Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 12(4): 1913-1927, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847518

RESUMO

Mutations in the plant homeodomain-like finger protein 6 (PHF6) gene are strongly associated with acute myeloid (AML) and T-cell acute lymphoblastic leukemia (T-ALL). In this study, we demonstrated that PHF6 can bind to H3K9me3 and H3K27me1 on the nucleolar chromatin and recruit histone methyltransferase SUV39H1 to the rDNA locus. The deletion of PHF6 caused a decrease in the recruitment of SUV39H1 to rDNA gene loci, resulting in a reduction in the level of H3K9me3 and the promotion of rDNA transcription. The knockdown of either SUV39H1 or PHF6 significantly attenuated the effects of increase in H3K9me3 and suppressed the transcription of rDNA induced by the overexpression of the other interacting partner, thereby establishing an interdependent relationship between PHF6 and SUV39H1 in their control of rRNA transcription. The PHF6 clinical mutants significantly impaired the ability to bind and recruit SUV39H1 to the rDNA loci, resulting in an increase in rDNA transcription activity, the proliferation of in vitro leukemia cells, and the growth of in vivo mouse xenografts. Importantly, significantly elevated levels of pre-rRNA were observed in clinical AML patients who possessed a mutated version of PHF6. The specific rDNA transcription inhibitor CX5461 significantly reduced the resistance of U937 AML cells deficient in PHF6 to cytarabine, the drug that is most commonly used to treat AML. Collectively, we revealed a novel molecular mechanism by which PHF6 recruits methyltransferase SUV39H1 to the nucleolar region in leukemia and provided a potential therapeutic target for PHF6-mutant leukemia.

2.
Acta Pharm Sin B ; 12(3): 1254-1270, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530132

RESUMO

Molecular targeted therapy has become an emerging promising strategy in cancer treatment, and screening the agents targeting at cancer cell specific targets is very desirable for cancer treatment. Our previous study firstly found that a secretory peroxidase of class III derived from foxtail millet bran (FMBP) exhibited excellent targeting anti-colorectal cancer (CRC) activity in vivo and in vitro, whereas its underlying target remains unclear. The highlight of present study focuses on the finding that cell surface glucose-regulated protein 78 (csGRP78) abnormally located on CRC is positively correlated with the anti-CRC effects of FMBP, indicating it serves as a potential target of FMBP against CRC. Further, we demonstrated that the combination of FMBP with the nucleotide binding domain (NBD) of csGRP78 interfered with the downstream activation of signal transducer and activator of transcription 3 (STAT3) in CRC cells, thus promoting the intracellular accumulation of reactive oxygen species (ROS) and cell grown inhibition. These phenomena were further confirmed in nude mice tumor model. Collectively, our study highlights csGRP78 acts as an underlying target of FMBP against CRC, uncovering the clinical potential of FMBP as a targeted agent for CRC in the future.

3.
J Bone Oncol ; 33: 100412, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35198364

RESUMO

BACKGROUND: Osteosarcoma is the most prevalent primary malignant bone tumor containing mesenchymal cells with poor prognosis. Being a hot spot of anti-tumor therapy researches, AKT/mammalian target of rapamycin (mTOR) signaling pathway could affect various cellular processes including transcription, protein synthesis, apoptosis, autophagy and growth. MATERIALS AND METHODS: The levels of RNA and protein were detected by quantitative real-time polymerase chain reaction (q-PCR) and western blot analyses respectively. Functional assays were carried out to analyze the malignant phenotypes of osteosarcoma cells. RNA-binding protein immunoprecipitation (RIP), Co-immunoprecipitation (Co-IP), RNA pulldown, luciferase reporter and in vitro kinase assays were conducted to uncover the specific mechanism of microRNA-451a (miR-451a) in osteosarcoma cells. RESULTS: Functionally, miR-451a represses the malignant progression of osteosarcoma. Mechanically, miR-451a could curb the AKT/mTOR pathway via 3-phosphoinositide dependent protein kinase 1 (PDPK1)-mediated phosphorylation modification. After the certification that YTH domain containing 1 (YTHDC1) regulates the m6A phosphorylation modification of PDPK1 mRNA, we further proved that miR-451a-mediated YTHDC1 stabilizes PDPK1 mRNA via m6A-dependent regulation. CONCLUSION: This study demonstrated that miR-451a regulates YTHDC1-mediated m6A methylation to activate the AKT/mTOR pathway, stimulating the malignancy of osteosarcoma.

4.
Acta Pharmaceutica Sinica B ; (6): 1254-1270, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929346

RESUMO

Molecular targeted therapy has become an emerging promising strategy in cancer treatment, and screening the agents targeting at cancer cell specific targets is very desirable for cancer treatment. Our previous study firstly found that a secretory peroxidase of class III derived from foxtail millet bran (FMBP) exhibited excellent targeting anti-colorectal cancer (CRC) activity in vivo and in vitro, whereas its underlying target remains unclear. The highlight of present study focuses on the finding that cell surface glucose-regulated protein 78 (csGRP78) abnormally located on CRC is positively correlated with the anti-CRC effects of FMBP, indicating it serves as a potential target of FMBP against CRC. Further, we demonstrated that the combination of FMBP with the nucleotide binding domain (NBD) of csGRP78 interfered with the downstream activation of signal transducer and activator of transcription 3 (STAT3) in CRC cells, thus promoting the intracellular accumulation of reactive oxygen species (ROS) and cell grown inhibition. These phenomena were further confirmed in nude mice tumor model. Collectively, our study highlights csGRP78 acts as an underlying target of FMBP against CRC, uncovering the clinical potential of FMBP as a targeted agent for CRC in the future.

5.
Acta Pharm Sin B ; 11(7): 1853-1866, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386324

RESUMO

Mitochondrial shape rapidly changes by dynamic balance of fusion and fission to adjust to constantly changing energy demands of cancer cells. Mitochondrial dynamics balance is exactly regulated by molecular motor consisted of myosin and actin cytoskeleton proteins. Thus, targeting myosin-actin molecular motor is considered as a promising strategy for anti-cancer. In this study, we performed a proof-of-concept study with a natural-derived small-molecule J13 to test the feasibility of anti-cancer therapeutics via pharmacologically targeting molecular motor. Here, we found J13 could directly target myosin-9 (MYH9)-actin molecular motor to promote mitochondrial fission progression, and markedly inhibited cancer cells survival, proliferation and migration. Mechanism study revealed that J13 impaired MYH9-actin interaction to inactivate molecular motor, and caused a cytoskeleton-dependent mitochondrial dynamics imbalance. Moreover, stable isotope labeling with amino acids in cell culture (SILAC) technology-coupled with pulldown analysis identified HSPA9 as a crucial adaptor protein connecting MYH9-actin molecular motor to mitochondrial fission. Taken together, we reported the first natural small-molecule directly targeting MYH9-actin molecular motor for anti-cancer translational research. Besides, our study also proved the conceptual practicability of pharmacologically disrupting mitochondrial fission/fusion dynamics in human cancer therapy.

6.
Acta Pharm Sin B ; 11(5): 1286-1299, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094834

RESUMO

The bromodomain and extraterminal (BET) family member BRD4 is pivotal in the pathogenesis of cardiac hypertrophy. BRD4 induces hypertrophic gene expression by binding to the acetylated chromatin, facilitating the phosphorylation of RNA polymerases II (Pol II) and leading to transcription elongation. The present study identified a novel post-translational modification of BRD4: poly(ADP-ribosyl)ation (PARylation), that was mediated by poly(ADP-ribose)polymerase-1 (PARP1) in cardiac hypertrophy. BRD4 silencing or BET inhibitors JQ1 and MS417 prevented cardiac hypertrophic responses induced by isoproterenol (ISO), whereas overexpression of BRD4 promoted cardiac hypertrophy, confirming the critical role of BRD4 in pathological cardiac hypertrophy. PARP1 was activated in ISO-induced cardiac hypertrophy and facilitated the development of cardiac hypertrophy. BRD4 was involved in the prohypertrophic effect of PARP1, as implied by the observations that BRD4 inhibition or silencing reversed PARP1-induced hypertrophic responses, and that BRD4 overexpression suppressed the anti-hypertrophic effect of PARP1 inhibitors. Interactions of BRD4 and PARP1 were observed by co-immunoprecipitation and immunofluorescence. PARylation of BRD4 induced by PARP1 was investigated by PARylation assays. In response to hypertrophic stimuli like ISO, PARylation level of BRD4 was elevated, along with enhanced interactions between BRD4 and PARP1. By investigating the PARylation of truncation mutants of BRD4, the C-terminal domain (CTD) was identified as the PARylation modification sites of BRD4. PARylation of BRD4 facilitated its binding to the transcription start sites (TSS) of hypertrophic genes, resulting in enhanced phosphorylation of RNA Pol II and transcription activation of hypertrophic genes. The present findings suggest that strategies targeting inhibition of PARP1-BRD4 might have therapeutic potential for pathological cardiac hypertrophy.

7.
Acta Pharm Sin B ; 11(5): 1315-1328, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094836

RESUMO

Bcr-Abl threonine 315 to isoleucine 315 (T315I) gatekeeper mutation induced drug resistance remains an unmet clinical challenge for the treatment of chronic myeloid leukemia (CML). Chemical degradation of Bcr-AblT315I protein has become a potential strategy to overcome drug resistance. Herein, we first described the design, synthesis, and evaluation of a new class of selective Bcr-AblT315I proteolysis-targeting chimeric (PROTAC) degraders based on GZD824 (reported as Bcr-AblT315I inhibitor by our group). One of the degrader 7o with 6-member carbon chain linkage with pomalidomide exhibits the most potent degradation efficacy with DR of 69.89% and 94.23% at 100 and 300 nmol/L, respectively, and has an IC50 value of 26.8 ± 9.7 nmol/L against Ba/F3T315I cells. Further, 7o also displays substantial tumor regression against Ba/F3-Bcr-AblT315I xenograft model in vivo.

8.
Acta Pharm Sin B ; 11(3): 727-737, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33777678

RESUMO

The constitutive androstane receptor (CAR, NR3I1) belongs to nuclear receptor superfamily. It was reported that CAR agonist TCPOBOP induces hepatomegaly but the underlying mechanism remains largely unknown. Yes-associated protein (YAP) is a potent regulator of organ size. The aim of this study is to explore the role of YAP in CAR activation-induced hepatomegaly and liver regeneration. TCPOBOP-induced CAR activation on hepatomegaly and liver regeneration was evaluated in wild-type (WT) mice, liver-specific YAP-deficient mice, and partial hepatectomy (PHx) mice. The results demonstrate that TCPOBOP can increase the liver-to-body weight ratio in wild-type mice and PHx mice. Hepatocytes enlargement around central vein (CV) area was observed, meanwhile hepatocytes proliferation was promoted as evidenced by the increased number of KI67+ cells around portal vein (PV) area. The protein levels of YAP and its downstream targets were upregulated in TCPOBOP-treated mice and YAP translocation can be induced by CAR activation. Co-immunoprecipitation results suggested a potential protein-protein interaction of CAR and YAP. However, CAR activation-induced hepatomegaly can still be observed in liver-specific YAP-deficient (Yap -/-) mice. In summary, CAR activation promotes hepatomegaly and liver regeneration partially by inducing YAP translocation and interaction with YAP signaling pathway, which provides new insights to further understand the physiological functions of CAR.

9.
Acta Pharm Sin B ; 11(1): 89-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532182

RESUMO

Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury, and its prognosis depends on the balance between hepatocyte death and regeneration. Sirtuin 6 (SIRT6) has been reported to protect against oxidative stress-associated DNA damage. But whether SIRT6 regulates APAP-induced hepatotoxicity remains unclear. In this study, the protein expression of nuclear and total SIRT6 was up-regulated in mice liver at 6 and 48 h following APAP treatment, respectively. Sirt6 knockdown in AML12 cells aggravated APAP-induced hepatocyte death and oxidative stress, inhibited cell viability and proliferation, and downregulated CCNA1, CCND1 and CKD4 protein levels. Sirt6 knockdown significantly prevented APAP-induced NRF2 activation, reduced the transcriptional activities of GSTµ and NQO1 and the mRNA levels of Nrf2, Ho-1, Gstα and Gstµ. Furthermore, SIRT6 showed potential protein interaction with NRF2 as evidenced by co-immunoprecipitation (Co-IP) assay. Additionally, the protective effect of P53 against APAP-induced hepatocytes injury was Sirt6-dependent. The Sirt6 mRNA was significantly down-regulated in P53 -/- mice. P53 activated the transcriptional activity of SIRT6 and exerted interaction with SIRT6. Our results demonstrate that SIRT6 protects against APAP hepatotoxicity through alleviating oxidative stress and promoting hepatocyte proliferation, and provide new insights in the function of SIRT6 as a crucial docking molecule linking P53 and NRF2.

10.
Acta Pharmaceutica Sinica B ; (6): 1853-1866, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-888838

RESUMO

Mitochondrial shape rapidly changes by dynamic balance of fusion and fission to adjust to constantly changing energy demands of cancer cells. Mitochondrial dynamics balance is exactly regulated by molecular motor consisted of myosin and actin cytoskeleton proteins. Thus, targeting myosin-actin molecular motor is considered as a promising strategy for anti-cancer. In this study, we performed a proof-of-concept study with a natural-derived small-molecule J13 to test the feasibility of anti-cancer therapeutics

11.
Acta Pharm Sin B ; 9(3): 537-544, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31193773

RESUMO

We report in this study the identification of a natural product-like antagonist (1a) of Vps34 as a potent autophagy modulator via structure-based virtual screening. Aurone derivative 1a strongly inhibited Vps34 activity in cell-free and cell-based assays. Significantly, 1a prevents autophagy in human cells induced either by starvation or by an mTOR inhibitor. In silico modeling and kinetic data revealed that 1a could function as an ATP-competitive inhibitor of Vps34. Moreover, it suppressed autophagy in vivo and without inducing heart or liver damage in mice. 1a could be utilized as a new motif for more selective and efficacious antagonists of Vps34 for the potential treatment of autophagy-related human diseases.

12.
Artigo em Inglês | MEDLINE | ID: mdl-30510991

RESUMO

Background & Aims: Forkhead box protein 3 (FOXP3)+ regulatory T cell (Treg) dysfunction is associated with autoimmune diseases; however, the mechanisms responsible for inflammatory bowel disease pathophysiology are poorly understood. Here, we tested the hypothesis that a physical interaction between transcription factor FOXP3 and the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is essential for gene co-repressive function. Methods: Human FOXP3 mutations clinically relevant to intestinal inflammation were generated by site-directed mutagenesis. T lymphocytes were isolated from mice, human blood, and lamina propria of Crohn's disease (CD) patients and non-CD controls. We performed proximity ligation or a co-immunoprecipitation assay in FOXP3-mutant+, interleukin 6 (IL6)-treated or CD-CD4+ T cells to assess FOXP3-EZH2 protein interaction. We studied IL2 promoter activity and chromatin state of the interferon γ locus via luciferase reporter and chromatin-immunoprecipitation assays, respectively, in cells expressing FOXP3 mutants. Results: EZH2 binding was abrogated by inflammatory bowel disease-associated FOXP3 cysteine 232 (C232) mutation. The C232 mutant showed impaired repression of IL2 and diminished EZH2-mediated trimethylation of histone 3 at lysine 27 on interferon γ, indicative of compromised Treg physiologic function. Generalizing this mechanism, IL6 impaired FOXP3-EZH2 interaction. IL6-induced effects were reversed by Janus kinase 1/2 inhibition. In lamina propria-derived CD4+T cells from CD patients, we observed decreased FOXP3-EZH2 interaction. Conclusions: FOXP3-C232 mutation disrupts EZH2 recruitment and gene co-repressive function. The proinflammatory cytokine IL6 abrogates FOXP3-EZH2 interaction. Studies in lesion-derived CD4+ T cells have shown that reduced FOXP3-EZH2 interaction is a molecular feature of CD patients. Destabilized FOXP3-EZH2 protein interaction via diverse mechanisms and consequent Treg abnormality may drive gastrointestinal inflammation.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Intestinos/patologia , Adulto , Animais , Núcleo Celular/metabolismo , Separação Celular , Proteínas Correpressoras/metabolismo , Feminino , Humanos , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Células Jurkat , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação/genética , Fosforilação , Fosfotirosina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo
13.
Acta Pharmaceutica Sinica B ; (6): 537-544, 2019.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-774970

RESUMO

We report in this study the identification of a natural product-like antagonist () of Vps34 as a potent autophagy modulator structure-based virtual screening. Aurone derivative strongly inhibited Vps34 activity in cell-free and cell-based assays. Significantly, prevents autophagy in human cells induced either by starvation or by an mTOR inhibitor. modeling and kinetic data revealed that could function as an ATP-competitive inhibitor of Vps34. Moreover, it suppressed autophagy and without inducing heart or liver damage in mice. could be utilized as a new motif for more selective and efficacious antagonists of Vps34 for the potential treatment of autophagy-related human diseases.

14.
Cell Mol Gastroenterol Hepatol ; 6(3): 239-255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109252

RESUMO

Background & Aims: Uncontrolled liver proliferation is a key characteristic of liver cancer; however, the mechanisms by which this occurs are not well understood. Elucidation of these mechanisms is necessary for the development of better therapy. The oncogene Gankyrin (Gank) is overexpressed in both hepatocellular carcinoma and hepatoblastoma. The aim of this work was to determine the role of Gank in liver proliferation and elucidate the mechanism by which Gank promotes liver proliferation. Methods: We generated Gank liver-specific knock-out (GLKO) mice and examined liver biology and proliferation after surgical resection and liver injury. Results: Global profiling of gene expression in GLKO mice showed significant changes in pathways involved in liver cancer and proliferation. Investigations of liver proliferation after partial hepatectomy and CCl4 treatment showed that GLKO mice have dramatically inhibited proliferation of hepatocytes at early stages after surgery and injury. In control LoxP mice, liver proliferation was characterized by Gank-mediated reduction of tumor-suppressor proteins (TSPs). The failure of GLKO hepatocytes to proliferate is associated with a lack of down-regulation of these proteins. Surprisingly, we found that hepatic progenitor cells of GLKO mice start proliferation at later stages and restore the original size of the liver at 14 days after partial hepatectomy. To examine the proliferative activities of Gank in cancer cells, we used a small molecule, cjoc42, to inhibit interactions of Gank with the 26S proteasome. These studies showed that Gank triggers degradation of TSPs and that cjoc42-mediated inhibition of Gank increases levels of TSPs and inhibits proliferation of cancer cells. Conclusions: These studies show that Gank promotes hepatocyte proliferation by elimination of TSPs. This work provides background for the development of Gank-mediated therapy for the treatment of liver cancer. RNA sequencing data can be accessed in the NCBI Gene Expression Omnibus: GSE104395.


Assuntos
Carcinoma Hepatocelular/patologia , Hepatoblastoma/patologia , Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Benzenossulfonatos/farmacologia , Tetracloreto de Carbono/farmacologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Hepatoblastoma/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética , Triazóis/farmacologia
15.
Acta Pharm Sin B ; 5(5): 487-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26579480

RESUMO

The accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b, 9b and ORF14), predicted unknown proteins (PUPs) encoded by the genes, are considered to be unique to the severe acute respiratory syndrome coronavirus (SARS-CoV) genome. These proteins play important roles in various biological processes mediated by interactions with their partners. However, very little is known about the interactions among these accessory proteins. Here, a EYFP (enhanced yellow fluorescent protein) bimolecular fluorescence complementation (BiFC) assay was used to detect the interactions among accessory proteins. 33 out of 81 interactions were identified by BiFC, much more than that identified by the yeast two-hybrid (Y2H) system. This is the first report describing direct visualization of interactions among accessory proteins of SARS-CoV. These findings attest to the general applicability of the BiFC system for the verification of protein-protein interactions.

16.
RNA Biol ; 12(4): 457-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25757558

RESUMO

MicroRNA (miRNA) genes generally share many features common to those of protein coding genes. Various transcription factors (TFs) and co-regulators are also known to regulate miRNA genes. Here we identify novel p53 and NFκB p65/RelA responsive miRNAs and demonstrate that these 2 TFs bind to the regulatory sequences of miR-100, -146a and -150 in both mouse striatal and human cervical carcinoma cells and regulate their expression. p53 represses the miRNAs while NFκB p65/RelA induces them. Further, we provide evidence that exogenous p53 inhibits NFκB p65/RelA activity by reducing its nuclear content and competing with it for CBP binding. This suggests for the existence of a functional cross-talk between the 2 TFs in regulating miRNA expression. Moreover, promoter occupancy assay reveals that exogenous p53 excludes NFκB p65/RelA from its binding site in the upstream sequence of miR-100 gene thereby causing its repression. Thus, our work identifies novel p53 and NFκB p65/RelA responsive miRNAs in human and mouse and uncovers possible mechanisms of co-regulation of miR-100. It is to be mentioned here that cross-talks between p53 and NFκB p65/RelA have been observed to define the outcome of several biological processes and that the pro-apoptotic effect of p53 and the pro-survival functions of NFκB can be largely mediated via the biological roles of the miRNAs these TFs regulate. Our observation with cell lines thus provides an important platform upon which further work is to be done to establish the biological significance of such co-regulation of miRNAs by p53 and NFκB p65/RelA.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Fator de Transcrição RelA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , MicroRNAs/metabolismo , Regiões Promotoras Genéticas
17.
Cancer Biol Ther ; 16(2): 276-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25756510

RESUMO

The pediatric solid tumor neuroblastoma (NB) often depends on the anti-apoptotic protein, Mcl(-)1, for survival through Mcl(-)1 sequestration of pro-apoptotic Bim. High affinity Mcl(-)1 inhibitors currently do not exist such that novel methods to inhibit Mcl(-)1 clinically are in high demand. Receptor tyrosine kinases (RTK) regulate Mcl(-)1 in many cancers and play a role in NB survival, yet how they regulate Bcl(-)2 family interactions in NB is unknown. We found that NB cell lines derived to resist the Bcl(-)2/-xl/-w antagonist, ABT-737, acquire a dependence on Mcl(-)1 and show increased expression and activation of the RTK, EGFR. Mcl(-)1 dependent NB cell lines derived at diagnosis and from the same tumor following relapse also have increased EGFR expression compared to those dependent on Bcl(-)2. Inhibition of EGFR by shRNA or erlotinib in Mcl(-)1 dependent NBs disrupts Bim binding to Mcl(-)1 and enhances its affinity for Bcl(-)2, restoring sensitivity to ABT-737 as well as cytotoxics in vitro. Mechanistically treatment of NBs with small molecule inhibitors of EGFR (erlotinib, cetuximab) and ERK (U0126) increases Noxa expression and dephosphorylates Bim to promote Bim binding to Bcl(-)2. Thus, EGFR regulates Mcl(-)1 dependence in high-risk NB via ERK-mediated phosphorylation of Bim such that EGFR/ERK inhibition renders Mcl(-)1 dependent tumors now reliant on Bcl(-)2. Clinically, EGFR inhibitors are ineffective as single agent compounds in patients with recurrent NB, likely due to this transferred survival dependence to Bcl(-)2. Likewise, EGFR or ERK inhibitors warrant further testing in combination with Bcl(-)2 antagonists in vivo as a novel future combination to overcome therapy resistance in the clinic.


Assuntos
Receptores ErbB/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neuroblastoma/metabolismo , Transdução de Sinais , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Recidiva Local de Neoplasia , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Nitrofenóis/farmacologia , Fosforilação , Piperazinas/farmacologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
18.
Cancer Biol Ther ; 16(1): 34-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25692620

RESUMO

The colorectal cancer is the leading contributor of cancer-related mortality. Mammalian target of rapamycin (mTOR), existing in 2 complexes (mTORC1/2), is frequently dysregulated and constitutively activated in colorectal cancers. It represents an important drug target. Here we found that INK-128, the novel ATP-competitive kinase inhibitor of mTOR, blocked both mTORC1 and mTORC2 activation in colorectal cancer cells (both primary and transformed cells). The immunoprecipitation results showed that the assembly of mTORC1 (mTOR-Raptor association) and mTORC2 (mTOR-Rictor-Sin1 association) was also disrupted by INK-128. INK-128 inhibited colorectal cancer cell growth and survival, and induced both apoptotic and non-apoptotic cancer cell death. Further, INK-128 showed no effect on Erk/MAPK activation, while MEK/Erk inhibition by MEK-162 enhanced INK-128-induced cytotoxicity in colorectal cancer cells. Meanwhile, INK-128 downregulated Fascin1 (FSCN1)/E-Cadherin expressions and inhibited HT-29 cell in vitro migration. In vivo, daily INK-128 oral administration inhibited HT-29 xenograft growth in mice, which was further enhanced by MEK-162 administration. Finally, we found that INK-128 sensitized 5-fluorouracil-(5-FU)-mediated anti-HT-29 activity in vivo and in vitro. Thus, our preclinical studies strongly suggest that INK-128 might be investigated for colorectal cancer treatment in clinical trials.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Neoplasias Colorretais/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzoxazóis/administração & dosagem , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fluoruracila/farmacologia , Células HT29 , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Proteínas dos Microfilamentos/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Redox Biol ; 1: 433-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24191237

RESUMO

Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various liver diseases and a putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and controls the transcription of protective target genes. In the present study, we have characterized the regulation of CYP2A5 by Nrf2 and evaluated gene expression, protein content and activity of anti-oxidant enzymes in the Nrf2 (+/+) and Nrf2 (-/-) mice model of non-alcoholic fatty liver (NAFLD). After eight weeks of feeding on a high-fat diet, livers from Nrf2 (-/-) mice showed a substantial increase in macro and microvesicular steatosis and a massive increase in the number of neutrophil polymorphs, compared to livers from wild-type mice treated similarly. Livers of Nrf2 (-/-) mice on the high-fat diet exhibited more oxidative stress than their wild-type counterparts as assessed by a significant depletion of reduced glutathione that was coupled with increases in malondialdehyde. Furthermore, results in Nrf2-deficient mice showed that CYP2A5 expression was significantly attenuated in the absence of Nrf2, as was found with the conventional target genes of Nrf2. The treatment of wild-type mice with high-fat diet leaded to nuclear accumulation of Nrf2, and co-immunoprecipitation experiments showed that Nrf2 was bound to Cyp2a5. These findings suggest that the high-fat diet induced alteration in cellular redox status and induction of CYP2A5 was modulated through the redox-sensitive transcription Nrf2.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Núcleo Celular/metabolismo , Família 2 do Citocromo P450 , Citoplasma/metabolismo , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/genética , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...