Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 866
Filtrar
1.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39101486

RESUMO

Multi-omics (genomics, transcriptomics, epigenomics, proteomics, metabolomics, etc.) research approaches are vital for understanding the hierarchical complexity of human biology and have proven to be extremely valuable in cancer research and precision medicine. Emerging scientific advances in recent years have made high-throughput genome-wide sequencing a central focus in molecular research by allowing for the collective analysis of various kinds of molecular biological data from different types of specimens in a single tissue or even at the level of a single cell. Additionally, with the help of improved computational resources and data mining, researchers are able to integrate data from different multi-omics regimes to identify new prognostic, diagnostic, or predictive biomarkers, uncover novel therapeutic targets, and develop more personalized treatment protocols for patients. For the research community to parse the scientifically and clinically meaningful information out of all the biological data being generated each day more efficiently with less wasted resources, being familiar with and comfortable using advanced analytical tools, such as Google Cloud Platform becomes imperative. This project is an interdisciplinary, cross-organizational effort to provide a guided learning module for integrating transcriptomics and epigenetics data analysis protocols into a comprehensive analysis pipeline for users to implement in their own work, utilizing the cloud computing infrastructure on Google Cloud. The learning module consists of three submodules that guide the user through tutorial examples that illustrate the analysis of RNA-sequence and Reduced-Representation Bisulfite Sequencing data. The examples are in the form of breast cancer case studies, and the data sets were procured from the public repository Gene Expression Omnibus. The first submodule is devoted to transcriptomics analysis with the RNA sequencing data, the second submodule focuses on epigenetics analysis using the DNA methylation data, and the third submodule integrates the two methods for a deeper biological understanding. The modules begin with data collection and preprocessing, with further downstream analysis performed in a Vertex AI Jupyter notebook instance with an R kernel. Analysis results are returned to Google Cloud buckets for storage and visualization, removing the computational strain from local resources. The final product is a start-to-finish tutorial for the researchers with limited experience in multi-omics to integrate transcriptomics and epigenetics data analysis into a comprehensive pipeline to perform their own biological research.This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [16] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Assuntos
Computação em Nuvem , Epigenômica , Humanos , Epigenômica/métodos , Epigênese Genética , Transcriptoma , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Software , Mineração de Dados/métodos
2.
Sci Rep ; 14(1): 18028, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098886

RESUMO

Users can purchase virtualized computer resources using the cloud computing concept, which is a novel and innovative way of computing. It offers numerous advantages for IT and healthcare industries over traditional methods. However, a lack of trust between CSUs and CSPs is hindering the widespread adoption of cloud computing across industries. Since cloud computing offers a wide range of trust models and strategies, it is essential to analyze the service using a detailed methodology in order to choose the appropriate cloud service for various user types. Finding a wide variety of comprehensive elements that are both required and sufficient for evaluating any cloud service is vital in order to achieve that. As a result, this study suggests an accurate, fuzzy logic-based trust evaluation model for evaluating the trustworthiness of a cloud service provider. Here, we examine how fuzzy logic raises the efficiency of trust evaluation. Trust is assessed using Quality of Service (QoS) characteristics like security, privacy, dynamicity, data integrity, and performance. The outcomes of a MATLAB simulation demonstrate the viability of the suggested strategy in a cloud setting.

3.
Network ; : 1-36, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39054942

RESUMO

Numerous studies have been conducted in an attempt to preserve cloud privacy, yet the majority of cutting-edge solutions fall short when it comes to handling sensitive data. This research proposes a "privacy preservation model in the cloud environment". The four stages of recommended security preservation methodology are "identification of sensitive data, generation of an optimal tuned key, suggested data sanitization, and data restoration". Initially, owner's data enters the Sensitive data identification process. The sensitive information in the input (owner's data) is identified via Augmented Dynamic Itemset Counting (ADIC) based Associative Rule Mining Model. Subsequently, the identified sensitive data are sanitized via the newly created tuned key. The generated tuned key is formulated with new fourfold objective-hybrid optimization approach-based deep learning approach. The optimally tuned key is generated with LSTM on the basis of fourfold objectives and the new hybrid MUAOA. The created keys, as well as generated sensitive rules, are fed into the deep learning model. The MUAOA technique is a conceptual blend of standard AOA and CMBO, respectively. As a result, unauthorized people will be unable to access information. Finally, comparative evaluation is undergone and proposed LSTM+MUAOA has achieved higher values on privacy about 5.21 compared to other existing models.

4.
Sci Rep ; 14(1): 16035, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992079

RESUMO

In the realm of cloud computing, ensuring the dependability and robustness of software systems is paramount. The intricate and evolving nature of cloud infrastructures, however, presents substantial obstacles in the pre-emptive identification and rectification of software anomalies. This study introduces an innovative methodology that amalgamates hybrid optimization algorithms with Neural Networks (NN) to refine the prediction of software malfunctions. The core objective is to augment the purity metric of our method across diverse operational conditions. This is accomplished through the utilization of two distinct optimization algorithms: the Yellow Saddle Goat Fish Algorithm (YSGA), which is instrumental in the discernment of pivotal features linked to software failures, and the Grasshopper Optimization Algorithm (GOA), which further polishes the feature compilation. These features are then processed by Neural Networks (NN), capitalizing on their proficiency in deciphering intricate data patterns and interconnections. The NNs are integral to the classification of instances predicated on the ascertained features. Our evaluation, conducted using the Failure-Dataset-OpenStack database and MATLAB Software, demonstrates that the hybrid optimization strategy employed for feature selection significantly curtails complexity and expedites processing.

5.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041911

RESUMO

This manuscript describes the development of a resource module that is part of a learning platform named 'NIGMS Sandbox for Cloud-based Learning', https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial authored by National Institute of General Medical Sciences: NIGMS Sandbox: A Learning Platform toward Democratizing Cloud Computing for Biomedical Research at the beginning of this supplement. This module delivers learning materials introducing the utility of the BASH (Bourne Again Shell) programming language for genomic data analysis in an interactive format that uses appropriate cloud resources for data access and analyses. The next-generation sequencing revolution has generated massive amounts of novel biological data from a multitude of platforms that survey an ever-growing list of genomic modalities. These data require significant downstream computational and statistical analyses to glean meaningful biological insights. However, the skill sets required to generate these data are vastly different from the skills required to analyze these data. Bench scientists that generate next-generation data often lack the training required to perform analysis of these datasets and require support from bioinformatics specialists. Dedicated computational training is required to empower biologists in the area of genomic data analysis, however, learning to efficiently leverage a command line interface is a significant barrier in learning how to leverage common analytical tools. Cloud platforms have the potential to democratize access to the technical tools and computational resources necessary to work with modern sequencing data, providing an effective framework for bioinformatics education. This module aims to provide an interactive platform that slowly builds technical skills and knowledge needed to interact with genomics data on the command line in the Cloud. The sandbox format of this module enables users to move through the material at their own pace and test their grasp of the material with knowledge self-checks before building on that material in the next sub-module. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Assuntos
Computação em Nuvem , Biologia Computacional , Software , Biologia Computacional/métodos , Linguagens de Programação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , Humanos
6.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38997128

RESUMO

This manuscript describes the development of a resource module that is part of a learning platform named "NIGMS Sandbox for Cloud-based Learning" https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module delivers learning materials on RNA sequencing (RNAseq) data analysis in an interactive format that uses appropriate cloud resources for data access and analyses. Biomedical research is increasingly data-driven, and dependent upon data management and analysis methods that facilitate rigorous, robust, and reproducible research. Cloud-based computing resources provide opportunities to broaden the application of bioinformatics and data science in research. Two obstacles for researchers, particularly those at small institutions, are: (i) access to bioinformatics analysis environments tailored to their research; and (ii) training in how to use Cloud-based computing resources. We developed five reusable tutorials for bulk RNAseq data analysis to address these obstacles. Using Jupyter notebooks run on the Google Cloud Platform, the tutorials guide the user through a workflow featuring an RNAseq dataset from a study of prophage altered drug resistance in Mycobacterium chelonae. The first tutorial uses a subset of the data so users can learn analysis steps rapidly, and the second uses the entire dataset. Next, a tutorial demonstrates how to analyze the read count data to generate lists of differentially expressed genes using R/DESeq2. Additional tutorials generate read counts using the Snakemake workflow manager and Nextflow with Google Batch. All tutorials are open-source and can be used as templates for other analysis.


Assuntos
Computação em Nuvem , Biologia Computacional , Análise de Sequência de RNA , Software , Biologia Computacional/métodos , Análise de Sequência de RNA/métodos , Regulação Bacteriana da Expressão Gênica
7.
Heliyon ; 10(13): e33792, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040324

RESUMO

A smart healthcare system (SHS) is a health service system that employs advanced technologies such as wearable devices, the Internet of Things (IoT), and mobile internet to dynamically access information and connect people and institutions related to healthcare, thereby actively managing and responding to medical ecosystem needs. Edge computing (EC) plays a significant role in SHS as it enables real-time data processing and analysis at the data source, which reduces latency and improves medical intervention speed. However, the integration of patient information, including electronic health records (EHRs), into the SHS framework induces security and privacy concerns. To address these issues, an intelligent EC framework was proposed in this study. The objective of this study is to accurately identify security threats and ensure secure data transmission in the SHS environment. The proposed EC framework leverages the effectiveness of Salp Swarm Optimization and Radial Basis Functional Neural Network (SS-RBFN) for enhancing security and data privacy. The proposed methodology commences with the collection of healthcare information, which is then pre-processed to ensure the consistency and quality of the database for further analysis. Subsequently, the SS-RBFN algorithm was trained using the pre-processed database to distinguish between normal and malicious data streams accurately, offering continuous monitoring in the SHS environment. Additionally, a Rivest-Shamir-Adelman (RSA) approach was applied to safeguard data against security threats during transmission to cloud storage. The proposed model was trained and validated using the IoT-based healthcare database available at Kaggle, and the experimental results demonstrated that it achieved 99.87 % accuracy, 99.76 % precision, 99.49 % f-measure, 98.99 % recall, 97.37 % throughput, and 1.2s latency. Furthermore, the results achieved by the proposed model were compared with the existing models to validate its effectiveness in enhancing security.

8.
Int J Telerehabil ; 16(1): e6635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022436

RESUMO

Purpose: The primary objective of this study was to develop and implement a Hybrid Cloud Environment for Telerehabilitation (HCET) to enhance patient care and research in the Physical Medicine and Rehabilitation (PM&R) domain. This environment aims to integrate advanced information and communication technologies to support both traditional in-person therapy and digital health solutions. Background: Telerehabilitation is emerging as a core component of modern healthcare, especially within the PM&R field. By applying digital health technologies, telerehabilitation provides continuous, comprehensive support for patient rehabilitation, bridging the gap between traditional therapy, and remote healthcare delivery. This study focuses on the design, and implementation of a hybrid HCET system tailored for the PM&R domain. Methods: The study involved the development of a comprehensive architectural and structural organization for the HCET, including a three-layer model (infrastructure, platform, service layers). Core components of the HCET were designed and implemented, such as the Hospital Information System (HIS) for PM&R, the MedRehabBot system, and the MedLocalGPT project. These components were integrated using advanced technologies like large language models (LLMs), word embeddings, and ontology-related approaches, along with APIs for enhanced functionality and interaction. Findings: The HCET system was successfully implemented and is operational, providing a robust platform for telerehabilitation. Key features include the MVP of the HIS for PM&R, supporting patient profile management, and rehabilitation goal tracking; the MedRehabBot and WhiteBookBot systems; and the MedLocalGPT project, which offers sophisticated querying capabilities, and access to extensive domain-specific knowledge. The system supports both Ukrainian and English languages, ensuring broad accessibility and usability. Interpretation: The practical implementation, and operation of the HCET system demonstrate its potential to transform telerehabilitation within the PM&R domain. By integrating advanced technologies, and providing comprehensive digital health solutions, the HCET enhances patient care, supports ongoing rehabilitation, and facilitates advanced research. Future work will focus on optimizing services and expanding language support to further improve the system's functionality and impact.

9.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041912

RESUMO

This manuscript describes the development of a resource module that is part of a learning platform named "NIGMS Sandbox for Cloud-based Learning" https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module delivers learning materials on basic principles in biomarker discovery in an interactive format that uses appropriate cloud resources for data access and analyses. In collaboration with Google Cloud, Deloitte Consulting and NIGMS, the Rhode Island INBRE Molecular Informatics Core developed a cloud-based training module for biomarker discovery. The module consists of nine submodules covering various topics on biomarker discovery and assessment and is deployed on the Google Cloud Platform and available for public use through the NIGMS Sandbox. The submodules are written as a series of Jupyter Notebooks utilizing R and Bioconductor for biomarker and omics data analysis. The submodules cover the following topics: 1) introduction to biomarkers; 2) introduction to R data structures; 3) introduction to linear models; 4) introduction to exploratory analysis; 5) rat renal ischemia-reperfusion injury case study; (6) linear and logistic regression for comparison of quantitative biomarkers; 7) exploratory analysis of proteomics IRI data; 8) identification of IRI biomarkers from proteomic data; and 9) machine learning methods for biomarker discovery. Each notebook includes an in-line quiz for self-assessment on the submodule topic and an overview video is available on YouTube (https://www.youtube.com/watch?v=2-Q9Ax8EW84). This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Assuntos
Biomarcadores , Computação em Nuvem , Biomarcadores/metabolismo , Animais , Software , Humanos , Ratos , Aprendizado de Máquina , Biologia Computacional/métodos
10.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041913

RESUMO

This study describes the development of a resource module that is part of a learning platform named 'NIGMS Sandbox for Cloud-based Learning' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module is designed to facilitate interactive learning of whole-genome bisulfite sequencing (WGBS) data analysis utilizing cloud-based tools in Google Cloud Platform, such as Cloud Storage, Vertex AI notebooks and Google Batch. WGBS is a powerful technique that can provide comprehensive insights into DNA methylation patterns at single cytosine resolution, essential for understanding epigenetic regulation across the genome. The designed learning module first provides step-by-step tutorials that guide learners through two main stages of WGBS data analysis, preprocessing and the identification of differentially methylated regions. And then, it provides a streamlined workflow and demonstrates how to effectively use it for large datasets given the power of cloud infrastructure. The integration of these interconnected submodules progressively deepens the user's understanding of the WGBS analysis process along with the use of cloud resources. Through this module, we can enhance the accessibility and adoption of cloud computing in epigenomic research, speeding up the advancements in the related field and beyond. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Assuntos
Computação em Nuvem , Metilação de DNA , Software , Sequenciamento Completo do Genoma , Sequenciamento Completo do Genoma/métodos , Sulfitos/química , Humanos , Epigênese Genética , Biologia Computacional/métodos
11.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041916

RESUMO

This manuscript describes the development of a resource module that is part of a learning platform named 'NIGMS Sandbox for Cloud-based Learning' (https://github.com/NIGMS/NIGMS-Sandbox). The module delivers learning materials on Cloud-based Consensus Pathway Analysis in an interactive format that uses appropriate cloud resources for data access and analyses. Pathway analysis is important because it allows us to gain insights into biological mechanisms underlying conditions. But the availability of many pathway analysis methods, the requirement of coding skills, and the focus of current tools on only a few species all make it very difficult for biomedical researchers to self-learn and perform pathway analysis efficiently. Furthermore, there is a lack of tools that allow researchers to compare analysis results obtained from different experiments and different analysis methods to find consensus results. To address these challenges, we have designed a cloud-based, self-learning module that provides consensus results among established, state-of-the-art pathway analysis techniques to provide students and researchers with necessary training and example materials. The training module consists of five Jupyter Notebooks that provide complete tutorials for the following tasks: (i) process expression data, (ii) perform differential analysis, visualize and compare the results obtained from four differential analysis methods (limma, t-test, edgeR, DESeq2), (iii) process three pathway databases (GO, KEGG and Reactome), (iv) perform pathway analysis using eight methods (ORA, CAMERA, KS test, Wilcoxon test, FGSEA, GSA, SAFE and PADOG) and (v) combine results of multiple analyses. We also provide examples, source code, explanations and instructional videos for trainees to complete each Jupyter Notebook. The module supports the analysis for many model (e.g. human, mouse, fruit fly, zebra fish) and non-model species. The module is publicly available at https://github.com/NIGMS/Consensus-Pathway-Analysis-in-the-Cloud. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Assuntos
Computação em Nuvem , Software , Humanos , Biologia Computacional/métodos , Biologia Computacional/educação , Animais , Ontologia Genética
12.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39001032

RESUMO

The emergence of 6G communication technologies brings both opportunities and challenges for the Internet of Things (IoT) in smart cities. In this paper, we introduce an advanced network slicing framework designed to meet the complex demands of 6G smart cities' IoT deployments. The framework development follows a detailed methodology that encompasses requirement analysis, metric formulation, constraint specification, objective setting, mathematical modeling, configuration optimization, performance evaluation, parameter tuning, and validation of the final design. Our evaluations demonstrate the framework's high efficiency, evidenced by low round-trip time (RTT), minimal packet loss, increased availability, and enhanced throughput. Notably, the framework scales effectively, managing multiple connections simultaneously without compromising resource efficiency. Enhanced security is achieved through robust features such as 256-bit encryption and a high rate of authentication success. The discussion elaborates on these findings, underscoring the framework's impressive performance, scalability, and security capabilities.

13.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001087

RESUMO

The growing importance of edge and fog computing in the modern IT infrastructure is driven by the rise of decentralized applications. However, resource allocation within these frameworks is challenging due to varying device capabilities and dynamic network conditions. Conventional approaches often result in poor resource use and slowed advancements. This study presents a novel strategy for enhancing resource allocation in edge and fog computing by integrating machine learning with the blockchain for reliable trust management. Our proposed framework, called CyberGuard, leverages the blockchain's inherent immutability and decentralization to establish a trustworthy and transparent network for monitoring and verifying edge and fog computing transactions. CyberGuard combines the Trust2Vec model with conventional machine-learning models like SVM, KNN, and random forests, creating a robust mechanism for assessing trust and security risks. Through detailed optimization and case studies, CyberGuard demonstrates significant improvements in resource allocation efficiency and overall system performance in real-world scenarios. Our results highlight CyberGuard's effectiveness, evidenced by a remarkable accuracy, precision, recall, and F1-score of 98.18%, showcasing the transformative potential of our comprehensive approach in edge and fog computing environments.

14.
PeerJ Comput Sci ; 10: e2128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983206

RESUMO

Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely execution of tasks within fog computing environments. This article presents a comprehensive review of the advancements in task scheduling methodologies for fog computing systems, covering priority-based, greedy heuristics, metaheuristics, learning-based, hybrid heuristics, and nature-inspired heuristic approaches. Through a systematic analysis of relevant literature, we highlight the strengths and limitations of each approach and identify key challenges facing fog computing task scheduling, including dynamic environments, heterogeneity, scalability, resource constraints, security concerns, and algorithm transparency. Furthermore, we propose future research directions to address these challenges, including the integration of machine learning techniques for real-time adaptation, leveraging federated learning for collaborative scheduling, developing resource-aware and energy-efficient algorithms, incorporating security-aware techniques, and advancing explainable AI methodologies. By addressing these challenges and pursuing these research directions, we aim to facilitate the development of more robust, adaptable, and efficient task-scheduling solutions for fog computing environments, ultimately fostering trust, security, and sustainability in fog computing systems and facilitating their widespread adoption across diverse applications and domains.

15.
PeerJ Comput Sci ; 10: e2024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855254

RESUMO

With the cutting-edge advancements in computer vision, facial expression recognition (FER) is an active research area due to its broad practical applications. It has been utilized in various fields, including education, advertising and marketing, entertainment and gaming, health, and transportation. The facial expression recognition-based systems are rapidly evolving due to new challenges, and significant research studies have been conducted on both basic and compound facial expressions of emotions; however, measuring emotions is challenging. Fueled by the recent advancements and challenges to the FER systems, in this article, we have discussed the basics of FER and architectural elements, FER applications and use-cases, FER-based global leading companies, interconnection between FER, Internet of Things (IoT) and Cloud computing, summarize open challenges in-depth to FER technologies, and future directions through utilizing Preferred Reporting Items for Systematic reviews and Meta Analyses Method (PRISMA). In the end, the conclusion and future thoughts are discussed. By overcoming the identified challenges and future directions in this research study, researchers will revolutionize the discipline of facial expression recognition in the future.

16.
F1000Res ; 13: 203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868668

RESUMO

Converged computing is an emerging area of computing that brings together the best of both worlds for high performance computing (HPC) and cloud-native communities. The economic influence of cloud computing and the need for workflow portability, flexibility, and manageability are driving this emergence. Navigating the uncharted territory and building an effective space for both HPC and cloud require collaborative technological development and research. In this work, we focus on developing components for the converged workload manager, the central component of batch workflows running in any environment. From the cloud we base our work on Kubernetes, the de facto standard batch workload orchestrator. From HPC the orchestrator counterpart is Flux Framework, a fully hierarchical resource management and graph-based scheduler with a modular architecture that supports sophisticated scheduling and job management. Bringing these managers together consists of implementing Flux inside of Kubernetes, enabling hierarchical resource management and scheduling that scales without burdening the Kubernetes scheduler. This paper introduces the Flux Operator - an on-demand HPC workload manager deployed in Kubernetes. Our work describes design decisions, mapping components between environments, and experimental features. We perform experiments that compare application performance when deployed by the Flux Operator and the MPI Operator and present the results. Finally, we review remaining challenges and describe our vision of the future for improved technological innovation and collaboration through converged computing.


Assuntos
Computação em Nuvem , Carga de Trabalho , Fluxo de Trabalho
17.
JMIR Biomed Eng ; 9: e50175, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38875671

RESUMO

BACKGROUND: The increasing adoption of telehealth Internet of Things (IoT) devices in health care informatics has led to concerns about energy use and data processing efficiency. OBJECTIVE: This paper introduces an innovative model that integrates telehealth IoT devices with a fog and cloud computing-based platform, aiming to enhance energy efficiency in telehealth IoT systems. METHODS: The proposed model incorporates adaptive energy-saving strategies, localized fog nodes, and a hybrid cloud infrastructure. Simulation analyses were conducted to assess the model's effectiveness in reducing energy consumption and enhancing data processing efficiency. RESULTS: Simulation results demonstrated significant energy savings, with a 2% reduction in energy consumption achieved through adaptive energy-saving strategies. The sample size for the simulation was 10-40, providing statistical robustness to the findings. CONCLUSIONS: The proposed model successfully addresses energy and data processing challenges in telehealth IoT scenarios. By integrating fog computing for local processing and a hybrid cloud infrastructure, substantial energy savings are achieved. Ongoing research will focus on refining the energy conservation model and exploring additional functional enhancements for broader applicability in health care and industrial contexts.

18.
Network ; : 1-22, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934441

RESUMO

Cloud services are one of the most quickly developing technologies. Furthermore, load balancing is recognized as a fundamental challenge for achieving energy efficiency. The primary function of load balancing is to deliver optimal services by releasing the load over multiple resources. Fault tolerance is being used to improve the reliability and accessibility of the network. In this paper, a hybrid Deep Learning-based load balancing algorithm is developed. Initially, tasks are allocated to all VMs in a round-robin method. Furthermore, the Deep Embedding Cluster (DEC) utilizes the Central Processing Unit (CPU), bandwidth, memory, processing elements, and frequency scaling factors while determining if a VM is overloaded or underloaded. The task performed on the overloaded VM is valued and the tasks accomplished on the overloaded VM are assigned to the underloaded VM for cloud load balancing. In addition, the Deep Q Recurrent Neural Network (DQRNN) is proposed to balance the load based on numerous factors such as supply, demand, capacity, load, resource utilization, and fault tolerance. Furthermore, the effectiveness of this model is assessed by load, capacity, resource consumption, and success rate, with ideal values of 0.147, 0.726, 0.527, and 0.895 are achieved.

19.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38941113

RESUMO

This study describes the development of a resource module that is part of a learning platform named "NIGMS Sandbox for Cloud-based Learning" (https://github.com/NIGMS/NIGMS-Sandbox). The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module delivers learning materials on de novo transcriptome assembly using Nextflow in an interactive format that uses appropriate cloud resources for data access and analysis. Cloud computing is a powerful new means by which biomedical researchers can access resources and capacity that were previously either unattainable or prohibitively expensive. To take advantage of these resources, however, the biomedical research community needs new skills and knowledge. We present here a cloud-based training module, developed in conjunction with Google Cloud, Deloitte Consulting, and the NIH STRIDES Program, that uses the biological problem of de novo transcriptome assembly to demonstrate and teach the concepts of computational workflows (using Nextflow) and cost- and resource-efficient use of Cloud services (using Google Cloud Platform). Our work highlights the reduced necessity of on-site computing resources and the accessibility of cloud-based infrastructure for bioinformatics applications.


Assuntos
Computação em Nuvem , Transcriptoma , Biologia Computacional/métodos , Biologia Computacional/educação , Software , Humanos , Perfilação da Expressão Gênica/métodos , Internet
20.
Sci Rep ; 14(1): 14668, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918484

RESUMO

A growing dependence on real-time positioning apps for navigation, safety, and location-based services necessitates a deep understanding of latency challenges within cloud-based Global Navigation Satellite System (GNSS) solutions. This study analyses a GNSS real-time positioning app on smartphones that utilizes cloud computing for positioning data delivery. The study investigates and quantifies diverse latency contributors throughout the system architecture, including GNSS signal acquisition, data transmission, cloud processing, and result dissemination. Controlled experiments and real-world scenarios are employed to assess the influence of network conditions, device capabilities, and cloud server load on overall positioning latency. Findings highlight system bottlenecks and their relative contributions to latency. Additionally, practical recommendations are presented for developers and cloud service providers to mitigate these challenges and guarantee an optimal user experience for real-time positioning applications. This study not only elucidates the complex interplay of factors affecting GNSS app latency, but also paves the way for future advancements in cloud-based positioning solutions, ensuring the accuracy and timeliness critical for safety-critical and emerging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...