Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175851, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39214355

RESUMO

Residential coal combustion still accounts for half of the heating energy consumption in many developing countries. The dynamic variation during the combustion process importantly determines the combustion facility design and appropriate air quality assessment, which was omitted in conventional studies. This study investigated the emissions of particulate and gaseous pollutants during the combustion process for typical coal types using online monitoring. During the first pyrolysis stage with temperature climbing, the organic aerosols (OA) and gases reached peak concentration. The second fierce combustion stage had the highest temperature and produced the highest cumulative emissions, particularly a substantial amount of black carbon for coals with higher volatile content. Using higher-quality coals will undoubtedly reduce PM emissions, by a factor of 10 from bituminous to anthracite coal. However, more ultrafine particles (d < 0.1 µm) from cleaner coal may pose additional health risks. Anthracite and honeycomb coal had approximately twice the energy content and emitted more CO2 per unit mass of fuel and had more persistent SO2 emissions throughout the burnout stage. The oxygenation of OA and organic gases remained increased during combustion, suggesting the pyrolysis products underwent oxidation before being emitted. The investigation of the coal combustion process suggests the importance of reducing volatiles to control PM emissions, but the potential negative synergistic effects between PM reduction and increased carbon emissions should also be considered.

2.
Sci Rep ; 14(1): 13135, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849526

RESUMO

In order to investigate the acoustic oscillation characteristics of gas-liquid pintle rocket engines and elucidate the path by which spray combustion process provides energy to the combustor pressure oscillation, a LOX/GCH4 pintle engine with rectangular combustor was designed. By adding transverse velocity disturbance for the first time, the acoustic response of spray combustion process was simulated, and the effect of excitation amplitude on acoustic response was researched. Numerical results show that the adopted transverse velocity disturbance can excite the first-order transverse acoustic oscillation with same excitation frequency in the engine combustor. The acoustic response maintenance mechanism under extrinsic excitation is summarized for pintle engines. Besides, the temperature distribution inside the engine combustor tends to be uniform, and the low-frequency oscillation caused by the flame transverse swing gradually disappears. The amplitude of combustor pressure oscillation is dominated by excitement amplitude and phase difference between the pressure and heat release in combustion reaction region. In addition, the time-averaged combustor pressure can be amplified mainly by transverse velocity disturbance. The research work can provide a reference for related fire tests on the acoustic response of a subscale gas-liquid pintle engine.

3.
J Environ Manage ; 344: 118711, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572402

RESUMO

Emission standards in European Union, designed to reduce the environmental impact of power generation, present a significant challenge for fast-response distributed power generation systems based on internal combustion engines. Regulated emissions, such as NOx and particulate matter present a major concern due to their adverse number of environmental and health effects. Simultaneously, European Union strives towards sustainable management of plastic waste and seeks the ways for its upcycling and production of new fuels and chemicals. As an answer to the presented challenges, the present experimental study addresses the potential for use of chemically stabilized Waste Plastics Oil (WPO), a product of pyrolysis process of waste plastics in a Reactivity Controlled Compression Ignition (RCCI) combustion concept. To establish a reactivity-controlled combustion, the study uses a combination of methane (a model fuel for biomethane) and WPO to a) simultaneously reduce NOx and particulate matter emissions due to low local combustion temperatures and a high degree of charge homogenization and b) address waste and carbon footprint reduction challenges. Through experiments, influence of direct injection timing and energy shares of utilized fuels to in-cylinder thermodynamic parameters and engine emission response were evaluated in engine operating points at constant indicated mean effective pressure. Acquired results were deeply investigated and benchmarked against compression ignition (CI) and RCCI operation with conventional diesel fuel to determine potential for WPO utilization in an advanced low-temperature combustion concept. Results show that chemically stabilized WPO can be efficiently utilized in RCCI combustion concept without adaptation of injection parameters and that with suitable control parameters, ultra-low emissions of NOx and PM can be achieved with utilized fuels. For diesel/methane mix, NOx and PM emissions were reduced compared to conventional CI operation for 82.0% and 93.2%, respectively, whereas for WPO/methane mix, NOx and PM emissions were reduced for 88.7% and 97.6%, respectively, which can be ascribed to favourable chemical characteristics of WPO for the utilized combustion concept. In the least favourable operating point among those studied, indicated mean effective pressure covariance was kept below 2.5%, which is well below 5% being considered the limit for stable engine operation.


Assuntos
Pirólise , Emissões de Veículos , Emissões de Veículos/análise , Plásticos , Gasolina/análise , Material Particulado/análise , Temperatura Baixa , Metano , Biocombustíveis/análise
4.
Environ Sci Pollut Res Int ; 30(27): 70277-70287, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148515

RESUMO

Total particulate matter (TPM), including condensable and filterable particulate matter (CPM and FPM), is one of the pollutants that need to be controlled in the coal combustion process. In this study, CPM and FPM were sampled from sixteen coal-fired power units and two coal-fired industrial units. The removal effects of air pollution control devices equipped in the units on the migration and emission of particles were investigated by analyzing samples from inlets and outlets of apparatus. The average removal efficiency of TPM by dry-type dust removal equipment, wet flue gas desulfurization devices, and wet-type precipitators reached 98.57 ± 0.90%, 44.89 ± 15.01%, and 28.45 ± 7.78%, respectively. The removal efficiency of dry-type dust removal equipment and wet-type precipitators to TPM is mainly determined by the purification effect of FPM and CPM, respectively, and both types of particles contribute to the removal efficiency of desulfurization systems to total TPM. The concentrations of CPM (12.01 ± 5.64 mg/Nm3) and FPM (1.95 ± 0.86 mg/Nm3) emitted from ultra-low emission units were the lowest, and CPM is the dominant particle, especially the higher proportion of organic components in CPM.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , Poeira , Centrais Elétricas , Carvão Mineral
5.
Waste Manag ; 163: 52-60, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001312

RESUMO

Leather processing companies are struggling with the problem of increasing costs of post-production waste disposal. Therefore, the issue of thermal waste disposal at the plant and the use of generated heat in the production process is becoming more and more popular. Leather waste on its own does not allow for autothermal combustion despite the sufficient higher heating value (HHV). Therefore the Authors proposed to improve the flammability of the fuel by adding a small amount of wood sawdust to leather waste and produce premixed pellets. Six such samples were incinerated in a laboratory-scale reactor, which enables the simultaneous measurement of characteristic temperatures, exhaust gas analysis and sample mass loss rate. Research has shown that even a small addition of sawdust enables a stable combustion process and does not cause the formation of sinters. In addition, studies of the ash showed that in the case of chromium-containing waste, a large part of it remained in the ash in the form of Cr2O3. Nevertheless, very fine ash causes the small fraction chromium to be carried with the flue gas stream, therefore controlled agglomeration of the ash structure would be advisable in the final installation. Emission analysis showed high and moderately high NOx and SO2 emissions, decreasing with the increase in the amount of sawdust addition in the sample. Research has shown that leather waste is not a burden, but can be an attractive and safe source of energy for the company, while improving waste management in a circular economy.


Assuntos
Compostos de Cromo , Eliminação de Resíduos , Gerenciamento de Resíduos , Temperatura Alta , Cromo
6.
Chemosphere ; 302: 134924, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35561778

RESUMO

In this study, a numerical simulation method for multi-field coupling is proposed in which the ultrasonic is physically fed in the combustion chamber of a gasoline engine. The fine-tuning regulation of activity and reaction paths of gas-liquid two-phase (GLP) fuel is studied by using ultrasonic under in-cylinder complex conditions. The three-dimensional (3D) computational fluid dynamics (CFD) model of the original engine is calibrated, based on the bench test data. The multi-field coupling model of the sound field and combustion field is established by embedding the feature of the sound source surface in the combustion chamber. The ultrasonic with 20 kHz frequency and 100 µm amplitude is fed into the combustion chamber by using the dynamic grid technology. By comparing the simulation results of four ultrasonic-fed schemes (S1∼S4) and ultrasonic-free scheme (No), it is concluded that compared with the No scheme, the average turbulent kinetic energy (TKE) of the schemes S1, S2, and S3 are all increased by 23.2% at the top dead center (TDC), the peak pressure of the schemes S1 and S2 are both increased by 0.58 MPa. The CO and soot formations of scheme S1 are the lowest at 6.5% and 6.1%, respectively, compared with the No scheme. The reasonable use of ultrasonic can promote the fuel oxidation and combustion process, and accelerate the formation of the OH radicals. The ultrasonic-fed has a significantly quantitative control effect on fuel activity and oxidation reaction paths within 10 ms, under the in-cylinder transient and complex combustion condition of the gasoline engine.

7.
J Phys Condens Matter ; 34(12)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34942611

RESUMO

Transition metal oxides have been attracted much attention in thermoelectric community from the last few decades. In the present work, we have synthesized LaNiO3by a simple solution combustion process. To analyse the crystal structure and structural parameters we have used Rietveld refinement method wherein FullProf software is employed. The room temperature x-ray diffraction indicates the rhombohedral structure with space groupR3¯c(No. 167). The refined values of lattice parameters area=b=c= 5.4071 Å. Temperature dependent Seebeck coefficient (S) of this compound has been investigated by using experimental and computational tools. The measurement ofSis conducted in the temperature range 300-620 K. The measured values ofSin the entire temperature range have negative sign that indicates n-type character of the compound. The value ofSis found to be ∼-8µV/K at 300 K and at 620 K this value is ∼-12µV/K. The electronic structure calculation is carried out using DFT +Umethod due to having strong correlation in LaNiO3. The calculation predicts the metallic ground state of the compound. Temperature dependentSis calculated using BoltzTraP package and compared with experiment. The best matching between experimental and calculated values ofSis observed when self-interaction correction is employed as double counting correction in spin-polarized DFT +U(=1 eV) calculation. Based on the computational results maximum power factors are also calculated for p-type and n-type doping of this compound.

8.
Environ Pollut ; 292(Pt A): 118312, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627962

RESUMO

Inhalation of respirable silica particles can cause serious lung diseases (e.g., silicosis and lung cancer), and the toxicity of respirable silica is highly dependent on its crystal form. Common combustion processes such as coal and biomass burning can provide high temperature environments that may alter the crystal forms of silica and thus affect its toxic effects. Although crystalline silica (i.e., quartz, tridymite, and cristobalite) were widely found at different temperatures during the burning processes, the sources and crystal transformation pathways of silica in the burning processes are still not well understood. Here, we investigate the crystal transformation of silica in the coal and biomass combustion processes and clarify the detailed transformation pathways of silica for the first time. Specifically, in coal burning process, amorphous silica can transform into quartz and cristobalite starting at 1100 °C, and quartz transforms into cristobalite starting at 1200 °C; in biomass burning process, amorphous silica can transform into cristobalite starting at 800 °C, and cristobalite transforms into tridymite starting at 1000 °C. These transformation temperatures are significantly lower than those predicted by the classic theory due to possibly the catalysis of coexisting metal elements (e.g., aluminum, iron, and potassium). Our results not only enable a deeper understanding on the combustion-induced crystal transformation of silica, but also contribute to the mitigation of population exposure to respirable silica.


Assuntos
Carvão Mineral , Dióxido de Silício , Alumínio , Biomassa , Quartzo
9.
Environ Pollut ; 288: 117810, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329045

RESUMO

China has been famous for its porcelains for millennia, and the combustion processes of porcelain production emit substantial amounts of air pollutants, which have not been well understood. This study provided firsthand data of air pollutant emissions from biomass porcelain kilns. The emission factor of PM2.5 was 0.95 ± 1.23 g/kg during the entire combustion cycle, lower than that of biomass burning in residential stoves and coal burning in brick kilns, attributed to the removal effects of the long-distance transport in dragon kilns. The temporal trend of particle pollutants, including particulate matters (PMs) and particulate polycyclic aromatic hydrocarbons (PAHs) (low at ignition phase and high at the end) again indicated the removal effects of the special structure, while gaseous pollutants, such as gaseous PAHs, exhibited the opposite result. The GWC100 was estimated as 1.4 × 106 and 0.5 × 106 kg CO2e/yr for the scenarios in which 50% and 100% of the wood was renewable, respectively. The GWC100 of dragon kilns is nearly equal to that of 745 households using wood-fueled stoves. These results indicate the necessity of pollution controls for biomass porcelain kilns to estimate the emission inventory and climate change.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Carvão Mineral/análise , Porcelana Dentária , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
10.
ACS Appl Mater Interfaces ; 13(16): 18961-18973, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33848133

RESUMO

The ecofriendly combustion synthesis (ECS) and self-combustion synthesis (ESCS) have been successfully utilized to deposit high-k aluminum oxide (AlOx) dielectrics at low temperatures and applied for aqueous In2O3 thin-film transistors (TFTs) accordingly. The ECS and ESCS processes facilitate the formation of high-quality dielectrics at lower temperatures compared to conventional methods based on an ethanol precursor, as confirmed by thermal analysis and chemical composition characterization. The aqueous In2O3 TFTs based on ECS and ESCS-AlOx show enhanced electrical characteristics and counterclockwise transfer-curve hysteresis. The memory-like counterclockwise behavior in the transfer curve modulated by the gate bias voltage is comparable to the signal modulation by the neurotransmitters. ECS and ESCS transistors are employed to perform synaptic emulation; various short-term and long-term memory functions are emulated with low operating voltages and high excitatory postsynaptic current levels. High stability and reproducibility are achieved within 240 pulses of long-term synaptic potentiation and depression. The synaptic emulation functions achieved in this work match the demand for artificial neural networks (ANN), and a multilayer perceptron (MLP) is developed using an ECS-AlOx synaptic transistor for image recognition. A superior recognition rate of over 90% is achieved based on ECS-AlOx synaptic transistors, which facilitates the implementation of the metal-oxide synaptic transistor for future neuromorphic computing via an ecofriendly route.

11.
Sci Total Environ ; 780: 146469, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774299

RESUMO

The evolution of computer vision and image processing system paved the way that any technologists can extract quantitative data sets from the visual results of an image. Digital image processing (DIP) technique precisely measures and quantifies the image and eliminates the subjectivity of manual interpretation. DIP is a non-destructive, inexpensive and rapid method that has been used by many researchers in various applications of biofuel. In fuel science, DIP and artificial intelligence (AI) techniques have been successfully applied for the classification of biodiesel, selection of biomass for biofuel production. DIP can be used in the combustion process and its control parameters, gas leakage, monitoring fuel reactant conversion reactions, impurities present and adulteration of fuel, also automation process of a fuel injection system. This review gives an overview of the applications of image processing in fuel science.

12.
Heliyon ; 6(6): e04269, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32637688

RESUMO

This paper presents a new educational package based on e-learning called TermolabUA integrated by three programs, which are VOLCONTROL focused on the analysis of steady-state flow devices, CarnotCycle aimed to analyze reversible and irreversible processes, and CombustionUA to study combustion processes. The educational package was designed for both, to promote significant learning on some thermodynamic topics in undergraduate students, and to help the student to reach the cognitive competencies of interpreting, arguing and proposing, and interacting with the different graphical user interfaces to solve relevant cases studies. Also, the teaching-learning activity helps them to understand the influence of a specific variable on the energy and entropy behavior of the selected systems, which is traditionally studied manually in a classroom. The results of the t-Student tests showed that the average grades obtained by the students in the problems using the software were higher than the average grade without using the software. The estimate for the average grade difference was 0.56 with a P-value = 3.31E-13 for Problem 1 and 0.631 with a P-value = 3.31E-13 for Problem 2 in the Workshop- VOLCONTROL. Similar results were obtained for the problems reported in the CarnotCycle and CombustionUA Workshop with an estimate for average grade differences and P-values lower than 0.79 and 0.05, respectively. It means that the new software package significantly improved the learning skills of the students.

13.
Int J Biol Macromol ; 162: 845-852, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592783

RESUMO

In this work, magnetic Fe2O3/Fe3O4 nanocomposites were prepared via a novel rapid combustion process. The silica was precipitated on the surface of Fe2O3/Fe3O4 nanocomposites. The silica-coated magnetic nanocomposites were cross-linked with glutaraldehyde, on which cellulase was covalently immobilized. The morphology, composition, and property of the prepared nanomaterials were characterized by the scanning electron microscopy (SEM), the energy dispersive spectrometry (EDS), the X-ray diffraction (XRD), the vibrating sample magnetometer (VSM), and the Fourier transform infrared (FTIR) spectroscopy. The immobilization conditions were optimized by varying operating parameters and determined to be 0.05 mL of 0.5% cellulase solution for 2 h. The catalytic stabilities of the immobilized cellulase were evaluated. The results showed that the immobilized cellulases performed higher apparent activity at pH 4.5 and exhibited good thermal stability compared with their free counterparts. The Michaelis-Menten equation showed that Km and Vmax of free cellulase were 3.46 mol·L-1 and 0.53 mol·min-1, respectively. The immobilized cellulase had higher Km and Vmax (18.99 mol·L-1 and 0.59 mol·min-1). The retained activity of the immobilized cellulase maintained over 71% of the initial activity after being used for five cycles.


Assuntos
Celulase/química , Enzimas Imobilizadas/química , Nanopartículas de Magnetita/química , Nanocompostos/química , Biocatálise , Estabilidade Enzimática , Glutaral/química , Dióxido de Silício/química , Temperatura
14.
J Hazard Mater ; 379: 120773, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31271939

RESUMO

The polishing process in high-tech industries produces a large amount of waste polishing slurry, which is harmful to the environment, and the solid powders in the slurry contain a lot of La and Ce, which have been widely used as catalyst materials. The aim of this study was to convert this hazardous material into hazardous material decomposition catalyst. A novel and simple approach was successfully developed for the recovery of La and Ce from hazardous waste polishing powders to synthesize a composite metal oxide catalyst for decomposition of harmful ammonia. Here, La and Ce were leached from waste polishing powder by using nitric acid, and the Ce, La, and total REE recovery rates were approximately 100%, 83.3%, and 96.4%, respectively. The elemental concentrations of leached acidic solution was analyzed, after which stoichiometry was performed to replenish elements with insufficient mole numbers. Finally, the catalyst material was prepared using the glycine-nitrate combustion process. The catalyst prepared from the recovered polishing powders achieved a 100% ammonia conversion rate at the relatively low temperature of 250 °C. The proposed environmentally friendly method does not require complex purification and separation procedures and can be used for the synthesis of catalysts for decomposing other harmful pollutants.

15.
ACS Appl Mater Interfaces ; 10(29): 24598-24606, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29995376

RESUMO

In this study, a NiO-based resistive memristor was manufactured using a solution combustion method. In this device, both analog and digital bipolar resistive switching were observed. They are dependent on the stressed bias voltage. Prior to the electroforming, the analog bipolar resistive switching was realized through the change of the Schottky barrier at p-type NiO/Ag junction by the local migration of the oxygen ion in the interface. On the basis of the analog resistive switching, several synaptic functions were demonstrated, such as nonlinear transmission characteristics, spike-rate-dependent plasticity, long-term/short-term memory, and "learning-experience" behavior. In addition, once the electroforming operation was carried out using a high applied voltage, the resistive switching was changed from analog to digital. The formation and rupture of the oxygen vacancy filaments is dominant. This novel memristor with the multifunction of analog and digital resistive switching is expected to decrease the manufacturing complexity of the electrocircuits containing analog/digital memristors.

16.
J Colloid Interface Sci ; 514: 723-732, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29310102

RESUMO

The sol-gel auto-combustion technique is an effective method for the synthesis of the composites. In this research for the first time, CoTiO3/CoFe2O4 nanocomposites are successfully synthesized via a new sol-gel auto-combustion technique. The glucose, maltose and starch are used as fuel, capping and reducing agents, also the optimal reducing agent is chosen. The effects of quantity of reducing agent, molar ratio of Ti:Co, calcination temperature and time on the morphology, particle size, magnetic property, purity and phase of the nanocomposites are investigated. XRD patterns show formation of CoTiO3/CoFe2O4 spherical nanoparticles with nearly evenly distribution, when the molar ratio of Co/Ti is 1:1. EDS analysis confirm results of XRD. The magnetic behavior of the nanocomposites is studied by VSM. The nanocomposites exhibit a high coercivity at room temperature.

17.
ACS Appl Mater Interfaces ; 9(31): 26191-26200, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28726385

RESUMO

Although transparent conducting oxides (TCOs) have played a key role in a wide range of solid-state electronics from conventional optoelectronics to emerging electronic systems, the processing temperature and conductivity of solution-processed materials seem to be far exceeding the thermal limitations of soft materials and insufficient for high-perfomance large-area systems, respectively. Here, we report a strategy to form highly conductive and scalable solution-processed oxide materials and their successful translation into large-area electronic applications, which is enabled by photoassisted postfunctionalization at low temperature. The low-temperature fabrication of indium-tin-oxide (ITO) thin films was achieved by using photoignited combustion synthesis combined with photoassisted reduction process under hydrogen atmosphere. It was noteworthy that the photochemically activated hydrogens on ITO surface could be triggered to facilitate highly crystalline oxygen deficient structure allowing significant increase of carrier concentration and mobility through film microstructure modifications. The low-temperature postfunctionalized ITO films demonstrated conductivity of >1607 S/cm and sheet resistance of <104 Ω/□ under the process temperature of less than 300 °C, which are comparable to those of vacuum-deposited and high-temperature annealed ITO films. Based on the photoassisted postfunctionalization route, all-solution-processed transparent metal-oxide thin-film-transistors and large-area integrated circuits with the ITO bus lines were demonstrated, showing field-effect mobilities of >6.5 cm2 V-1 s-1 with relatively good operational stability and oscillation frequency of more than 1 MHz in 7-stage ring oscillators, respectively.

18.
Int J Phytoremediation ; 19(12): 1126-1133, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-28521531

RESUMO

New carbonaceous materials were obtained through solution combustion process of tamarind shell in the presence of urea and ammonium nitrate, and all of them were tested for Co removal. The effect of temperature (from 600 to 1000°C) and water volume on surface texture of carbonaceous material and its adsorptive capacity was evaluated. Scanning electron microscope, Fourier transform infrared spectroscopy, X-ray powder diffraction, and Brunauer-Emmett-Teller (BET) model were used to characterize the obtained carbonaceous material before applying for the removal of cobalt. The point of zero charge was also determined. The results indicate that BET-specific surface areas ranged from 6.40 to 216.72 m2g-1 for the carbonaceous materials obtained at 600, 700, 800, 900, and 1000°C. The one obtained at 900°C (CombTSF900) was found to be the most effective adsorbent for the removal of Co(II) ions from aqueous solutions, with a maximum sorption capacity (Qmax) of 43.56 mg/g. Carbonaceous material obtained through the solution combustion process improves morphological characteristics of adsorbent in a short time, and could be used as an alternative method for the removal of cobalt.


Assuntos
Cobalto , Tamarindus , Poluentes Químicos da Água , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Purificação da Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA