Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 782
Filtrar
1.
Biochem Pharmacol ; 230(Pt 1): 116567, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369911

RESUMO

Accumulating evidence indicates that disruption of the circadian clock contributes to the development of lifestyle-related diseases. We have previously shown that exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, can strongly affect the molecular clocks in the peripheral tissues. This study aimed to investigate the effects of its dosing time and the central nervous system-specific GLP-1 receptor knockdown (GLP1RKD) on the hepatic clock in mice treated with exenatide. Male C57BL/6J and GLP1RKD mice were housed under a 12-h/12-h light/dark cycle, and feeding was restricted to either the light period (L-TRF) or the first 4 h in the dark period (D-TRF). In parallel, exenatide was administered 4-5 times, once daily either at the beginning of the dark (ZT 12) or light period (ZT 0), and we assessed the mRNA expression rhythms of clock genes in the liver thereafter. Exenatide administration at ZT 12 counteracted the phase shift effect of the L-TRF on the hepatic clock of wild-type mice, whereas the dosing at ZT 0 enhanced its effect. However, exenatide did not influence the phase of the hepatic clock under D-TRF regardless of the dosing time. The effect of exenatide in wild-type mice weakened in GLP1RKD mice. These results showed that exenatide dosing time-dependently affects the hepatic circadian clock through the central GLP-1 system. Exenatide administration at the beginning of the active period (i.e., in the morning for humans) might prevent disruption of the peripheral clocks caused by irregular eating habits.

2.
Cell Tissue Res ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264444

RESUMO

This contribution highlights the scientific development of two intertwined disciplines, photoneuroendocrinology and circadian biology. Photoneuroendocrinology has focused on nonvisual photoreceptors that translate light stimuli into neuroendocrine signals and serve rhythm entrainment. Nonvisual photoreceptors first described in the pineal complex and brain of nonmammalian species are luminance detectors. In the pineal, they control the formation of melatonin, the highly conserved hormone of darkness which is synthesized night by night. Pinealocytes endowed with both photoreceptive and neuroendocrine capacities function as "photoneuroendocrine cells." In adult mammals, nonvisual photoreceptors controlling pineal melatonin biosynthesis and pupillary reflexes are absent from the pineal and brain and occur only in the inner layer of the retina. Encephalic photoreceptors regulate seasonal rhythms, such as the reproductive cycle. They are concentrated in circumventricular organs, the lateral septal organ and the paraventricular organ, and represent cerebrospinal fluid contacting neurons. Nonvisual photoreceptors employ different photopigments such as melanopsin, pinopsin, parapinopsin, neuropsin, and vertebrate ancient opsin. After identification of clock genes and molecular clockwork, circadian biology became cutting-edge research with a focus on rhythm generation. Molecular clockworks tick in every nucleated cell and, as shown in mammals, they drive the expression of more than 3000 genes and are of overall importance for regulation of cell proliferation and metabolism. The mammalian circadian system is hierarchically organized; the central rhythm generator is located in the suprachiasmatic nuclei which entrain peripheral circadian oscillators via multiple neuronal and neuroendocrine pathways. Disrupted molecular clockworks may cause various diseases, and investigations of this interplay will establish a new discipline: circadian medicine.

3.
J Physiol ; 602(19): 4865-4887, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39277824

RESUMO

In mammals, the central circadian oscillator is located in the suprachiasmatic nucleus (SCN). Hypothalamus-pituitary-thyroid axis components exhibit circadian oscillation, regulated by both central clock innervation and intrinsic circadian clocks in the anterior pituitary and thyroid glands. Thyroid disorders alter the rhythmicity of peripheral clocks in a tissue-dependent response; however, whether these effects are influenced by alterations in the master clock remains unknown. This study aimed to characterize the effects of hypothyroidism on the rhythmicity of SCN, body temperature (BT) and metabolism, and the possible mechanisms involved in this signalling. C57BL/6J adult male mice were divided into Control and Hypothyroid groups. Profiles of spontaneous locomotor activity (SLA), BT, oxygen consumption ( V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) and respiratory quotient (RQ) were determined under free-running conditions. Clock gene expression, and neuronal activity of the SCN and medial preoptic nucleus (MPOM) area were investigated in light-dark (LD) conditions. Triiodothyronine (T3) transcriptional regulation of Bmal1 promoter activity was evaluated in GH3-transfected cells. Hypothyroidism delayed the rhythmicity of SLA and BT, and altered the expression of core clock components in the SCN. The activity of SCN neurons and their outputs were also affected, as evidenced by the loss of circadian rhythmicity in V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and RQ and alterations in the neuronal activity pattern of MPOM. In GH3 cells, T3 increased Bmal1 promoter activity in a time-dependent manner. Thyroid hormone may act as a temporal cue for the central circadian clock, and the uncoupling of central and peripheral clocks might contribute to a wide range of metabolic and thermoregulatory impairments observed in hypothyroidism. KEY POINTS: Hypothyroidism alters clock gene expression in the suprachiasmatic nucleus (SCN). Thyroid hypofunction alters the phase of spontaneous locomotor activity and body temperature rhythms. Thyroid hormone deficiency alters the daily pattern of SCN and medial preoptic nucleus neuronal activities. Hypothyroidism alterations are extended to daily oscillations of oxygen consumption and metabolism, which might contribute to the development of metabolic syndrome. Triiodothyronine increases Bmal1 promoter activity acting as temporal cue for the central circadian clock.


Assuntos
Fatores de Transcrição ARNTL , Hipotireoidismo , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático , Tri-Iodotironina , Animais , Masculino , Hipotireoidismo/fisiopatologia , Hipotireoidismo/metabolismo , Hipotireoidismo/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Camundongos , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Ritmo Circadiano/fisiologia , Temperatura Corporal/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica
4.
Curr Issues Mol Biol ; 46(9): 10396-10410, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39329970

RESUMO

Cystic fibrosis (CF) is a monogenic syndrome caused by variants in the CF Transmembrane Conductance Regulator (CFTR) gene, affecting various organ and systems, in particular the lung, pancreas, sweat glands, liver, gastrointestinal tract, vas deferens, and vascular system. While for some organs, e.g., the pancreas, a strict genotype-phenotype occurs, others, such as the lung, display a different pathophysiologic outcome in the presence of the same mutational asset, arguing for genetic and environmental modifiers influencing severity and clinical trajectory. CFTR variants trigger a pathophysiological cascade of events responsible for chronic inflammatory responses, many aspects of which, especially related to immunity, are not ascertained yet. Although clock genes expression and function are known modulators of the innate and adaptive immunity, their involvement in CF has been only observed in relation to sleep abnormalities. The aim of this review is to present current evidence on the clock genes role in immune-inflammatory responses at the lung level. While information on this topic is known in other chronic airway diseases (chronic obstructive pulmonary disease and asthma), CF lung disease (CFLD) is lacking in this knowledge. We will present the bidirectional effect between clock genes and inflammatory factors that could possibly be implicated in the CFLD. It must be stressed that besides sleep disturbance and its mechanisms, there are not studies directly addressing the exact nature of clock genes' involvement in inflammation and immunity in CF, pointing out the directions of new and deepened studies in this monogenic affection. Importantly, clock genes have been found to be druggable by means of genetic tools or pharmacological agents, and this could have therapeutic implications in CFLD.

5.
Adv Exp Med Biol ; 1460: 27-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287848

RESUMO

The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.


Assuntos
Ritmo Circadiano , Comportamento Alimentar , Obesidade , Obesidade/fisiopatologia , Obesidade/metabolismo , Obesidade/etiologia , Ritmo Circadiano/fisiologia , Humanos , Animais , Comportamento Alimentar/fisiologia , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Núcleo Supraquiasmático/fisiopatologia , Dieta Cetogênica/efeitos adversos , Relógios Circadianos/fisiologia , Relógios Circadianos/genética
6.
Adv Exp Med Biol ; 1461: 177-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39289281

RESUMO

The circadian fluctuation of body temperature is one of the most prominent and stable outputs of the circadian clock and plays an important role in maintaining optimal day-night energy homeostasis. The body temperature of homothermic animals is not strictly constant, but it shows daily oscillation within a range of 1-3 °C, which is sufficient to synchronize the clocks of peripheral tissues throughout the body. The thermal entrainment mechanisms of the clock are partly mediated by the action of the heat shock transcription factor and cold-inducible RNA-binding protein-both have the ability to affect clock gene expression. Body temperature in the poikilotherms is not completely passive to the ambient temperature change; they can travel to the place of preferred temperature in a manner depending on the time of their endogenous clock. Based on this behavior-level thermoregulation, flies exhibit a clear body temperature cycle. Noticeably, flies and mice share the same molecular circuit for the controlled body temperature; in both species, the calcitonin receptors participate in the formation of body temperature rhythms during the active phase and exhibit rather specific expression in subsets of clock neurons in the brain. We summarize knowledge on mutual relationships between body temperature regulation and the circadian clock.


Assuntos
Regulação da Temperatura Corporal , Relógios Circadianos , Ritmo Circadiano , Animais , Relógios Circadianos/fisiologia , Relógios Circadianos/genética , Regulação da Temperatura Corporal/fisiologia , Humanos , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Temperatura Corporal/fisiologia , Camundongos , Regulação da Expressão Gênica
7.
Front Neurosci ; 18: 1451219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145296

RESUMO

Light-at-night is known to produce a wide variety of behavioral outcomes including promoting anxiety, depression, hyperactivity, abnormal sociability, and learning and memory deficits. Unfortunately, we all live in a 24-h society where people are exposed to light-at-night or light pollution through night-shift work - the need for all-hours emergency services - as well as building and street-lights, making light-at-night exposure practically unavoidable. Additionally, the increase in screentime (tvs and smart devices) during the night also contributes to poorer sleep and behavioral impairments. Compounding these factors is the fact that adolescents tend to be "night owls" and prefer an evening chronotype compared to younger children and adults, so these teenagers will have a higher likelihood of being exposed to light-at-night. Making matters worse is the prevalence of high-school start times of 8 am or earlier - a combination of too early school start times, light exposure during the night, and preference for evening chronotypes is a recipe for reduced and poorer sleep, which can contribute to increased susceptibility for behavioral issues for this population. As such, this mini-review will show, using both human and rodent model studies, how light-at-night affects behavioral outcomes and stress responses, connecting photic signaling and the circadian timing system to the hypothalamic-pituitary adrenal axis. Additionally, this review will also demonstrate that adolescents are more likely to exhibit abnormal behavior in response to light-at-night due to changes in development and hormone regulation during this time period, as well as discuss potential interventions that can help mitigate these negative effects.

8.
Sci Rep ; 14(1): 19886, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191924

RESUMO

Prenatal alcohol-exposed (AE) infants and children often demonstrate disrupted sleep patterns, including more frequent awakenings, reduced total sleep time, and more night-to-night sleep variability. Despite the strong connection between sleep patterns and circadian rhythmicity, relatively little is known about circadian rhythm disruptions in individuals with AE. Recently, several reports demonstrated that evaluating the expression patterns of human clock genes in biological fluids could reveal an individual's circadian phenotype. Human saliva offers an emerging and easily available physiological sample that can be collected non-invasively for core-clock gene transcript analyses. We compared the expression patterns of core-clock genes and their regulatory genes in salivary samples of children aged 6-10 years-old with and without AE during the light cycle between ZT0-ZT11. We isolated the RNA from the samples and measured the expression patterns of core clock genes and clock regulating genes using the human specific primers with quantitative real-time PCR. Analysis of core clock genes expression levels in saliva samples from AE children indicates significantly altered levels in expression of core-clock BMAL1, CLOCK, PER1-3 and CRY1,2, as compared to those in age-matched control children. We did not find any sex difference in levels of clock genes in AE and control groups. Cosinor analysis was used to evaluate the rhythmic pattern of these clock genes, which identified circadian patterns in the levels of core clock genes in the control group but absent in the AE group. The gene expression profile of a salivary circadian biomarker ARRB1 was rhythmic in saliva of control children but was arhythmic in AE children. Altered expression patterns were also observed in clock regulatory genes: NPAS2, NFL3, NR1D1, DEC1, DEC2, and DBP, as well as chromatin modifiers: MLL1, P300, SIRT1, EZH2, HDAC3, and ZR1D1, known to maintain rhythmic expression of core-clock genes. Overall, these findings provide the first evidence that AE disturbs the circadian patten expression of core clock genes and clock-regulatory chromatin modifiers in saliva.


Assuntos
Ritmo Circadiano , Epigênese Genética , Transtornos do Espectro Alcoólico Fetal , Saliva , Humanos , Saliva/metabolismo , Criança , Feminino , Masculino , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Ritmo Circadiano/genética , Gravidez , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica , Relógios Circadianos/genética
9.
Clocks Sleep ; 6(3): 446-467, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39189197

RESUMO

Substance use disorder is a major global health concern, with a high prevalence among adolescents and young adults. The most common substances of abuse include alcohol, marijuana, cocaine, nicotine, and opiates. Evidence suggests that a mismatch between contemporary lifestyle and environmental demands leads to disrupted circadian rhythms that impair optimal physiological and behavioral function, which can increase the vulnerability to develop substance use disorder and related problems. The circadian system plays an important role in regulating the sleep-wake cycle and reward processing, both of which directly affect substance abuse. Distorted substance use can have a reciprocal effect on the circadian system by influencing circadian clock gene expression. Considering the detrimental health consequences and profound societal impact of substance use disorder, it is crucial to comprehend its complex association with circadian rhythms, which can pave the way for the generation of novel chronotherapeutic treatment approaches. In this narrative review, we have explored the potential contributions of disrupted circadian rhythms and sleep on use and relapse of different substances of abuse. The involvement of circadian clock genes with drug reward pathways is discussed, along with the potential research areas that can be explored to minimize disordered substance use by improving circadian hygiene.

10.
J Orofac Orthop ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134880

RESUMO

PURPOSE: The aim of this study was to investigate the influence of mechanical strain on clock gene function in periodontal ligament (PDL) cells. Furthermore, we wanted to analyze whether effects induced by mechanical stress vary in relation to the circadian rhythm. METHODS: Human PDL fibroblasts were synchronized in their circadian rhythm with dexamethasone and stretched over 24 h. Unstretched cells served as controls. Gene expression of the core clock genes were analyzed at 4 h intervals by quantitative real-time polymerase chain reaction (qRT-PCR). Time points 0 h (group SI1) and 12 h (group SI2) after synchronization served as starting points of a 4 h force application period. Collagen-1α (COL-1α/Col-1α), interleukin-1ß (IL1-ß), and runt-related transcription factor 2 (RUNX2/Runx2) were assessed by qRT-PCR and enzyme-linked immunosorbent assay (ELISA) after 2 and 4 h. Statistical analysis comprised one-way analysis of variance (ANOVA) and post hoc tests. RESULTS: After synchronization, the typical pattern for clock genes was visible in control cells over the 24 h period. This pattern was significantly altered by mechanical strain. Under tensile stress, ARNTL gene expression was reduced, while Per1 and 2 gene expression were upregulated. In addition, mechanical stress had a differential effect on the expression of Col-1α and IL1­ß depending on its initiation within the circadian rhythm (group SI1 vs group SI2). For RUNX2, no significant differences in the two groups were observed. CONCLUSION: Our results suggest that mechanical stress affects the molecular peripheral oscillator of PDL cells. Vice versa, the circadian rhythm also seems to partially influence the effects that mechanical stress exerts on PDL cells.

11.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201344

RESUMO

Breast cancer (BC) is the leading cause of cancer death among women worldwide. Women employed in shift jobs face heightened BC risk due to prolonged exposure to night shift work (NSW), classified as potentially carcinogenic by the International Agency for Research on Cancer (IARC). This risk is linked to disruptions in circadian rhythms governed by clock genes at the cellular level. However, the molecular mechanisms are unclear. This study aimed to assess clock genes as potential BC biomarkers among women exposed to long-term NSW. Clock gene expression was analysed in paired BC and normal breast tissues within Nurses' Health Studies I and II GEO datasets. Validation was performed on additional gene expression datasets from healthy night shift workers and women with varying BC susceptibility, as well as single-cell sequencing datasets. Post-transcriptional regulators of clock genes were identified through miRNA analyses. Significant alterations in clock gene expression in BC compared to normal tissues were found. BHLHE40, CIART, CLOCK, PDPK1, and TIMELESS were over-expressed, while HLF, NFIL3, NPAS3, PER1, PER3, SIM1, and TEF were under-expressed. The downregulation of PER1 and TEF and upregulation of CLOCK correlated with increased BC risk in healthy women. Also, twenty-six miRNAs, including miR-10a, miR-21, miR-107, and miR-34, were identified as potential post-transcriptional regulators influenced by NSW. In conclusion, a panel of clock genes and circadian miRNAs are suggested as BC susceptibility biomarkers among night shift workers, supporting implications for risk stratification and early detection strategies.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Jornada de Trabalho em Turnos , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/etiologia , Jornada de Trabalho em Turnos/efeitos adversos , Proteínas CLOCK/genética , Biologia Computacional/métodos , Biomarcadores Tumorais/genética , Ritmo Circadiano/genética , MicroRNAs/genética , Adulto , Pessoa de Meia-Idade
12.
Front Neurosci ; 18: 1418694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952923

RESUMO

The advent of artificial lighting, particularly during the evening and night, has significantly altered the predictable daily light and dark cycles in recent times. Altered light environments disrupt the biological clock and negatively impact mood and cognition. Although adolescents commonly experience chronic changes in light/dark cycles, our understanding of how the adolescents' brain adapts to altered light environments remains limited. Here, we investigated the impact of chronic light cycle disruption (LCD) during adolescence, exposing adolescent mice to 19 h of light and 5 h of darkness for 5 days and 12 L:12D for 2 days per week (LCD group) for 4 weeks. We showed that LCD exposure did not affect circadian locomotor activity but impaired memory and increased avoidance response in adolescent mice. Clock gene expression and neuronal activity rhythms analysis revealed that LCD disrupted local molecular clock and neuronal activity in the dentate gyrus (DG) and in the medial amygdala (MeA) but not in the circadian pacemaker (SCN). In addition, we characterized the photoresponsiveness of the MeA and showed that somatostatin neurons are affected by acute and chronic aberrant light exposure during adolescence. Our research provides new evidence highlighting the potential consequences of altered light environments during pubertal development on neuronal physiology and behaviors.

13.
Lipids Health Dis ; 23(1): 216, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003477

RESUMO

BACKGROUND: The regulation of the circadian clock genes, which coordinate the activity of the immune system, is disturbed in inflammatory bowel disease (IBD). Emerging evidence suggests that butyrate, a short-chain fatty acid produced by the gut microbiota is involved in the regulation of inflammatory responses as well as circadian-clock genes. This study was conducted to investigate the effects of sodium-butyrate supplementation on the expression of circadian-clock genes, inflammation, sleep and life quality in active ulcerative colitis (UC) patients. METHODS: In the current randomized placebo-controlled trial, 36 active UC patients were randomly divided to receive sodium-butyrate (600 mg/kg) or placebo for 12-weeks. In this study the expression of circadian clock genes (CRY1, CRY2, PER1, PER2, BMAl1 and CLOCK) were assessed by real time polymerase chain reaction (qPCR) in whole blood. Gene expression changes were presented as fold changes in expression (2^-ΔΔCT) relative to the baseline. The faecal calprotectin and serum level of high-sensitivity C-reactive protein (hs-CRP) were assessed by enzyme-linked immunosorbent assay method (ELIZA). Moreover, the sleep quality and IBD quality of life (QoL) were assessed by Pittsburgh sleep quality index (PSQI) and inflammatory bowel disease questionnaire-9 (IBDQ-9) respectively before and after the intervention. RESULTS: The results showed that sodium-butyrate supplementation in comparison with placebo significantly decreased the level of calprotectin (-133.82 ± 155.62 vs. 51.58 ± 95.57, P-value < 0.001) and hs-CRP (-0.36 (-1.57, -0.05) vs. 0.48 (-0.09-4.77), P-value < 0.001) and upregulated the fold change expression of CRY1 (2.22 ± 1.59 vs. 0.63 ± 0.49, P-value < 0.001), CRY2 (2.15 ± 1.26 vs. 0.93 ± 0.80, P-value = 0.001), PER1 (1.86 ± 1.77 vs. 0.65 ± 0.48, P-value = 0.005), BMAL1 (1.85 ± 0.97 vs. 0.86 ± 0.63, P-value = 0.003). Also, sodium-butyrate caused an improvement in the sleep quality (PSQI score: -2.94 ± 3.50 vs. 1.16 ± 3.61, P-value < 0.001) and QoL (IBDQ-9: 17.00 ± 11.36 vs. -3.50 ± 6.87, P-value < 0.001). CONCLUSION: Butyrate may be an effective adjunct treatment for active UC patients by reducing biomarkers of inflammation, upregulation of circadian-clock genes and improving sleep quality and QoL.


Assuntos
Colite Ulcerativa , Suplementos Nutricionais , Qualidade do Sono , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Masculino , Feminino , Adulto , Método Duplo-Cego , Pessoa de Meia-Idade , Inflamação/genética , Inflamação/tratamento farmacológico , Proteína C-Reativa/metabolismo , Proteína C-Reativa/genética , Qualidade de Vida , Relógios Circadianos/genética , Relógios Circadianos/efeitos dos fármacos , Complexo Antígeno L1 Leucocitário/genética , Complexo Antígeno L1 Leucocitário/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Butiratos , Ácido Butírico
14.
Am J Physiol Heart Circ Physiol ; 327(4): H765-H777, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39058434

RESUMO

Blood pressure (BP) displays a circadian rhythm and disruptions in this pattern elevate cardiovascular risk. Although both central and peripheral clock genes are implicated in these processes, the importance of vascular clock genes is not fully understood. BP, vascular reactivity, and the renin-angiotensin-aldosterone system display overt sex differences, but whether changes in circadian patterns underlie these differences is unknown. Therefore, we hypothesized that circadian rhythms and vascular clock genes would differ across sex and would be blunted by angiotensin II (ANG II)-induced hypertension. ANG II infusion elevated BP and disrupted circadian patterns similarly in both males and females. In females, an impact on heart rate (HR) and locomotor activity was revealed, whereas in males hypertension suppressed baroreflex sensitivity (BRS). A marked disruption in the vascular expression patterns of period circadian regulator 1 (Per1) and brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1 (Bmal1) was noted in both sexes. Vascular expression of the G protein-coupled estrogen receptor (Gper1) also showed diurnal synchronization in both sexes that was similar to that of Per1 and Per2 and disrupted by hypertension. In contrast, vascular expression of estrogen receptor 1 (Esr1) showed a diurnal rhythm and hypertension-induced disruption only in females. This study shows a strikingly similar impact of hypertension on BP rhythmicity, vascular clock genes, and vascular estrogen receptor expression in both sexes. We identified a greater impact of hypertension on locomotor activity and heart rate in females and on baroreflex sensitivity in males and also revealed a diurnal regulation of vascular estrogen receptors. These insights highlight the intricate ties between circadian biology, sex differences, and cardiovascular regulation.NEW & NOTEWORTHY This study reveals that ANG II-induced hypertension disrupts the circadian rhythm of blood pressure in both male and female mice, with parallel effects on vascular clock gene and estrogen receptor diurnal patterns. Notably, sex-specific responses to hypertension in terms of locomotor activity, heart rate, and baroreflex sensitivity are revealed. These findings pave the way for chronotherapeutic strategies tailored to mitigate cardiovascular risks associated with disrupted circadian rhythms in hypertension.


Assuntos
Fatores de Transcrição ARNTL , Angiotensina II , Barorreflexo , Pressão Sanguínea , Ritmo Circadiano , Frequência Cardíaca , Hipertensão , Proteínas Circadianas Period , Animais , Feminino , Masculino , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Hipertensão/genética , Hipertensão/induzido quimicamente , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Fatores Sexuais , Modelos Animais de Doenças
15.
J Neurochem ; 168(9): 1826-1841, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970299

RESUMO

Circadian rhythm (CR) disturbances are among the most commonly observed symptoms during major depressive disorder, mostly in the form of disrupted sleeping patterns. However, several other measurable parameters, such as plasma hormone rhythms and differential expression of circadian clock genes (ccgs), are also present, often referred to as circadian phase markers. In the recent years, CR disturbances have been recognized as an essential aspect of depression; however, most of the known animal models of depression have yet to be evaluated for their eligibility to model CR disturbances. In this study, we investigate the potential of adrenocorticotropic hormone (ACTH)-treated animals as a disease model for research in CR disturbances in treatment-resistant depression. For this purpose, we evaluate the changes in several circadian phase markers, including plasma concentrations of corticosterone, ACTH, and melatonin, as well as gene expression patterns of 13 selected ccgs at 3 different time points, in both peripheral and central tissues. We observed no impact on plasma corticosterone and melatonin concentrations in the ACTH rats compared to vehicle. However, the expression pattern of several ccgs was affected in the ACTH rats compared to vehicle. In the hippocampus, 10 ccgs were affected by ACTH treatment, whereas in the adrenal glands, 5 ccgs were affected and in the prefrontal cortex, hypothalamus and liver 4 ccgs were regulated. In the blood, only 1 gene was affected. Individual tissues showed changes in different ccgs, but the expression of Bmal1, Per1, and Per2 were most generally affected. Collectively, the results presented here indicate that the ACTH animal model displays dysregulation of a number of phase markers suggesting the model may be appropriate for future studies into CR disturbances.


Assuntos
Hormônio Adrenocorticotrópico , Relógios Circadianos , Corticosterona , Modelos Animais de Doenças , Animais , Masculino , Ratos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Corticosterona/sangue , Hormônio Adrenocorticotrópico/sangue , Transtorno Depressivo Resistente a Tratamento/genética , Transtorno Depressivo Resistente a Tratamento/metabolismo , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ratos Wistar , Melatonina
16.
Insect Biochem Mol Biol ; 172: 104153, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964485

RESUMO

Most insects enter diapause, a state of physiological dormancy crucial for enduring harsh seasons, with photoperiod serving as the primary cue for its induction, ensuring proper seasonal timing of the process. Although the involvement of the circadian clock in the photoperiodic time measurement has been demonstrated through knockdown or knockout of clock genes, the involvement of clock gene cryptochrome 1 (cry1), which functions as a photoreceptor implicated in photoentrainment of the circadian clock across various insect species, remains unclear. In bivoltine strains of the silkworm, Bombyx mori, embryonic diapause is maternally controlled and affected by environmental conditions experienced by mother moths during embryonic and larval stages. Previous research highlighted the role of core clock genes, including period (per), timeless (tim), Clock (Clk) and cycle (cyc), in photoperiodic diapause induction in B. mori. In this study, we focused on the involvement of cry1 gene in B. mori photoperiodism. Phylogenetic analysis and conserved domain identification confirmed the presence of both Drosophila-type cry (cry1) and mammalian-type cry (cry2) genes in the B. mori genome, akin to other lepidopterans. Temporal expression analysis revealed higher cry1 gene expression during the photophase and lower expression during the scotophase, with knockouts of core clock genes (per, tim, Clk and cyc) disrupting this temporal expression pattern. Using CRISPR/Cas9-mediated genome editing, we established a cry1 knockout strain in p50T, a bivoltine strain exhibiting clear photoperiodism during both embryonic and larval stages. Although the wild-type strain displayed circadian rhythm in eclosion under continuous darkness, the cry1 knockout strain exhibited arrhythmic eclosion, implicating B. mori cry1 in the circadian clock feedback loop governing behavior rhythms. Females of the cry1 knockout strain failed to control photoperiodic diapause induction during both embryonic and larval stages, mirroring the diapause phenotype of the wild-type individuals reared under constant darkness, indicating that B. mori CRY1 contributes to photoperiodic time measurement as a photoreceptor. Furthermore, photoperiodic diapause induction during the larval stage was abolished in a cry1/tim double-knockout strain, suggesting that photic information received by CRY1 is relayed to the circadian clock. Overall, this study represents the first evidence of cry1 involvement in insect photoperiodism, specifically in diapause induction.


Assuntos
Bombyx , Ritmo Circadiano , Criptocromos , Diapausa de Inseto , Fotoperíodo , Animais , Criptocromos/genética , Criptocromos/metabolismo , Bombyx/genética , Bombyx/fisiologia , Bombyx/metabolismo , Bombyx/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Filogenia , Diapausa/genética , Técnicas de Inativação de Genes , Relógios Circadianos/genética
17.
Cell Syst ; 15(7): 610-627.e8, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38986625

RESUMO

Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often describe these two processes using separate models. Rhythmically expressed genes are, however, likely to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to estimate the contribution of circadian- and sleep-wake-driven influences on gene expression. The model reliably captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue- and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchronization. The model showed that recovery sleep contributed to these long-lasting changes. The results demonstrate that the analyses of the daily rhythms in gene expression must take the complex interactions between circadian and sleep-wake influences into account. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Ritmo Circadiano , Sono , Vigília , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Animais , Humanos , Sono/genética , Sono/fisiologia , Camundongos , Vigília/fisiologia , Vigília/genética , Regulação da Expressão Gênica/genética , Fígado/metabolismo , Transcriptoma/genética , Privação do Sono/genética , Privação do Sono/fisiopatologia , Masculino , Homeostase/genética
18.
Chronobiol Int ; 41(8): 1142-1155, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39046293

RESUMO

First, significantly higher mate-finding success was found under light condition than under constant darkness condition in Phauda flammans, a typical diurnal moth. We speculate that mate-finding behavior in P. flammans may be influenced by the light-sensitive opsin genes Long wavelength opsin (PfLW), Ultraviolet opsin (PfUV) and Blue opsin (PfBL), which are potentially regulated by both light-cues and endogenous circadian rhythms. Second, the circadian clock genes Period (PfPer), Timeless (PfTim), Cryptochrome1 (PfCry1), Cryptochrome2 (PfCRY2), Cryptochrome3 (PfCry-like), Clock (PfClk), Cycle (PfCyc), Vrille (PfVri), and Slimb (PfSli) were identified in P. flammans. Third, circadian rhythms in the relative expression levels of opsin and circadian clock genes were demonstrated via quantitative real-time PCR analysis, with peak expression coinciding with the mate-finding peak. Notably, the relative expression of PfLW in males P. flammans was significantly higher than that in females P. flammans at the mate-finding peaks Zeitgeber time (ZT) 8 and ZT 10 under light, while the expression of the opsin gene PfBL showed a similar pattern at ZT 10 under light. Additionally, the expression of the clock gene PfCry-like was significantly higher in males than in females at ZT 8 and ZT 10 under light, while PfPer, PfTim, PfClk and PfCyc exhibited similar male-biased expression patterns at ZT 10 under light. Conversely, PfCry1 and PfVri expression was significantly higher in females than in male at ZT 8 under light. In conclusion, sex differences were detected in the expression of opsin and circadian clock genes, which indicated that light-mediated regulation of these genes may contribute to the daytime mate-finding behavior of P. flammans.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Mariposas , Opsinas , Animais , Masculino , Feminino , Mariposas/genética , Mariposas/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Opsinas/genética , Opsinas/metabolismo , Comportamento Sexual Animal/fisiologia , Luz , Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Fotoperíodo
19.
Front Endocrinol (Lausanne) ; 15: 1320605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872971

RESUMO

Due to the Earth's rotation, the natural environment exhibits a light-dark diurnal cycle close to 24 hours. To adapt to this energy intake pattern, organisms have developed a 24-hour rhythmic diurnal cycle over long periods, known as the circadian rhythm, or biological clock. With the gradual advancement of research on the biological clock, it has become increasingly evident that disruptions in the circadian rhythm are closely associated with the occurrence of type 2 diabetes (T2D). To further understand the progress of research on T2D and the biological clock, this paper reviews the correlation between the biological clock and glucose metabolism and analyzes its potential mechanisms. Based on this, we discuss the potential factors contributing to circadian rhythm disruption and their impact on the risk of developing T2D, aiming to explore new possible intervention measures for the prevention and treatment of T2D in the future. Under the light-dark circadian rhythm, in order to adapt to this change, the human body forms an internal biological clock involving a variety of genes, proteins and other molecules. The main mechanism is the transcription-translation feedback loop centered on the CLOCK/BMAL1 heterodimer. The expression of important circadian clock genes that constitute this loop can regulate T2DM-related blood glucose traits such as glucose uptake, fat metabolism, insulin secretion/glucagon secretion and sensitivity in various peripheral tissues and organs. In addition, sleep, light, and dietary factors under circadian rhythms also affect the occurrence of T2DM.


Assuntos
Ritmo Circadiano , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ritmo Circadiano/fisiologia , Animais , Relógios Biológicos , Relógios Circadianos/fisiologia , Glicemia/metabolismo
20.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(5. Vyp. 2): 79-86, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38934670

RESUMO

The bidirectional relationship between cerebral structures and the gastrointestinal tract involving the microbiota embraces the scientific concept of the microbiota-gut-brain axis. The gut microbiome plays an important role in many physiological and biochemical processes of the human body, in the immune response and maintenance of homeostasis, as well as in the regulation of circadian rhythms. There is a relationship between the higher prevalence of a number of neurological disorders, sleep disorders and changes in the intestinal microbiota, which actualizes the study of the complex mechanisms of such correlation for the development of new treatment and prevention strategies. Environmental factors associated with excessive light exposure can aggravate the gut dysbiosis of intestinal microflora, and as a result, lead to sleep disturbances. This review examines the integrative mechanisms of sleep regulation associated with the gut microbiota (the role of neurotransmitters, short-chain fatty acids, unconjugated bile acids, bacterial cell wall components, cytokines). Taking into account the influence of gut dysbiosis as a risk factor in the development of various diseases, the authors systematize key aspects and modern scientific data on the importance of microflora balance to ensure optimal interaction along the microbiota-gut-brain axis in the context of the regulatory role of the sleep-wake cycle and its disorders.


Assuntos
Eixo Encéfalo-Intestino , Ritmo Circadiano , Disbiose , Microbioma Gastrointestinal , Transtornos do Sono-Vigília , Sono , Humanos , Microbioma Gastrointestinal/fisiologia , Ritmo Circadiano/fisiologia , Eixo Encéfalo-Intestino/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Transtornos do Sono-Vigília/microbiologia , Transtornos do Sono-Vigília/metabolismo , Sono/fisiologia , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA