Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Phytopathology ; : PHYTO10230370R, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38530294

RESUMO

The necrotrophic effector ToxA is a well-studied virulence factor produced by several fungal necrotrophs. Initially cloned from the wheat tan spot pathogen Pyrenophora tritici-repentis in 1996, ToxA was found almost a decade later in another fungal pathogen, Parastagonospora nodorum, and its sister species, Parastagonospora pseudonodorum. In 2018, ToxA was detected in a third wheat fungal pathogenic species, Bipolaris sorokiniana, which causes spot blotch disease. However, unlike the case with P. tritici-repentis and P. nodorum, the ToxA in B. sorokiniana has only been investigated in recent years. In this report, five Australian B. sorokiniana isolates were assessed for the presence of ToxA. Four isolates were found to contain ToxA. While one isolate harbored the previously reported ToxA haplotype sequence (ToxA19), three isolates contain a different haplotype, designated herein as ToxA25, which has a nonsynonymous mutation resulting in an amino acid change of glycine to arginine at position 168. Both B. sorokiniana ToxA isoforms, when heterologously expressed in Escherichia coli, exhibited the classic ToxA necrosis-inducing activity on ToxA-sensitive Tsn1 cultivars. Preliminary analysis of the B. sorokiniana isolates in Australian wheat cultivars showed that isolates with ToxA19, ToxA25, or ToxA-deficient displayed various degrees of virulence, with the most aggressive isolates observed for those producing ToxA. Differences in spot blotch disease severity between Tsn1 and tsn1 cultivars were observed; however, this was not limited to the ToxA-producing isolates. The overall results suggest that the virulence of the Australian B. sorokiniana isolates is diverse, with the significance of ToxA-Tsn1 interactions depending on individual isolates.

2.
Mol Plant Microbe Interact ; 36(7): 452-456, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36802869

RESUMO

Bipolaris sorokiniana, one of the most devastating hemibiotrophic fungal pathogens, causes root rot, crown rot, leaf blotching, and black embryos of gramineous crops worldwide, posing a serious threat to global food security. However, the host-pathogen interaction mechanism between B. sorokiniana and wheat remains poorly understood. To facilitate related studies, we sequenced and assembled the genome of B. sorokiniana LK93. Nanopore long reads and next generation sequencing short reads were applied in the genome assembly, and the final 36.4-Mb genome assembly contains 16 contigs with the contig N50 of 2.3 Mb. Subsequently, we annotated 11,811 protein-coding genes. Of these, 10,620 were functional genes, 258 of which were identified as secretory proteins, including 211 predicted effectors. Additionally, the 111,581-bp mitogenome of LK93 was assembled and annotated. The LK93 genomes presented in this study will facilitate research in the B. sorokiniana-wheat pathosystem for better control of crop diseases. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Genoma Mitocondrial , Ascomicetos/genética , Triticum/microbiologia , Genoma Mitocondrial/genética , Bipolaris/genética , Doenças das Plantas/microbiologia
3.
Plant Dis ; 107(8): 2424-2430, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36724100

RESUMO

Bipolaris sorokiniana is a necrotrophic fungal pathogen that causes foliar and root diseases on wheat and barley. These diseases are common in all wheat- and barley-growing regions, with more severe outbreaks occurring under warm and humid conditions. B. sorokiniana can also infect a wide range of grass species in the family Poaceae and secrete ToxA, an important necrotrophic effector also identified other wheat leaf spotting pathogens. In this study, the prevalence and virulence role of ToxA were investigated in a collection of 278 B. sorokiniana isolates collected from spring wheat and barley in the Upper Midwest of the United States or other places, including 169 from wheat leaves, 75 from wheat roots, 30 from barley leaves, and 4 from wild quack grass leaves. ToxA was present in the isolates from wheat leaves, wheat roots, and wild grass leaves but was absent from isolates collected from barley leaves. Prevalence of ToxA in wheat leaf isolates (34.3%) was much higher than that in wheat root isolates (16%). Sequencing analysis revealed the presence of two haplotypes, with the majority being BsH2. All ToxA+ isolates produced the functional effector in liquid cultures. Pathogenicity assays revealed that ToxA+ isolates caused significantly more disease on spring wheat lines harboring Tsn1 than their tsn1 mutants, suggesting that the ToxA-Tsn1 interaction plays an important role in spot blotch development. This work confirms the importance of ToxA in B. sorokiniana populations infecting wheat and, thus, the need to eliminate Tsn1 from spring wheat cultivars to reduce susceptibility to spot blotch.


Assuntos
Ascomicetos , Hordeum , Triticum/microbiologia , Ascomicetos/genética , Prevalência
4.
Microorganisms ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557712

RESUMO

Quorum sensing (QS) is often defined as a mechanism of microbial communication that can regulate microbial behaviors in accordance with population density. Much is known about QS mechanisms in bacteria, but fungal QS research is still in its infancy. In this study, the molecules constituting the volatolomes of the plant pathogenic fungi Fusarium culmorum and Cochliobolus sativus have been identified during culture conditions involving low and high spore concentrations, with the high concentration imitating overpopulation conditions (for QS stimulation). We determined that volatolomes emitted by these species in conditions of overpopulation have a negative impact on their mycelial growth, with some of the emitted molecules possibly acting as QSM. Candidate VOCs related to QS have then been identified by testing the effect of individual volatile organic compounds (VOCs) on mycelial growth of their emitting species. The antifungal effect observed for the volatolome of F. culmorum in the overpopulation condition could be attributed to ethyl acetate, 2-methylpropan-1-ol, 3-methylbutyl ethanoate, 3-methylbutan-1-ol, and pentan-1-ol, while it could be attributed to longifolene, 3-methylbutan-1-ol, 2-methylpropan-1-ol, and ethyl acetate for C. sativus in the overpopulation condition. This work could pave the way to a sustainable alternative to chemical fungicides.

5.
Plant Dis ; 106(2): 585-594, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34587774

RESUMO

Spot blotch caused by Cochliobolus sativus has become an important disease in the wheat-growing regions in China that has resulted from changes in the regional climate, agricultural cultivation patterns, and the susceptible wheat varieties that are widely grown. Little information is available about virulence variability and pathogenic specialization of the C. sativus isolates from major wheat-growing regions in China. Here, 12 representative wheat varieties and foundation breeding stocks were selected to characterize the pathotypes of C. sativus isolates from infected wheat plants. Based on the infection phenotypes in the 12 differential genotypes at the seedling stage, 70 Chinese pathotypes were identified from 110 isolates and clustered into three virulence groups. The high virulence isolates were collected from wheat leaves, crowns, and roots, with most (10 of 14) from the Henan province in the Huang-Huai plain. No relationship was evident between virulence variability of C. sativus isolates and their geographic origins or types of diseased wheat tissues. C. sativus showed a significant pathogenic specialization in hosts of wheat and barley. Most of the wheat isolates (50 of 65) were avirulent to all the differential barley genotypes, and a few were virulent only to highly susceptible barley genotypes. These results indicated that C. sativus isolates from the wheat-growing regions in China varied considerably for their virulence in wheat varieties, and showed significant pathogenic specialization to the wheat and barley hosts.


Assuntos
Bipolaris , Doenças das Plantas/microbiologia , Triticum/microbiologia , Bipolaris/genética , Bipolaris/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/genética , Virulência/genética
6.
Front Cell Infect Microbiol ; 11: 584899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777829

RESUMO

Wheat is among the ten top and most widely grown crops in the world. Several diseases cause losses in wheat production in different parts of the world. Bipolaris sorokiniana (teleomorph, Cochliobolus sativus) is one of the wheat pathogens that can attack all wheat parts, including seeds, roots, shoots, and leaves. Black point, root rot, crown rot and spot blotch are the main diseases caused by B. sorokiniana in wheat. Seed infection by B. sorokiniana can result in black point disease, reducing seed quality and seed germination and is considered a main source of inoculum for diseases such as common root rot and spot blotch. Root rot and crown rot diseases, which result from soil-borne or seed-borne inoculum, can result in yield losses in wheat. Spot blotch disease affects wheat in different parts of the world and cause significant losses in grain yield. This review paper summarizes the latest findings on B. sorokiniana, with a specific emphasis on management using genetic, chemical, cultural, and biological control measures.


Assuntos
Ascomicetos , Bipolaris , Doenças das Plantas
7.
Phytopathology ; 110(12): 1980-1987, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32635797

RESUMO

Spot blotch (SB), caused by Bipolaris sorokiniana, is a major fungal disease of wheat in South Asia and South America. Two biparental mapping populations with 232 F2:7 progenies each were generated, with CIMMYT breeding lines CASCABEL and KATH as resistant parents and CIANO T79 as the common susceptible parent. The two populations were evaluated for field SB resistance in CIMMYT's Agua Fria station for three consecutive cropping seasons, with artificial inoculation. Genotyping was done with the DArTseq platform and approximately 1,500 high quality and nonredundant markers were used for quantitative trait loci (QTL) mapping. In both populations, a major QTL was found on chromosome 5A in the Vrn-A1 region, explaining phenotypic variations of 13.5 to 25.9%, which turned up to be less- or nonsignificant when days to heading and plant height were used as covariates in the analysis, implying a disease escape mechanism. Another major QTL was located on chromosome 5B in CASCABEL, accounting for 8.9 to 21.4% of phenotypic variation. Minor QTL were found on 4A and 4B in CASCABEL; 1B, 4B, and 4D in KATH; and 1B, 2B, and 4B in CIANO T79. Through an analysis of QTL projection onto the IWGSC Chinese Spring reference genome, the 5B QTL in CASCABEL was mapped in the Sb2 region, delimited by the single nucleotide polymorphism marker wsnp_Ku_c50354_55979952 and the simple sequence repeat marker gwm213, with a physical distance of about 14 Mb to the Tsn1 locus.


Assuntos
Ascomicetos , Triticum , Ásia , Pão , Mapeamento Cromossômico , Resistência à Doença/genética , Humanos , Fenótipo , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , América do Sul , Triticum/genética
8.
Funct Integr Genomics ; 19(3): 453-465, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30840164

RESUMO

Cochliobolus sativus (anamorph: Bipolaris sorokiniana) is a filamentous fungus from the class Dothideomycetes. It is a pathogen of cereals including wheat and barley, and causes foliar spot blotch, root rot, black point on grains, head blight, leaf blight, and seedling blight diseases. Annual yields of these economically important cereals are severely reduced due to this pathogen attack. Evolution of fungicide resistant pathogen strains, availability of a limited number of potent antifungal compounds, and their efficacy are the acute issues in field management of phytopathogenic fungi. Propiconazole is a widely used azole fungicide to control the disease in fields. The known targets of azoles are the demethylase enzymes involved in ergosterol biosynthesis. Nonetheless, azoles have multiple modes of action, some of which have not been explored yet. Identifying the off-target effects of fungicides by dissecting gene expression profiles in response to them can provide insights into their modes of action and possible mechanisms of fungicide resistance. Moreover it can also reveal additional targets for development of new fungicides. Hence, we analyzed the global gene expression profile of C. sativus on exposure to sub-lethal doses of propiconazole in a time series. The gene expression patterns were confirmed using quantitative reverse transcriptase PCR (qRT-PCR). This study revealed overexpression of target genes from the sterol biosynthesis pathway supporting the reported mode of resistance against azoles. In addition, some new potential targets have also been identified, which could be explored to develop new fungicides and plant protection strategies.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Transcriptoma , Triazóis/farmacologia , Ascomicetos/genética , Ascomicetos/metabolismo
9.
Int J Mol Sci ; 19(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558200

RESUMO

Spot blotch (SB) is an important fungal disease of wheat in South Asia and South America. Host resistance is regarded as an economical and environmentally friendly approach of controlling SB, and the inheritance of resistance is mostly quantitative. In order to gain a better understanding on the SB resistance mechanism in CIMMYT germplasm, two bi-parental mapping populations were generated, both comprising 232 F2:7 progenies. Elite CIMMYT breeding lines, BARTAI and WUYA, were used as resistant parents, whereas CIANO T79 was used as susceptible parent in both populations. The two populations were evaluated for field SB resistance at CIMMYT's Agua Fria station for three consecutive years, from the 2012⁻2013 to 2014⁻2015 cropping seasons. Phenological traits like plant height (PH) and days to heading (DH) were also determined. Genotyping was performed using the DArTSeq genotyping-by-sequencing (GBS) platform, and a few D-genome specific SNPs and those for phenological traits were integrated for analysis. The most prominent quantitative trait locus (QTL) in both populations was found on chromosome 5AL at the Vrn-A1 locus, explaining phenotypic variations of 7⁻27%. Minor QTL were found on chromosomes 1B, 3A, 3B, 4B, 4D, 5B and 6D in BARTAI and on chromosomes 1B, 2A, 2D and 4B in WUYA, whereas minor QTL contributed by CIANO T79 were identified on chromosome 1B, 1D, 3A, 4B and 7A. In summary, resistance to SB in the two mapping populations was controlled by multiple minor QTL, with strong influence from Vrn-A1.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença , Locos de Características Quantitativas , Triticum/genética , Cromossomos de Plantas/genética , Genótipo , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Sementes/genética , Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento
10.
Mol Plant Pathol ; 19(2): 432-439, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28093843

RESUMO

Bipolaris sorokiniana is the causal agent of multiple diseases on wheat and barley and is the primary constraint to cereal production throughout South Asia. Despite its significance, the molecular basis of disease is poorly understood. To address this, the genomes of three Australian isolates of B. sorokiniana were sequenced and screened for known pathogenicity genes. Sequence analysis revealed that the isolate BRIP10943 harboured the ToxA gene, which has been associated previously with disease in the wheat pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis. Analysis of the regions flanking ToxA within B. sorokiniana revealed that it was embedded within a 12-kb genomic element nearly identical to the corresponding regions in P. nodorum and P. tritici-repentis. A screen of 35 Australian B. sorokiniana isolates confirmed that ToxA was present in 12 isolates. Sequencing of the ToxA genes within these isolates revealed two haplotypes, which differed by a single non-synonymous nucleotide substitution. Pathogenicity assays showed that a B. sorokiniana isolate harbouring ToxA was more virulent on wheat lines that contained the sensitivity gene when compared with a non-ToxA isolate. This work demonstrates that proteins that confer host-specific virulence can be horizontally acquired across multiple species. This acquisition can dramatically increase the virulence of pathogenic strains on susceptible cultivars, which, in an agricultural setting, can have devastating economic and social impacts.


Assuntos
Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Hordeum/microbiologia , Triticum/microbiologia , Proteínas Fúngicas/genética , Transferência Genética Horizontal/genética , Virulência
11.
BMC Plant Biol ; 17(Suppl 2): 250, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297317

RESUMO

BACKGROUND: Spot blotch, caused by Cochliobolus sativus, is one of the most widespread and harmful diseases in barley. Identification of genetic loci associated with resistance to C. sativus is of importance for future marker-assisted selection. The goal of the current study was to identify loci conferring seedling resistance to two different pathotypes of C. sativus in the Siberian spring barley core collection. RESULTS: A total of 96 spring barley cultivars and lines were phenotyped at the seedling stage with two C. sativus isolates (Kr2 and Ch3). According to the Fetch-Steffenson rating scale 16%/17% of genotypes were resistant and 26%/30% were moderate-resistant to the Kr2/Ch3 isolates respectively. A total of 94 genotypes were analyzed with the barley 50 K Illumina Infinium iSELECT assay. From 44,040 SNPs, 40,703 were scorable, from which 39,140 were polymorphic. 27,319 SNPs passed filtering threshold and were used for association mapping. Data analysis by GLM revealed 48 and 41 SNPs for Kr2 and Ch3 isolates, respectively. After application of 5% Bonferroni multiple test correction, only 3 and 27 SNPs were identified, respectively. A total of three genomic regions were associated with the resistance. The region on chromosome 3H associated with Ch3-resistance was expanded between markers SCRI_RS_97417 and JHI-Hv50k-2016-158003 and included 11 SNPs, from which JHI-Hv50k-2016-157070, JHI-Hv50k-2016-156842 had the lowest p-values. These two SNPs were also significant in case of Kr2 isolate. The region on chromosome 2H included 16 loci (7 of them with the lowest p-values were tightly linked to BOPA2_12_11504). Three loci corresponding to this region had suggestive p-values in case of Kr2 tests, so the locus on chromosome 2H may also contribute to resistance to Kr2 isolate. The third region with significant p-value in case of Kr2 tests was identified on chromosome 1H at the locus JHI-Hv50k-2016-33568. CONCLUSIONS: Three genomic regions associated with the resistance to one or both isolates of C. sativus were identified via screening of the Siberian spring barley core collection. Comparison of their location with QTLs revealed previously either with biparental mapping populations studies or with GWAS of distinct germplasm and other isolates, demonstrated that resistance to isolates Kr2 and Ch3 is conferred by known spot blotch resistance loci. Information on SNPs related can be used further for development of DNA-markers convenient for diagnostics of resistance-associated alleles in barley breeding programs.


Assuntos
Ascomicetos/metabolismo , Resistência à Doença/genética , Hordeum/genética , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla , Hordeum/microbiologia , Locos de Características Quantitativas/genética
12.
Plant Pathol J ; 31(1): 72-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25774113

RESUMO

Spot blotch caused by the hemibiotrophic pathogen Cochliobolus sativus has been the major yield-reducing factor for barley production during the last decade. Monitoring transcriptional reorganization triggered in response to this fungus is an essential first step for the functional analysis of genes involved in the process. To characterize the defense responses initiated by barley resistant and susceptible cultivars, a survey of transcript abundance at early time points of C. sativus inoculation was conducted. A notable number of transcripts exhibiting significant differential accumulations in the resistant and susceptible cultivars were detected compared to the non-inoculated controls. At the p-value of 0.0001, transcripts were divided into three general categories; defense, regulatory and unknown function, and the resistant cultivar had the greatest number of common transcripts at different time points. Quantities of differentially accumulated gene transcripts in both cultivars were identified at 24 h post infection, the approximate time when the pathogen changes trophic lifestyles. The unique and common accumulated transcripts might be of considerable interest for enhancing effective resistance to C. sativus.

13.
Mycologia ; 105(5): 1164-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23709521

RESUMO

Simple sequence repeats (SSR) markers were developed from a small insert genomic library for Bipolaris sorokiniana, a mitosporic fungal pathogen that causes spot blotch and root rot in switchgrass. About 59% of sequenced clones (n = 384) harbored SSR motifs. After eliminating redundant sequences, 196 SSR loci were identified, of which 84.7% were dinucleotide repeats and 9.7% and 5.6% were tri- and tetra-nucleotide repeats, respectively. Primer pairs were designed for 105 loci and 85 successfully amplified loci. Sixteen polymorphic loci were characterized with 15 B. sorokiniana isolates obtained from infected switchgrass plant materials collected from five states in USA. These loci successfully cross-amplified isolates from at least one related species, including Bipolaris oryzae, Bipolaris spicifera and Bipolaris victoriae, that causes leaf spot on switchgrass. Haploid gene diversity per locus across all isolates studied varied 0.633-0.861. Principal component analysis of SSR data clustered isolates according to their respective species. These SSR markers will be a valuable tool for genetic variability and population studies of B. sorokiniana and related species that are pathogenic on switchgrass and other host plants. In addition, these markers are potential diagnostic tools for species in the genus Bipolaris.


Assuntos
Ascomicetos/genética , Repetições de Microssatélites/genética , Panicum/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/isolamento & purificação , Sequência de Bases , Primers do DNA/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Biblioteca Gênica , Loci Gênicos/genética , Genótipo , Dados de Sequência Molecular , Polimorfismo Genético , Análise de Componente Principal , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 18S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
14.
Plant Pathol J ; 29(4): 451-3, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25288975

RESUMO

Common root rot caused by Cochliobolus sativus is a serious disease of barley. A simple and reliable method for assessing this disease would enhance our capacity in identifying resistance sources and developing resistant barley cultivars. In searching for such a method, a conidial suspension of C. sativus was dropped onto sterilized elongated subcrown internodes and incubated in sandwich filter paper using polyethylene transparent envelopes. Initial disease symptoms were easily detected after 48h of inoculation. Highly significant correlation coefficients were found in each experiment (A, B and C) between sandwich filter paper and seedling assays, indicating that this testing procedure was reliable. The method presented facilitates a rapid pre-selection under uniform conditions which is of importance from a breeder's point of view.

15.
Braz. j. microbiol ; 39(3): 602-604, July-Sept. 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-494556

RESUMO

The xylanase production by Cochliobolus sativus strain Cs6 was improved under solid state fermentation (SSF). High xylanase activity (1079 U/g) was obtained when wheat straw was used after 8 days of incubation. Combinations of sodium nitrate with peptone or yeast extract resulted in an increased xylanase production (1543 and 1483 U/g, respectively). The Cs6 strain grown in SSF in a simple medium, proved to be a promising microorganism for xylanase production.


A produção de xilanase por Cochliobolus sativus cepa Cs6 SATIVUS por fermentação em estado sólido (SSF) foi melhorada. Com o emprego de palha de trigo, obteve-se elevada atividade de xilanase (1079 U/g) após 8 dias de incubação. Combinações de nitrato de sódio com peptona ou extrato de levedura aumentaram a produção de xilanase (1543 e 1483 U/g, respectivamente). Comprovou-se que a cepa Cs6, cultivada em SSF em meio simples, é um microrganismo promissor para produção de xilanase.


Assuntos
Ascomicetos/isolamento & purificação , Técnicas In Vitro , Nitratos , Polissacarídeos/análise , Leveduras , Meios de Cultura , Fermentação , Métodos
16.
Braz J Microbiol ; 39(3): 602-4, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24031273

RESUMO

The xylanase production by Cochliobolus sativus strain Cs6 was improved under solid state fermentation (SSF). High xylanase activity (1079 U/g) was obtained when wheat straw was used after 8 days of incubation. Combinations of sodium nitrate with peptone or yeast extract resulted in an increased xylanase production (1543 and 1483 U/g, respectively). The Cs6 strain grown in SSF in a simple medium, proved to be a promising microorganism for xylanase production.

17.
Genet. mol. biol ; 31(3): 734-742, 2008. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-490063

RESUMO

Spot blotch resistant (IBON 18) and susceptible (RD 2508) lines were crossed to investigate inheritance of resistance and to identify simple sequence repeats (SSRs) associated with resistance. F1 resistance was intermediate and suggested additive nature of inheritance. Three additive genes was noted in the distribution of F3, F4 and F5 generations. In F6 and F6-7, the quantitative and qualitative approaches also suggested the control of three resistance genes. The parents and the RILs (F6/F6-7) were grown in four environments and spot blotch severity recorded. Forty five SSR primers, specific for chromosomes 1 (7H) and 5 (1H), were applied. Of these, 12 were polymorphic between the parents, and between the resistant and susceptible bulks. Three markers BMS 32, BMS 90 and HVCMA showed association with resistance, which was further confirmed through selective genotyping. The co-segregation data on the molecular markers (BMS 32, BMS 90 and HVCMA) and spot blotch severity on 173 RILs was analyzed by single marker linear regression approach. Significant regression suggested linkage among BMS 32, BMS 90 and HVCMA and the three resistant genes (designated as Rcs-qtl-5H-1, Rcs-qtl-5H-2 and Rcs-qtl-1H-1.) respectively. These markers explained 28 percent, 19 percent and 12 percent of variation respectively, for spot blotch resistance among the RILs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...