Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ciênc. rural ; Ciênc. rural (Online);46(8): 1344-1349, Aug. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-784208

RESUMO

ABSTRACT: The persimmon tree is propagated by grafting and the rootstocks are produced from seeds. Grafting is done in July, which coincides with the time when the persimmon trees are pruned. But, at this time, many rootstocks are not yet eligible to receive the grafts. In this case budsticks/cleft storage is an option. Thus, this study aimed to verify the feasibility of cold storage of budsticks/cleft and verify the grafting method to promote better graft development. Rootstock was sown in August 2012 and the branches were collected in July 2013. Part of the branches was used for grafting (budding and cleft graft methods) in one-year old rootstocks and the other part was stored at low temperature (cuttings wrapped in moistened paper and then wrapped in polyethylene bags placed in cold storage at 4°C), during the months of August to December. Every 30 days, a number of branches was removed from the cold storage to perform grafting by budding and cleft and to quantify total sugars and starch in the budsticks/cleft stored. One hundred and twenty days after the grafting was performed, the length and diameter of the bud, number of leaves, sprouting percentage, dry weight of aerial part and root from the grafts were measured. It was concluded that there is no difference in the budding graft for different periods, but in seedlings grafted by the cleft grafting method there is greater growth when the clefts have been in cold storage for 60 to 120 days.


RESUMO: O caquizeiro é propagado por enxertia e os porta-enxertos são produzidos por sementes. A enxertia é realizada em julho, que coincide com a época de poda dos caquizeiros. Porém, nessa época, muitos porta-enxertos ainda não estão aptos a receberem os enxertos. Nesse sentido, o armazenamento dos ramos porta-borbulhas/garfos seria uma opção. Assim, o presente trabalho teve por objetivo de verificar a viabilidade do armazenamento refrigerado dos ramos porta-borbulhas/garfos e diagnosticar o método de enxertia para promover melhor desenvolvimento do enxerto. A semeadura dos porta-enxertos foi realizada em agosto de 2012 e os ramos foram coletados em julho de 2013. Uma parte dos ramos foi utilizada para a realização da enxertia (métodos de borbulhia e garfagem) em porta-enxertos de um ano de idade e a outra parte foi armazenada sob baixa temperatura (estacas envoltas em papel umedecido, embrulhadas em sacos de polietileno colocadas em câmara fria a 4°C), pelos meses de agosto a dezembro. A cada 30 dias, uma quantidade de ramos foi removida da câmara fria para a realização das enxertias por borbulhia e garfagem e para a quantificação dos açúcares totais e amido dos ramos porta-borbulhas/garfos armazenados. Passados 120 dias da realização das enxertias, foram mensurados o comprimento e diâmetro do broto, número de folhas, porcentagem de brotação, massa seca da parte aérea e das raízes dos enxertos. Conclui-se que não há diferença na brotação dos enxertos para as diferentes épocas, porém, em mudas enxertadas pelo método de garfagem, há maior crescimento quando os garfos são armazenados a frio durante 60 a 120 dias.

2.
J Mol Histol ; 47(2): 153-68, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26846721

RESUMO

Tissue engineering strategies hold great potential for alveolar cleft reconstruction. Bone marrow stromal cells (BMSCs) from iliac crest and craniofacial regions are candidate seeding cells with site-specific characteristics and bone-repairing properties. Craniofacial BMSCs seem to possess stronger multipotency and osteogenic capabilities than BMSCs isolated from iliac crest. However, the angiogenic capabilities of these two type cell is rarely reported. We obtained human BMSCs (hBMSCs) of maxilla (M-hBMSCs) and iliac crest (I-hBMSCs) from same alveolar cleft patients to investigate the agiogenic variations using co-culture system with human umbilical vein endothelial cells (HUVECs). From in vitro comparison, M-hBMSCs allowed HUVECs to form more tube-like structures and sprouting angiogenesis by tube formation assays and 3D fibrin vasculogenic assay, respectively. By transplantation in vivo, M-hBMSCs enhanced larger size vessel like structures distributed the entire implants compared with I-hBMSCs. Western blotting was used to assess the angiogenesis related factors including hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). The results showed a significant higher expression of bFGF protein in M-hBMSCs and HUVECs co-culture system both in vitro and in vivo. As bFGF could promote migration and proliferation of endothelial cells, scratch wound healing and transwell migration assays were performed as well as MTT assays and cell cycle analysis. The data suggested the effect of M-hBMSCs on HUVECs was stronger than I-hBMSCs. Taken together, these results indicated that craniofacial BMSCs seemed to have greater angiogenesis capability than iliac crest BMSCs and this might be associated with the different levels of bFGF protein expression in co-culture system.


Assuntos
Osso e Ossos/citologia , Fenda Labial/patologia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Adipogenia , Adolescente , Diferenciação Celular , Movimento Celular , Proliferação de Células , Criança , Técnicas de Cocultura , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Masculino , Maxila/citologia , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA