples for FA analyses were collected under the framework of sampling campaigns of the Swedish National Marine Monitoring program in September 2017. Monitoring data of phytoplankton and zooplankton biomass, and environmental variables at each station were extracted from the Swedish Meteorological and Hydrological Institute database (https://sharkweb.smhi.se/). Monthly phytoplankton biomass at each station in July-September 2017 was aggregated by class (i.e., chyrsophytes, cryptophytes, dinoflagellates, diatoms, euglenophytes, cyanobacteria, etc.). Zooplankton biomass in September 2017 was aggregated by major taxa (i.e., Acartia sp. [Calanoida], Eurytemora affinis [Calanoida], Cladocera, Limnocalanus macrurus and other copepods (i.e. excluding Eurytemora and Acartia)). Environmental variables monthly monitored in January-October 2017 included salinity, concentrations of dissolved organic carbon, humic substances, total nitrogen and total phosphorus. These variables were measured from 0 to 10 m depth below water surface, and the depth-integrated averages were used for data analyses. Seston and zooplankton (Eurytemora affinis, Acartia sp. and Cladocera) FA compositions were analyzed using gas chromatography and mass spectroscopy (GC-MS). Our dataset could provide new insights into how taxonomic composition and biochemical quality of the planktonic food chains change with the environmental conditions in subarctic marine ecosystems.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35183764

RESUMO

The G protein-coupled receptor (GPCR) superfamily plays a fundamental role in both sensory functions and the regulation of homeostasis, and is highly conserved across the eukaryote taxa. Its functional diversity is related to a conserved seven-transmembrane core and invariant set of intracellular signaling mechanisms. The interplay between these properties is key to the evolutionary success of GPCR. As this superfamily originated from a common ancestor, GPCR genes have evolved via lineage-specific duplications through the process of adaptation. Here we summarized information on GPCR gene families in rotifers and cladocerans based on their evolutionary position in aquatic invertebrates and their potential application in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Phylogenetic analyses were conducted to examine the evolutionary significance of GPCR gene families and to provide structural insight on their role in aquatic invertebrates. In particular, most GPCR gene families have undergone sporadic evolutionary processes, but some GPCRs are highly conserved across species despite the dynamics of GPCR evolution. Overall, this review provides a better understanding of GPCR evolution in aquatic invertebrates and expand our knowledge of the potential application of these receptors in various fields.


Assuntos
Ecotoxicologia , Rotíferos , Animais , Invertebrados/genética , Filogenia , Receptores Acoplados a Proteínas G/genética , Rotíferos/genética
17.
Environ Sci Pollut Res Int ; 29(24): 35800-35810, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35061173

RESUMO

Algal organic matter (AOM) in water reservoirs is a worldwide concern for drinking water treatment; once it is one of the main precursors for disinfection by-products formation (DBPs). In this context, this study investigated the ecotoxicity of DBPs from chlorination of AOM to Ceriodaphnia silvestrii and Daphnia similis (Crustacea, Cladocera). The bioassays evaluated three scenarios, including the AOM extracted from Chlorella sorokiniana, the quenching condition used in the tests, and the DBPs formed after the chlorination of the two test waters with AOM (with and without bromide presence). The results showed that AOM has no toxic effects for the tested species under typical environmental concentration (5 mg∙L-1). However, since AOM is a potential precursor of DBPs, the toxicity of two test waters (TW-1 and TW-2) after the chlorination process (25 mg Cl2·L-1, for 7 days, at 20 °C) was tested. The sample with higher toxicity to the tested species was TW-1, in which chloroform and chloral hydrate were quantified (615 and 267 µg∙L-1, respectively). However, TW-2 showed lower concentration of chloroform and chloral hydrate (260 and 157 µg∙L-1, respectively), although bromodichloromethane, dibromochloromethane, and bromoform were also detected (464, 366, and 141 µg∙L-1, respectively). Although free chlorine is highly toxic to the tested species, the quenching conditions also affected the organisms' survival due to the use of ascorbic acid and the presence of reaction intermediates. Nonetheless, both species were more affected by TW-1 and TW-2 than the quenching condition. These results endorse the importance of removing the AOM before the disinfection process to avoid the formation of DBPs. In addition, ecotoxicological analyses could provide a more comprehensive assessment of water quality, especially considering the challenges of quantifying DBPs and other emerging contaminants.


Assuntos
Chlorella , Cladocera , Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Brometos , Hidrato de Cloral , Cloro/análise , Clorofórmio/análise , Daphnia , Desinfetantes/toxicidade , Desinfecção , Halogenação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
18.
Environ Sci Technol ; 56(3): 1702-1712, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35014268

RESUMO

Artificial light at night (ALAN) dramatically alters the natural daily cycle of light and may cause a suite of physiological and behavioral responses of freshwater crustacean Daphnia. Here, we conducted a life table experiment to investigate the effect of different wavelengths [white (L-L, 400-800 nm), red (R, 614 nm), green (G, 527 nm), and blue (B, 447 nm)] and flashing modes [three colors flash alternately (3-Flash), seven colors strobe alternately (7-Strobe)] of ALAN on the development, reproduction, and predator-induced defenses of Daphnia magna. The results showed that G inhibited the development of the body and tail spine of Daphnia at sexual maturity and decreased their reproduction. The 7-Strobe promoted Daphnia to develop a larger eye. There was an interaction between fish kairomones and ALAN, which intensified over time. ALAN enhanced the response of the relative tail spine length to fish kairomone at sexual maturity. In addition, L-L and R inhibited the body length of 10th instar D. magna in response to fish kairomone. Through the hierarchical cluster method, the 3-Flash and B are recommended as friendly artificial lighting to Daphnia. Our results highlight the interference effects of ALAN on Daphnia, which are helpful to assess the potential impact of light pollution on zooplankton.


Assuntos
Daphnia , Poluição Luminosa , Animais , Peixes , Feromônios/farmacologia , Reprodução
19.
Ecol Evol ; 11(23): 16776-16785, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938472

RESUMO

Characterizing the capacity of marine organisms to adapt to climate change related drivers (e.g., pCO2 and temperature), and the possible rate of this adaptation, is required to assess their resilience (or lack thereof) to these drivers. Several studies have hypothesized that epigenetic markers such as DNA methylation, histone modifications and noncoding RNAs, act as drivers of adaptation in marine organisms, especially corals. However, this hypothesis has not been tested in zooplankton, a keystone organism in marine food webs. The objective of this study is to test the hypothesis that acute ocean acidification (OA) exposure alters DNA methylation in two zooplanktonic species-copepods (Acartia clausii) and cladocerans (Evadne nordmanii). We exposed these two species to near-future OA conditions (400 and 900 ppm pCO2) for 24 h and assessed transcriptional and DNA methylation patterns using RNA sequencing and Reduced Representation Bisulfite Sequencing (RRBS). OA exposure caused differential expression of genes associated with energy metabolism, cytoskeletal and extracellular matrix functions, hypoxia and one-carbon metabolism. Similarly, OA exposure also caused altered DNA methylation patterns in both species but the effect of these changes on gene expression and physiological effects remains to be determined. The results from this study form the basis for studies investigating the potential role of epigenetic mechanisms in OA induced phenotypic plasticity and/or adaptive responses in zooplanktonic organisms.

20.
J Evol Biol ; 34(11): 1817-1826, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34592015

RESUMO

The intensity of mating competition and the opportunity for sexual selection are thought to depend on the operational sex ratio, the ratio of sexually active males to fertilizable females. Cyclic parthenogens, organisms that alternate between sexual reproduction and female-only parthenogenesis, show particularly high variation in sex ratios in natural populations but the effects of this variation on mating competition and reproductive success of each sex are poorly understood. In a series of experiments with Daphnia magna, we experimentally imposed five sex ratio categories, varying from one male per 81 females to an even sex ratio. We found that, in males, reproductive success strongly and monotonically decreased with decreasing number of females per male. In females, in contrast, mating success and reproductive success were reduced only at the most female-biased sex ratio (1:81), when many females remained unmated and unfertilized, and then again at equal sex ratios, probably due to negative effects of high density or stress induced by numerous males. Our results suggest that females experienced male limitation at heavily female-biased sex ratios below one male to about 50 females. As this is well within the sex ratio variation observed in natural Daphnia populations, we conclude that mating competition and the opportunity for sexual selection may exist not only in males but, at least periodically, also in females.


Assuntos
Daphnia , Razão de Masculinidade , Animais , Feminino , Masculino , Partenogênese , Reprodução , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...