Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 821-828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38415965

RESUMO

PURPOSE: Minced cartilage implantation (MCI) is an evolving technique for the treatment of osteochondral lesions. It was hypothesised that mincing of cartilage may affect chondrocyte viability and phenotype and that embedding in collagen 1 gel results in an improved outcome. The objective of this study was to evaluate the impact of cartilage mincing and whether collagen 1 gel mediates beneficial effects on the chondrocyte phenotype and viability. METHODS: Human cartilage samples from 11 patients undergoing total knee arthroplasty were collected and minced according to the MCI protocol. Minced cartilage was cultured for 1 week with and without embedding in collagen 1 gel and was compared with unminced cartilage flakes as control. Quantitative reverse transcription-PCR and immunohistochemical staining for the chondrocyte marker genes SOX9, COL2, ACAN, COL10 and MMP13 were used to examine the chondrocyte phenotype. Cell death was assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. RESULTS: Increased chondrocyte cell death of cultured cartilage after mincing was observed. Chondrocytes from minced cartilage exhibited significantly decreased expression and protein levels of homeostatic and hypertrophic chondrocyte markers. Embedding in collagen 1 gel showed no positive effect on viability. However, remarkable is the increased expression of ACAN and the preserved protein level of SOX9 in the collagen 1-embedded minced cartilage. CONCLUSIONS: This study shows that the mincing of cartilage leads to increased chondrocyte death and decreased expression of chondrocyte phenotypic marker genes after 7 days. The use of collagen 1 gel may improve the stability of the phenotype, which needs to be further elucidated. LEVEL OF EVIDENCE: Level III (therapeutic).


Assuntos
Cartilagem Articular , Cartilagem , Adulto , Humanos , Condrócitos/patologia , Fenótipo , Hipertrofia/metabolismo , Hipertrofia/patologia , Colágeno/metabolismo , Cartilagem Articular/patologia
2.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958410

RESUMO

Cancer cell-secreted eHsp90 binds and activates proteins in the tumor microenvironment crucial in cancer invasion. Therefore, targeting eHsp90 could inhibit invasion, preventing metastasis-the leading cause of cancer-related mortality. Previous eHsp90 studies have solely focused on its role in cancer invasion through the 2D basement membrane (BM), a form of extracellular matrix (ECM) that lines the epithelial compartment. However, its role in cancer invasion through the 3D Interstitial Matrix (IM), an ECM beyond the BM, remains unexplored. Using a Collagen-1 binding assay and second harmonic generation (SHG) imaging, we demonstrate that eHsp90 directly binds and aligns Collagen-1 fibers, the primary component of IM. Furthermore, we show that eHsp90 enhances Collagen-1 invasion of breast cancer cells in the Transwell assay. Using Hsp90 conformation mutants and inhibitors, we established that the Hsp90 dimer binds to Collagen-1 via its N-domain. We also demonstrated that while Collagen-1 binding and alignment are not influenced by Hsp90's ATPase activity attributed to the N-domain, its open conformation is crucial for increasing Collagen-1 alignment and promoting breast cancer cell invasion. These findings unveil a novel role for eHsp90 in invasion through the IM and offer valuable mechanistic insights into potential therapeutic approaches for inhibiting Hsp90 to suppress invasion and metastasis.

3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003303

RESUMO

In our preliminary experiment, peritoneal sclerosis likely induced by peritoneal dialysis was unexpectedly observed in the livers of rats given bleomycin and lansoprazole. We examined whether this peritoneal thickening around the liver was time-dependently induced by administration of both drugs. Male Wistar rats were injected with bleomycin and/or lansoprazole for 2 or 4 weeks. The 3YB-1 cell line derived from rat fibroblasts was treated by bleomycin and/or lansoprazole for 24 h. The administration of both drugs together, but not individually, thickened the peritoneal tissue around the liver. There was accumulation of collagen fibers, macrophages, and eosinophils under mesothelial cells. Expressions of Col1a1, Mcp1 and Mcp3 genes were increased in the peritoneal tissue around the liver and in 3YB-1 cells by the administration of both drugs together, and Opn genes had increased expressions in this tissue and 3YB-1 cells. Mesothelial cells indicated immunoreactivity against both cytokeratin, a mesothelial cell marker, and αSMA, a fibroblast marker, around the livers of rats given both drugs. Administration of both drugs induced the migration of macrophages and eosinophils and induced fibrosis associated with the possible activation of fibroblasts and the possible promotion of the mesothelial-mesenchymal transition. This might become a novel model of peritoneal sclerosis for peritoneal dialysis.


Assuntos
Fibrose Peritoneal , Ratos , Masculino , Animais , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/genética , Bleomicina/efeitos adversos , Ratos Wistar , Lansoprazol/efeitos adversos , Lansoprazol/metabolismo , Células Epiteliais/metabolismo , Peritônio/patologia
4.
Biomedicines ; 11(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37760851

RESUMO

Skin aging is a dynamic process that determines structural alterations in ECM and reduction in dermal fibroblasts. The recent availability on the market of an innovative polycomponent formulation (KARISMA Rh Collagen® FACE, K) containing noncrosslinked high-molecular-weight hyaluronic acid (HMW-HA), a human recombinant polypeptide of collagen-1 alpha chain, and carboxymethyl cellulose (CMC), attracted our scientific interest in evaluating its biomolecular effects on human dermal adult and aged fibroblasts. After treatment with increasing K concentrations, cell proliferation, collagen I, prolyl 4-hydroxylase (P4HA1), an essential protein in collagen biosynthesis, and α-SMA levels were assessed. The fibroblast contractility, TGF-ß1 levels, and oxidative stress markers were also evaluated. K formulation exposure led to a significant and dose-dependent increase in the proliferation and migration of adult fibroblasts. Of note, the K exposure counteracted the H2O2-induced aging by promoting cell proliferation, reducing ß-galactosidase activity, and neutralizing the aging-associated oxidative damage. Moreover, an increase in collagen I, P4HA1, α-SMA, TGF-ß1 levels, and improved contractility of adult and aged fibroblasts were observed after treatment. Overall, our results show evidence that the K treatment is efficacious in improving biological functions in adult fibroblasts and suppressing the biomolecular events associated with H2O2-induced cellular aging, thus supporting the regenerative and bio-revitalizing action of the K formulation helpful in preventing or treating skin aging.

5.
J Mol Cell Cardiol ; 182: 57-72, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482037

RESUMO

Hypertension-induced tunica media thickening (TMT) is the most important fundamental for the subsequent complications like stroke and cardiovascular diseases. Pathogenically, TMT originates from both vascular smooth muscle cells (VSMCs) hypertrophy due to synthesizing more amount of intracellular contractile proteins and excess secretion of extracellular matrix. However, what key molecules are involved in the pathogenesis of TMT is unknown. We hypothesize that formin homology 2 domain-containing protein 1 (FHOD1), an amply expressed mediator for assembly of thin actin filament in VSMCs, is a key regulator for the pathogenesis of TMT. In this study, we found that FHOD1 expression and its phosphorylation/activation were both upregulated in the arteries of three kinds of hypertensive rats. Ang-II induced actin filament formation and hypertrophy through activation and upregulation of FHOD1 in VSMCs. Active FHOD1-mediated actin filament assembly and secretions of collagen-1α/collagen-3α played crucial roles in Ang-II-induced VSMCs hypertrophy in vitro and hypertensive TMT in vivo. Proteomics demonstrated that activated FL-FHOD1 or its C-terminal diaphanous-autoregulatory domain significantly upregulated RNF213 (ring finger protein 213), a 591-kDa cytosolic E3 ubiquitin ligase with its loss-of-functional mutations being a susceptibility gene for Moyamoya disease which has prominent tunica media thinning in both intracranial and systemic arteries. Mechanistically, activated FHOD1 upregulated its downstream effector RNF213 independently of its classical pathway of decreasing G-actin/F-actin ratio, transcription, and translation, but dependently on its C-terminus-mediated stabilization of RNF213 protein. FHOD1-RNF213 signaling dramatically promoted collagen-1α/collagen-3α syntheses in VSMCs. Our results discovered a novel signaling axis of FHOD1-RNF213-collagen-1α/collagen-3α and its key role in the pathogenesis of hypertensive TMT.


Assuntos
Actinas , Hipertensão , Animais , Ratos , Actinas/metabolismo , Hipertensão/etiologia , Hipertrofia , Transdução de Sinais/fisiologia , Fatores de Transcrição , Túnica Média/metabolismo
6.
Bioact Mater ; 22: 168-179, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36203959

RESUMO

Dynamic regulation of cell-extracellular matrix (ECM)-material interactions is crucial for various biomedical applications. In this study, a light-activated molecular switch for the modulation of cell attachment/detachment behaviors was established on monolayer graphene (Gr)/n-type Silicon substrates (Gr/Si). Initiated by light illumination at the Gr/Si interface, pre-adsorbed proteins (bovine serum albumin, ECM proteins collagen-1, and fibronectin) underwent protonation to achieve negative charge transfer to Gr films (n-doping) through π-π interactions. This n-doping process stimulated the conformational switches of ECM proteins. The structural alterations in these ECM interactors significantly reduced the specificity of the cell surface receptor-ligand interaction (e.g., integrin recognition), leading to dynamic regulation of cell adhesion and eventual cell detachment. RNA-sequencing results revealed that the detached bone marrow mesenchymal stromal cell sheets from the Gr/Si system manifested regulated immunoregulatory properties and enhanced osteogenic differentiation, implying their potential application in bone tissue regeneration. This work not only provides a fast and feasible method for controllable cells/cell sheets harvesting but also gives new insights into the understanding of cell-ECM-material communications.

7.
Food Chem X ; 14: 100333, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35634226

RESUMO

In contrast to collagens 1α1 and 1α2, the more obscure collagen 1α3 is sparsely mentioned in literature. In skin collagen type 1 of teleosts (bony fish), however, the chain occurs in a heterotrimer together with collagens 1α1 and 1α2, which makes it one of the most abundant proteins in teleosts. As teleost fish species and gelatin (hydrolysate) prepared from their skin are a major source for food products and nutraceuticals, the goal of the study was to selectively identify collagen 1α3 in several fish species. Fish skin extracts and fish skin gelatins were analyzed using LC-MS. Depending on the amount of available genetic information different approaches were used to identify collagen 1α3. Additionally, collagen-specific collision induced internal fragmentations are discussed, which are important to consider during data analysis. Ultimately the presence of collagen 1α3 could be confirmed using LC-MS in multiple fish species.

8.
Niger J Clin Pract ; 25(3): 304-309, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35295053

RESUMO

Aims and Background: In this study, the densities of collagen 1 and collagen 4, which are an effective vascular component in the remodelling of varicose veins, were investigated. Materials and Methods: The study included primary varicose vein samples of 20 patients and vein samples of 20 healthy controls. Immunohistochemical staining was performed using collagen 1 and collagen 4 antibodies. Histochemical staining was performed using Masson Trichrome. Results: In the immunohistochemical analysis of varicose samples, collagen 1 immunostaining was negative in 17 cases (85%) and positive in 3 cases (15%). In healthy venous tissue samples, collagen 1 immunostaining was negative in 12 cases (60%) and positive in 8 cases (40%). There was no statistically significant difference between both groups concerning collagen 1 immunostaining (p > 0.05). In varicose samples, collagen 4 immunostaining was negative in 4 cases (20%) and positive in 16 cases (80%). In healthy venous tissue samples, collagen 4 immunostaining was negative in 13 cases (65%) and positive in 7 cases (35%). Statistical comparison of healthy veins and varicose veins concerning collagen 4 immunostaining showed a significant difference (p = 0.03). In the histochemical analysis of varicose samples, Masson Trichrome staining was negative in 4 cases (20%) and positive in 16 cases (80%). In healthy venous tissue samples, Masson Trichrome staining was negative in 18 cases (90%) and positive in 2 cases (10%). Statistical comparison of healthy veins and varicose veins concerning collagen 4 immunostaining showed a significant difference (p = 0.01). Conclusion: The change in the density of collagen types plays an important role in vein wall remodeling.


Assuntos
Colágeno Tipo IV , Veia Safena , Varizes , Colágeno Tipo I , Humanos , Varizes/patologia
9.
Endocrine ; 75(2): 447-455, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34545512

RESUMO

PURPOSE: Graves' disease (GD) is an autoimmune disorder affecting primarily the thyroid gland. The most common extrathyroidal manifestation of GD is known as Graves' orbitopathy (GO). Bone marrow-derived fibrocytes represent a subset of monocytes in peripheral blood mononuclear cells (PBMCs), infiltrate the orbital tissues, and contribute to the pathogenesis of GO. Hence objectives of the study included whether the concentration of fibrocytes in peripheral blood was higher in GO, whether TSHR m RNA expression and TSHR surface expression in peripheral blood were higher in GO in comparison to Graves' Disease (GD) and Control subjects. METHODS: The percentage of circulating fibrocytes (FC) along with TSHR on its cell surface (CD 34+, CD 45+, CXCR4+, Collagen 1+, TSHR+) were assessed by flow cytometry of 50 patients with GD and GO and 15 healthy donors (Control). TSHR mRNA expression was measured by q RT PCR. RESULT: The concentration of circulating fibrocytes was significantly higher in GO compared to GD and control [GO 17% vs GD 3% vs control 0.7% (p < 0.05)]. Moreover, these fibrocytes express a significantly higher level of TSHR in GO. This was corroborated by the measure of TSH mRNA; in GD it was 2.3-fold higher and in GO it was 3.9 fold higher than in control, in GO this transcript level was 1.7fold higher than GD (p < 0.05). TSHR+ fibrocytes were significantly positively correlated with CAS (p = 0.004) and negatively correlated with age (p = 0.01) and duration of disease (p = 0.01) in GO. CONCLUSION: This study sheds further light on the pathogenesis of GO.


Assuntos
Doença de Graves , Oftalmopatia de Graves , Doença de Graves/metabolismo , Oftalmopatia de Graves/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Receptores da Tireotropina
10.
J Biomater Appl ; 36(7): 1269-1276, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34911392

RESUMO

The most widely used biomaterials in the treatment of massive bone defects are allograft bone or metal implants. The current problem is that the availability of allographs is limited and metal implants are very expensive. Mass production of secretome can make bone reconstruction of massive bone defects using a scaffold more effective and efficient. This study aims to prove bone regeneration in massive bone defects using bovine hydroxyapatite reconstruction with normoxic and hypoxic secretome conditions using collagen type 1 (COL1), alkaline phosphate (ALP), osteonectin (ON), and osteopontin (OPN) parameters. This is an in vivo study using male New Zealand white rabbits aged 6-9 months. The research was carried out at the Biomaterials Center-Tissue Bank, Dr. Soetomo Hospital for the manufacturer of bovine hydroxyapatite (BHA) and secretome BM-MSC culture under normoxic and hypoxic conditions, and UNAIR Tropical Disease Institute for implantation in experimental animals. Data analysis was carried out with the one-way ANOVA statistical test and continued with the Post Hoc test LSD statistical test to determine whether or not there were significant differences between groups. There were significant differences between hypoxic to normoxic group and hypoxic to BHA group at day-30 observation using ALP, COL 1, ON, and OPN parameters. Meanwhile, there is only osteonectin parameter has significant difference at day-30 observation. At day-60 observation, only OPN parameter has significant differences between hypoxic to normoxic and hypoxic to BHA group. Between day-30 and day-60 observation, BHA and normoxic groups have a significant difference at all parameters, but in hypoxic group, there are only difference at ALP, COL 1, and ON parameters. Hypoxic condition BM-MSC secretome with BHA composite is superior and could be an option for treating bone defect.


Assuntos
Durapatita , Secretoma , Animais , Regeneração Óssea , Bovinos , Modelos Animais de Doenças , Masculino , Oxigênio , Coelhos
11.
J Cereb Blood Flow Metab ; 42(6): 966-978, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34929105

RESUMO

Perivascular fibroblasts (PVFs) are recognized for their pro-fibrotic role in many central nervous system disorders. Like mural cells, PVFs surround blood vessels and express Pdgfrß. However, these shared attributes hinder the ability to distinguish PVFs from mural cells. We used in vivo two-photon imaging and transgenic mice with PVF-targeting promoters (Col1a1 or Col1a2) to compare the structure and distribution of PVFs and mural cells in cerebral cortex of healthy, adult mice. We show that PVFs localize to all cortical penetrating arterioles and their offshoots (arteriole-capillary transition zone), as well as the main trunk of only larger ascending venules. However, the capillary zone is devoid of PVF coverage. PVFs display short-range mobility along the vessel wall and exhibit distinct structural features (flattened somata and thin ruffled processes) not seen with smooth muscle cells or pericytes. These findings clarify that PVFs and mural cells are distinct cell types coexisting in a similar perivascular niche.


Assuntos
Capilares , Pericitos , Animais , Encéfalo/irrigação sanguínea , Capilares/diagnóstico por imagem , Fibroblastos/metabolismo , Camundongos , Camundongos Transgênicos , Pericitos/metabolismo
12.
Front Immunol ; 12: 645548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867934

RESUMO

Within the Interstitial Lung Diseases (ILD), patients with idiopathic pulmonary fibrosis (IPF) and a subset of those with non-IPF fibrotic ILD have a distinct clinical phenotype of progression despite management. This group of patients has been collectively termed the progressive fibrotic phenotype (PFP). Their early recognition may facilitate access to antifibrotic therapies to prevent or slow progression. Macrophages/monocytes within the lung orchestrate the progression and maintenance of fibrosis. A novel role for monocyte-derived macrophages during tissue damage and wound healing is the expression of collagens. We examined Collagen 1a1 expression in airway macrophages from ILD patients at diagnosis. COL1A1 mRNA levels from BAL cells were elevated in IPF and Non-IPF patients. The presence of a UIP pattern and a subsequent progressive phenotype were significantly associated with the higher BAL COL1A1 levels. In Non-IPF patients, higher COL1A1 levels were associated with a more than twofold increase in mortality. The intracellular localisation of COL1A1 in airway macrophages was demonstrated by confocal microscopy in CD45 and CD163 co-staining assays. Additionally, airway macrophages co-expressed COL1A1 with the profibrotic SPP1 gene product osteopontin. The levels of SPP1 mRNA and OPN in the BAL were significantly higher in IPF and Non-IPF patients relative to healthy. Our results suggest that profibrotic airway macrophages are increased in the BAL of patients with IPF and other ILDs and co-express COL1A1 and OPN. Importantly, COL1A1 expression by pro-fibrotic airway macrophages could be a marker of disease progression and poor survival in ILDs.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Adulto , Idoso , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Casos e Controles , Cadeia alfa 1 do Colágeno Tipo I/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Pulmão/fisiopatologia , Doenças Pulmonares Intersticiais/mortalidade , Doenças Pulmonares Intersticiais/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Osteopontina/genética , Osteopontina/metabolismo , Estudos Prospectivos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Capacidade Vital
13.
Transl Androl Urol ; 10(10): 4000-4008, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34804842

RESUMO

BACKGROUND: Bone formation markers c-terminal telopeptide of type I collagen (1CTP) and peptides n-terminal propeptide of type I procollagen (P1NP) were reported to be increased in patients with prostate cancer (PC) and bone metastases. The objective of the presented study was to investigate the utility of serum 1CTP and P1NP values in the diagnosis of bone metastases and in predicting oncological outcome in patients with PC. METHODS: In total, serum samples of 186 patients were included retrospectively including 53 (28.50%) benign prostatic hyperplasia (BPH) patients and 133 (71.50%) PC-patients. The group of patients with PC consisted of 58 patients with non-metastatic PC (cM0) (43.61%) and 70 (52.63%) patients with bone metastases (cM1b). Serum 1CTP and P1NP were measured by radioimmunoassay (RIA). Results were compared to clinical variables including oncologic follow-up data by univariate and multivariate analyses. RESULTS: Median 1CTP concentrations were significantly higher in patients with PC compared to the BPH group [5.08 (range, 1.73-158.00) vs. 4.00 (range, 2.18-34.19) µg/L, P=0.019]. However, no significant difference of P1NP levels could be shown for these groups. With median values of 6.04 (1.73-158.00) and 3.91 µg/L (2.04-34.51) for 1CTP and 48.60 (9.12-1,074.37) and 33.90 (8.72-149.30) for P1NP both markers were altered in cM1b patients compared to cM0 patients (P=0.001 each). Furthermore, cancer-specific survival (CSS) and overall survival (OS) were significantly shorter in cM1b patients with higher 1CTP concentrations (P=0.037 and P=0.019, respectively), whereas no associations of P1NP and outcomes were observed. CONCLUSIONS: The present study confirms that increased levels of 1CTP and P1NP concentrations are associated with presence of metastatic disease in the bone. Moreover, these markers are able to predict clinical course in PC patients with bone metastases. The potential use of these markers for treatment selection in advanced PC remains to be determined.

14.
Elife ; 102021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661524

RESUMO

Epithelial networks are commonly generated by processes where multicellular aggregates elongate and branch. Here, we focus on understanding cellular mechanisms for elongation using an organotypic culture system as a model of mammary epithelial anlage. Isotropic cell aggregates broke symmetry and slowly elongated when transplanted into collagen 1 gels. The elongating regions of aggregates displayed enhanced cell proliferation that was necessary for elongation to occur. Strikingly, this locoregional increase in cell proliferation occurred where collagen 1 fibrils reorganized into bundles that were polarized with the elongating aggregates. Applying external stretch as a cell-independent way to reorganize the extracellular matrix, we found that collagen polarization stimulated regional cell proliferation to precipitate symmetry breaking and elongation. This required ß1-integrin and ERK signaling. We propose that collagen polarization supports epithelial anlagen elongation by stimulating locoregional cell proliferation. This could provide a long-lasting structural memory of the initial axis that is generated when anlage break symmetry.


Assuntos
Proliferação de Células , Colágeno/fisiologia , Células Epiteliais/citologia , Humanos
15.
Front Pharmacol ; 12: 707491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489700

RESUMO

Pulmonary fibrosis is a fatal chronic progressive respiratory disease, characterized by continuous scarring of the lung parenchyma, leading to respiratory failure and death. The incidence of PF has increased over time. There are drugs, yet, there are some limitations. Hence, it is of importance to find new therapies and new drugs to replace the treatment of pulmonary fibrosis. In recent years, there have been a great number of research reports on the treatment of traditional Chinese medicine polysaccharides in various system fields. Among them, the treatment of PF has also gained extensive attention. This review summarized the source of polysaccharides, the drug activity of traditional Chinese medicine, and the protective effects on targets of Pulmonary fibrosis. We hope it can inspire researchers to design and develop polysaccharides, serving as a reference for potential clinical therapeutic drugs.

16.
Int J Cardiol Heart Vasc ; 35: 100837, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34277924

RESUMO

The sphingolipid de novo synthesis pathway, encompassing the sphingolipids, the enzymes and the cell membrane receptors, are being investigated for their role in diseases and as potential therapeutic targets. The intermediate sphingolipids such as dihydrosphingosine (dhSph) and sphingosine (Sph) have not been investigated due to them being thought of as precursors to other more active lipids such as ceramide (Cer) and sphingosine 1 phosphate (S1P). Here we investigated their effects in terms of collagen synthesis in primary rat neonatal cardiac fibroblasts (NCFs). Our results in NCFs showed that both dhSph and Sph did not induce collagen synthesis, whilst dhSph reduced collagen synthesis induced by transforming growth factor ß (TGFß). The mechanisms of these inhibitory effects were associated with the increased activation of the de novo synthesis pathway that led to increased dihydrosphingosine 1 phosphate (dhS1P). Subsequently, through a negative feedback mechanism that may involve substrate-enzyme receptor interactions, S1P receptor 1 expression (S1PR1) was reduced.

17.
Front Pharmacol ; 12: 631216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995030

RESUMO

Recently, the therapeutic importance of the anti-rheumatic drug, leflunomide, has been increased after the involvement of leflunomide in treating other autoimmune diseases and its promising role in retarding human malignancies. Few studies have focused on the safety in human or animals without clear outlining of the pathologic features on target organs. One clinical study related leflunomide with significant pulmonary complications in predisposed individuals. The current study examined the dose-dependent lung injury produced by leflunomide in healthy mice. Albino mice were allocated into four different groups. Group (1): Vehicle control group, Group (2-4): mice received leflunomide (2.5, 5 or 10 mg/kg), respectively, for 8 weeks and then lungs were dissected from the mice for histopathological examination and fibrosis evaluation (Masson's trichrome staining and α-smooth muscle actin immunohistochemistry). Enzyme linked immunosorbent assay was used to assess the vimentin and other inflammatory factors in the lung homogenate whereas Western blot analysis was employed to assess α-smooth muscle actin, vimentin and collagen 1. Results indicated that leflunomide induced dose-dependent pulmonary injury and the high dose and increased the vimentin, inflammatory markers (NLRP3 and interlukin-1ß). Histologic examination showed distorted architecture, marked inflammatory cells infiltrate and increase collagen content. The findings were supported by Western blotting and the immunohistochemical study which showed greater pulmonary α-smooth muscle actin and vimentin content. In conclusion, the current results highlighted that leflunomide produced dose-dependent pulmonary toxicities that requires further investigation of the nature of injury.

18.
JHEP Rep ; 3(3): 100250, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33870156

RESUMO

BACKGROUND & AIMS: Cholangiocyte senescence is important in the pathogenesis of primary sclerosing cholangitis (PSC). We found that CDKN2A (p16), a cyclin-dependent kinase inhibitor and mediator of senescence, was increased in cholangiocytes of patients with PSC and from a PSC mouse model (multidrug resistance 2; Mdr2 -/-). Given that recent data suggest that a reduction of senescent cells is beneficial in different diseases, we hypothesised that inhibition of cholangiocyte senescence would ameliorate disease in Mdr2 -/- mice. METHODS: We used 2 novel genetic murine models to reduce cholangiocyte senescence: (i) p16Ink4a apoptosis through targeted activation of caspase (INK-ATTAC)xMdr2 -/-, in which the dimerizing molecule AP20187 promotes selective apoptotic removal of p16-expressing cells; and (ii) mice deficient in both p16 and Mdr2. Mdr2 -/- mice were also treated with fisetin, a flavonoid molecule that selectively kills senescent cells. p16, p21, and inflammatory markers (tumour necrosis factor [TNF]-α, IL-1ß, and monocyte chemoattractant protein-1 [MCP-1]) were measured by PCR, and hepatic fibrosis via a hydroxyproline assay and Sirius red staining. RESULTS: AP20187 treatment reduced p16 and p21 expression by ~35% and ~70% (p >0.05), respectively. Expression of inflammatory markers (TNF-α, IL-1ß, and MCP-1) decreased (by 60%, 40%, and 60%, respectively), and fibrosis was reduced by ~60% (p >0.05). Similarly, p16 -/- xMdr2 -/- mice exhibited reduced p21 expression (70%), decreased expression of TNF-α, IL-1ß (60%), and MCP-1 (65%) and reduced fibrosis (~50%) (p >0.05) compared with Mdr2 -/- mice. Fisetin treatment reduced expression of p16 and p21 (80% and 90%, respectively), TNF-α (50%), IL-1ß (50%), MCP-1 (70%), and fibrosis (60%) (p >0.05). CONCLUSIONS: Our data support a pathophysiological role of cholangiocyte senescence in the progression of PSC, and that targeted removal of senescent cholangiocytes is a plausible therapeutic approach. LAY SUMMARY: Primary sclerosing cholangitis is a fibroinflammatory, incurable biliary disease. We previously reported that biliary epithelial cell senescence (cell-cycle arrest and hypersecretion of profibrotic molecules) is an important phenotype in primary sclerosing cholangitis. Herein, we demonstrate that reducing the number of senescent cholangiocytes leads to a reduction in the expression of inflammatory, fibrotic, and senescence markers associated with the disease.

19.
Ecancermedicalscience ; 15: 1197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889206

RESUMO

The aim of the study is to identify cornulin (CRNN) protein expression associated with advancement of tongue squamous cell carcinoma (TSCC). A comparison of addictive (containing potential carcinogens) versus non-addiction causative agents was expected to allow detection of differences in CRNN expression associated with TSCC. Bespoke tissue microarrays (TMAs) were prepared and immunohistochemistry (IHC) performed to determine the changes in CRNN expression in epithelial cells of node-negative (pN-), node-positive (pN+) TSCC and non-cancer patients' oral tissues. TMAs were validated by performing IHC on whole diagnostic tissues. Chi-square test or Fisher's-exact tests were used to establish significant expression differences. Analogous analyses were performed for biomarkers previously associated with TSCC, namely collagen I alpha 2 (COL1A2) and decorin (DCN) to compare the significance of CRNN. Keratinisation and its level (low, extensive) were studied in relation to CRNN so that the extent of squamous differentiation could better be assessed. IHC immunoreactive score (IRS) clustered the patients based on weak/moderate (Low (IRS ≤ +3)) or strong (High (IRS ≥ +4)) expression groups. A low expression was observed in a larger number of patients in control proteins COL1A2 (77.3%), DCN (87.5%) and target protein CRNN (52.3%), respectively. Low CRNN expression was observed in TSCC where nodes were involved (pN+: mean 1.4 ± 2.1) (p = 0.248). Keratinisation (%) was low (0% ≤ 50%) in 42.2% and extensive (1% ≥ 50.0%) in 57.8% patients. In conclusion, our study suggested that Low CRNN expression was associated with grade and lymph node metastasis in TSCC. CRNN expression is independent of addiction, however potentially carcinogenic addictive substances might be aiding in the disease progression.

20.
Adv Clin Exp Med ; 30(4): 431-439, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33915038

RESUMO

BACKGROUND: Keloid is a unique refractory syndrome characterized by a proliferation disorder of the fibroblasts. Recently, photodynamic therapy (PDT) has become a promising technique to modulate fibroblasts. However, use of the photosensitizer Phenalen-1-one (Ph1) in PDT for keloid remains to be explored. OBJECTIVES: This study investigated the efficacy of Ph1-PDT in the in vitro and in vivo models of keloid. MATERIAL AND METHODS: Cell viability was assessed with a Cell Counting Kit-8 (CCK-8) analysis in keloid fibroblasts. The migrated and invaded keloid fibroblasts after Ph1-PDT were detected using scratch and matrigel invasion assays in vitro. Flow cytometry measured the apoptosis changes. The protein concentrations and the mRNA expression of inflammatory modulators (interleukin 8 (IL-8) and IL-1ß) were determined using enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (RT-qPCR) methods, respectively. Nude mice were used to perform the transplantation of keloid grafts. Western blot analysis measured the protein expression of CD31, CD34, tumor growth factor ß1 (TGF-ß1), and collagen 1 in keloid fibroblasts and grafts. RESULTS: Our results revealed that Ph1-PDT significantly suppressed cell viability, migration and invasion, and enhanced the rate of cell apoptosis and caspase-3 expression in keloid fibroblasts. Moreover, in the nude mice model, Ph1-PDT decreased the volume of the graft and attenuated the vessel density by inhibiting the expression of vessel density biomarkers (CD31 and CD34) in keloid grafts. Furthermore, Ph1-PDT significantly inactivated the inflammatory mediators in keloid grafts. In addition, Ph1-PDT considerably attenuated the development of keloids by inhibiting TGF-ß1 and collagen 1 proteins in keloid fibroblasts and grafts. CONCLUSIONS: Ph1-PDT may suppress keloid progression by reducing vessel formation and inflammation, and promoting fibroblast apoptosis, suggesting a potential therapy method for keloid.


Assuntos
Queloide , Fotoquimioterapia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Fibroblastos/patologia , Queloide/tratamento farmacológico , Queloide/patologia , Camundongos , Camundongos Nus , Fenalenos , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...