Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38887798

RESUMO

Candida albicans deploys various morphological forms through complex switching mechanisms, ensuring its survival and thriving as a commensal or pathogen in vastly different human niches. In this study, we demonstrate that a novel ''rod'' morphological form of C. albicans coexists and is interchangeable with previously reported white, gray, and opaque forms, constituting a tetra-stable phenotypic switching system. Rod cells arise from the efg1 mutant of SC5314 cells or from the clinical BJ1097 strain cultured under glucose-free conditions. They are characterized by a distinct gene expression profile and can be stably maintained through in vitro passaging or in vivo inhabitation of the gastrointestinal (GI) tract of mice. Remarkably, the majority of the efg1 mutant cells become rod cells in N-acetylglucosamine (GlcNAc)-containing medium, and the GlcNAc sensor Ngs1 is instrumental in converting the white or gray cells to the rod cells. Conversely, glucose inhibits rod cells through Cph1; consequently, the loss of Cph1 in the efg1 mutantcells permits their conversion to rod cells in glucose-replete media. Notably, rod cells of the efg1/ cph1 mutant display superior adaptation and longer persistence in the murine GI environment than wild-type white cells. Taken together, these findings establish rod cells as a previously unappreciated form that is not only morphologically and transcriptionally distinguishable but also defined by specific genetic and environmental determinants, shedding light on complex fungus-host interactions.

2.
Microbiol Mol Biol Rev ; 88(2): e0002123, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38832801

RESUMO

SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.


Assuntos
Antifúngicos , Candida albicans , Candida glabrata , Candidíase , Farmacorresistência Fúngica , Candida glabrata/patogenicidade , Humanos , Candida albicans/patogenicidade , Candidíase/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Animais , Candidemia/microbiologia , Candidemia/epidemiologia , Filogenia , Interações Hospedeiro-Patógeno
3.
Front Oral Health ; 5: 1410786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721621

RESUMO

Historically, the study of microbe-associated diseases has focused primarily on pathogens, guided by Koch's postulates. This pathogen-centric view has provided a mechanistic understanding of disease etiology and microbial pathogenesis. However, next-generation sequencing approaches have revealed a far more nuanced view of the roles various microbes play in disease, highlighting the importance of microbial diversity beyond individual pathogens. This broader perspective acknowledges the roles of host and microbial communities in disease development and resistance. In particular, the concept of dysbiosis, especially within the oral cavity, has gained attention for explaining the emergence of complex polymicrobial diseases. Such diseases often stem from resident microbes rather than foreign pathogens, complicating their treatment and even clouding our understanding of disease etiology. Oral health is maintained through a delicate balance between commensal microbes and the host, with diseases like caries and periodontal disease arising from pathogenic perturbations of this balance. Commensal microbes, such as certain streptococci and Corynebacterium spp., play crucial roles in maintaining oral health through mechanisms involving hydrogen peroxide production and membrane vesicle secretion, which can inhibit pathogenic species and modulate host immune responses. Recent research focused upon the mechanisms of molecular commensalism has expanded our understanding of these key functions of the commensal microbiome, demonstrating their central role in promoting oral health and preventing disease. These abilities represent a largely untapped reservoir of potential innovative strategies for disease prevention and management, emphasizing the need to bolster a symbiotic microbiome that inherently suppresses pathogenesis.

4.
J Fish Biol ; 105(1): 4-9, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38622824

RESUMO

Remoras are a highly specialised group of fishes known to associate with a range of marine megafauna, including elasmobranchs, cetaceans and marine reptiles. Remoras appear to benefit from these interspecific interactions through consumption of host dermal parasites or reduced cost of transport. Shark-remora associations are widely documented, yet our understanding of the costs and benefits involved in these interactions is poor. Studies frequently make claims about mutualistic, commensalistic or parasitic relationships without providing the necessary quantitative information necessary to make these claims. Here I explain why this approach is problematic, and proceed to examine shark-remora interactions in a rigorous eco-evolutionary framework. These interactions cannot be properly classified without considering net evolutionary fitness and context dependence. In reality, shark-remora interactions are best defined by a multidimensional spectrum of fitness consequences, with net fitness outcomes shifting between mutualism and parasitism (and vice versa) through space and time.


Assuntos
Evolução Biológica , Tubarões , Simbiose , Animais , Interações Hospedeiro-Parasita , Tubarões/parasitologia , Tubarões/fisiologia
5.
Front Microbiol ; 15: 1364009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591028

RESUMO

Introduction: Endosymbiotic Wolbachia bacteria are widespread in nature, present in half of all insect species. The success of Wolbachia is supported by a commensal lifestyle. Unlike bacterial pathogens that overreplicate and harm host cells, Wolbachia infections have a relatively innocuous intracellular lifestyle. This raises important questions about how Wolbachia infection is regulated. Little is known about how Wolbachia abundance is controlled at an organismal scale. Methods: This study demonstrates methodology for rigorous identification of cellular processes that affect whole-body Wolbachia abundance, as indicated by absolute counts of the Wolbachia surface protein (wsp) gene. Results: Candidate pathways, associated with well-described infection scenarios, were identified. Wolbachia-infected fruit flies were exposed to small molecule inhibitors known for targeting those same pathways. Sequential tests in D. melanogaster and D. simulans yielded a subset of chemical inhibitors that significantly affected whole-body Wolbachia abundance, including the Wnt pathway disruptor, IWR-1 and the mTOR pathway inhibitor, Rapamycin. The implicated pathways were genetically retested for effects in D. melanogaster, using inducible RNAi expression driven by constitutive as well as chemically-induced somatic GAL4 expression. Genetic disruptions of armadillo, tor, and ATG6 significantly affected whole-body Wolbachia abundance. Discussion: As such, the data corroborate reagent targeting and pathway relevance to whole-body Wolbachia infection. The results also implicate Wnt and mTOR regulation of autophagy as important for regulation of Wolbachia titer.

6.
Proc Biol Sci ; 291(2014): 20232023, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38166423

RESUMO

Birds and ants are among the most ubiquitous taxa co-occurring in terrestrial ecosystems, but how they mutually interact is almost unknown. Here, the main features of this neglected interaction are synthetized in a systematic literature review. Interaction with ants has been recorded in 1122 bird species (11.2% of extant species) belonging to 131 families widely distributed across the globe and the avian phylogeny. On the other hand, 47 genus of ants (14.4% of extant genus) belonging to eight subfamilies interact with birds. Interactions include competition, antagonism (either ant-bird mutual predation or parasitism) and living together commensally or mutualistically. Competition (48.9%) and antagonism (36.1%) were the most common reported interactions. The potential for engaging in commensalism and competition with ants has a phylogenetic structure in birds and was present in the birds' ancestor. Interaction is better studied in the tropics, in where the network is less dense and more nested than in temperate or arid biomes. This review demonstrates that ant-bird interactions are a pervasive phenomenon across ecological domains, playing a key role in ecosystem function. Future studies need to combine sensible experimentation within anthropogenic disturbance gradients in order to achieve a better understanding of this interaction.


Assuntos
Formigas , Ecossistema , Animais , Evolução Biológica , Aves , Filogenia
7.
Microbes Infect ; 26(3): 105253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37977323

RESUMO

Candida albicans is a pathobiont in humans that forms part of the mycobiota in healthy individuals and can cause different pathologies upon alterations of the host defenses. The mammalian gut is clinically relevant as this niche is the most common pool for bloodstream-derived infections. The ability of C. albicans to switch from yeast to hypha has been related to the commensal-to-pathogen transition and is, therefore, considered relevant in virulence. Recently, filaments have been implicated in the humoral response in the gut. C. albicans exhibits other morphologies that play different roles in pathogenicity and commensalism. This review focuses on the role of these morphological transitions in C. albicans proliferation and its establishment as a commensal in the mammalian gut, paying special attention to the transcription factors involved in their regulation.


Assuntos
Candida albicans , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/genética , Simbiose , Virulência , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/metabolismo , Mamíferos/metabolismo
8.
Diagn Microbiol Infect Dis ; 108(1): 116109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918188

RESUMO

Staphylococcus epidermidis is an opportunistic bacterial pathogen. The study screened isolates of S. epidermidis of pediatric origin for genetic markers of discriminatory potential. 103 isolates (n = 75 clinical; n = 28 community) were screened for methicillin resistance (mecA), formate dehydrogenase (fdh) and an array of virulence factors through multiplex PCR and Congo red assay. The isolates were typed in four distinct categories, based on the presence of selected virulent factors. The type A clinical isolates carrying icaADBC operon (n = 22; 29.3%, P = 0.117) were not significantly differentiating the origin of isolates. The type B clinical isolates representing methicillin resistant S. epidermidis (MRSE) (n = 73; 97.3%, P < 0.00001) and the type C clinical isolates lacking formate dehydrogenase fdh (n = 62; 82.6%, P < 0.00001) were having significant discriminatory potential of clinical isolates, respectively. All type D community isolates were carrying fdh (n = 28; 100%, P < 0.00001). MecA and fdh are significant differential markers of pathogenicity and commensalism in S. epidermidis of pediatric origin.


Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Criança , Humanos , Staphylococcus epidermidis/genética , Formiato Desidrogenases , Virulência/genética , Infecções Estafilocócicas/microbiologia , Paquistão , Simbiose , Antibacterianos , Proteínas de Bactérias/genética
9.
Microbiology (Reading) ; 169(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38088348
10.
Ecol Evol ; 13(11): e10718, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020690

RESUMO

Species interactions can influence species distributions, but mechanisms mitigating competition or facilitating positive interactions between ecologically similar species are often poorly understood. Aardwolves (Proteles cristata) and aardvarks (Orycteropus afer) are nocturnal, insectivorous mammals that co-occur in eastern and southern Africa, and knowledge of these species is largely limited to their nutritional biology. We used aardwolf and aardvark detections from 105 remote cameras during 2016-2018 to assess their spatial and temporal niche overlap in the grasslands of Serengeti National Park, Tanzania. Using a multispecies occupancy model, we identified a positive interaction between occupancy probabilities for aardwolves and aardvarks. Slope, proportion of grassland and termite mound density did not affect the occupancy probabilities of either species. The probability of aardwolf, but not aardvark, occupancy increased with distance to permanent water sources, which may relate to predation risk avoidance. Diel activity overlap between aardwolves and aardvarks was high during wet and dry seasons, with both species being largely nocturnal. Aardwolves and aardvarks have an important ecological role as termite consumers, and aardvarks are suggested to be ecosystem engineers. Our results contribute to a better understanding of the spatial and temporal niche of insectivores like aardwolves and aardvarks, suggesting high spatial and temporal niche overlap in which commensalism occurs, whereby aardwolves benefit from aardvark presence through increased food accessibility.

11.
Evol Lett ; 7(5): 305-314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37829501

RESUMO

Understanding the capacity of pathogens to cause severe disease is of fundamental importance to human health and the preservation of biodiversity. Many of those pathogens are not only transmitted horizontally between unrelated hosts but also vertically between parents and their progeny. It is widely accepted that vertical transmission leads to the evolution of less virulent pathogens, but this idea stems from research that neglects the evolutionary response of hosts. Here, we use a game-theory model of coevolution between pathogen and host to show that vertical transmission does not always lead to more benign pathogens. We highlight scenarios in which vertical transmission results in pathogens exhibiting more virulence. However, we also predict that more benign outcomes are still possible (a) when generating new horizontal infections inflicts too much damage on hosts, (b) when clearing an infection is too costly for the host, and (c) when vertical transmission is promoted by a greater growth rate of the host population. Though our work offers a new perspective on the role of vertical transmission in pathogen-host systems, it does agree with previous experimental work.

12.
Evolution ; 77(11): 2512-2521, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37739788

RESUMO

The impacts of host-associated microbes on their hosts vary along a continuum of antagonistic, neutral, and beneficial interactions. Transmission mode is predicted to contribute to transitions along the continuum by altering opportunities for the alignment of host and microbe fitness interests. Under vertical transmission, microbial evolution is tightly coupled to the host environment, which may facilitate fitness alignment. In contrast, environmentally transmitted microbes spend time in the external environment, outside of hosts, partially decoupling their evolution from the host. This decoupling may misalign host and microbe fitness interests, potentially favoring antagonistic microbial traits. Here, we tested whether transmission environment alters microbial evolution by manipulating the interaction between a commensal Serratia marcescens bacteria and their insect host Anasa tristis, which is the primary vector of these bacteria into plants, where they cause disease. We experimentally evolved S. marcescens through several selection environments. The bacteria were passaged between A. tristis hosts, between A. tristis hosts and soil, through soil, or through standard culture media. We observed rapid evolution of virulence toward hosts across treatments when bacterial evolution occurred within the host environment, indicating that direct host-to-host transmission can increase opportunities for microbes to adapt to hosts and evolve antagonistic traits.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Bactérias , Virulência , Solo , Simbiose
13.
PeerJ ; 11: e15500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361043

RESUMO

Understanding the mechanisms driving community assembly has been a major focus of ecological research for nearly a century, yet little is known about these mechanisms in commensal communities, particularly with respect to their historical/evolutionary components. Here, we use a large-scale dataset of 4,440 vascular plant species to explore the relationship between the evolutionary distinctiveness (ED) (as measured by the 'species evolutionary history' (SEH)) of host species and the phylogenetic diversity (PD) of their associated epiphyte species. Although there was considerable variation across hosts and their associated epiphyte species, they were largely unrelated to host SEH. Our results mostly support the idea that the determinants of epiphyte colonization success might involve host characteristics that are unrelated to host SEH (e.g., architectural differences between hosts). While determinants of PD of epiphyte assemblages are poorly known, they do not appear to be related to the evolutionary history of host species. Instead, they might be better explained by neutral processes of colonization and extinction. However, the high level of phylogenetic signal in epiphyte PD (independent of SEH) suggests it might still be influenced by yet unrecognized evolutionary determinants. This study highlights how little is still known about the phylogenetic determinants of epiphyte communities.


Assuntos
Evolução Biológica , Traqueófitas , Filogenia , Simbiose , Especificidade de Hospedeiro
14.
R Soc Open Sci ; 10(4): 221462, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035288

RESUMO

Micromammals, like rodents and shrews, adapt rapidly to take advantage of new food sources, habitats and ecological niches, frequently thriving in anthropogenic environments. Their remains, often retrieved during archaeological investigations, can be a valuable source of information about the past environmental conditions as well as interspecies interactions and human activity. However, the research on such finds rarely covers multiple approaches, often relying on single species or data type (e.g. identification/information for proxy studies). Here we investigate micromammal remains from the Norse and medieval (AD tenth-fourteenth centuries) archaeological site at Tuquoy, Orkney, to elucidate the relationships between micromammals, humans and other species present using a variety of data. Four micromammal species were identified, and their species dynamics as well as relationships with humans could be inferred by tracking changes in spatial and temporal location of remains, from their taphonomic history and by age estimation for individual animals. A larger, predatory assemblage was also identified, with species composition differing from that in the rest of the archaeological assemblage, and possibly therefore representing small mammal species composition in the wild. The assemblage was probably deposited by a diurnal raptor, though identification to species is not certain due to post-depositional processes.

15.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982702

RESUMO

Blood is conventionally thought to be sterile. However, emerging evidence on the blood microbiome has started to challenge this notion. Recent reports have revealed the presence of genetic materials of microbes or pathogens in the blood circulation, leading to the conceptualization of a blood microbiome that is vital for physical wellbeing. Dysbiosis of the blood microbial profile has been implicated in a wide range of health conditions. Our review aims to consolidate recent findings about the blood microbiome in human health and to highlight the existing controversies, prospects, and challenges around this topic. Current evidence does not seem to support the presence of a core healthy blood microbiome. Common microbial taxa have been identified in some diseases, for instance, Legionella and Devosia in kidney impairment, Bacteroides in cirrhosis, Escherichia/Shigella and Staphylococcus in inflammatory diseases, and Janthinobacterium in mood disorders. While the presence of culturable blood microbes remains debatable, their genetic materials in the blood could potentially be exploited to improve precision medicine for cancers, pregnancy-related complications, and asthma by augmenting patient stratification. Key controversies in blood microbiome research are the susceptibility of low-biomass samples to exogenous contamination and undetermined microbial viability from NGS-based microbial profiling, however, ongoing initiatives are attempting to mitigate these issues. We also envisage future blood microbiome research to adopt more robust and standardized approaches, to delve into the origins of these multibiome genetic materials and to focus on host-microbe interactions through the elaboration of causative and mechanistic relationships with the aid of more accurate and powerful analytical tools.


Assuntos
Legionella , Microbiota , Humanos , Interações entre Hospedeiro e Microrganismos , Disbiose/microbiologia , Previsões
16.
Proc Natl Acad Sci U S A ; 120(11): e2218163120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893271

RESUMO

Aneuploidy is a frequent occurrence in fungal species where it can alter gene expression and promote adaptation to a variety of environmental cues. Multiple forms of aneuploidy have been observed in the opportunistic fungal pathogen Candida albicans, which is a common component of the human gut mycobiome but can escape this niche and cause life-threatening systemic disease. Using a barcode sequencing (Bar-seq) approach, we evaluated a set of diploid C. albicans strains and found that a strain carrying a third copy of chromosome (Chr) 7 was associated with increased fitness during both gastrointestinal (GI) colonization and systemic infection. Our analysis revealed that the presence of a Chr 7 trisomy resulted in decreased filamentation, both in vitro and during GI colonization, relative to isogenic euploid controls. A target gene approach demonstrated that NRG1, encoding a negative regulator of filamentation located on Chr 7, contributes to increased fitness of the aneuploid strain due to inhibition of filamentation in a gene dosage-dependent fashion. Together, these experiments establish how aneuploidy enables the reversible adaptation of C. albicans to its host via gene dosage-dependent regulation of morphology.


Assuntos
Candida albicans , Trato Gastrointestinal , Humanos , Candida albicans/metabolismo , Trato Gastrointestinal/microbiologia , Dosagem de Genes , Aneuploidia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
17.
J Bacteriol ; 205(3): e0043822, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36847532

RESUMO

Bacterial conjugation, a form of horizontal gene transfer, relies on a type 4 secretion system (T4SS) and a set of nonstructural genes that are closely linked. These nonstructural genes aid in the mobile lifestyle of conjugative elements but are not part of the T4SS apparatus for conjugative transfer, such as the membrane pore and relaxosome, or the plasmid maintenance and replication machineries. While these nonstructural genes are not essential for conjugation, they assist in core conjugative functions and mitigate the cellular burden on the host. This review compiles and categorizes known functions of nonstructural genes by the stage of conjugation they modulate: dormancy, transfer, and new host establishment. Themes include establishing a commensalistic relationship with the host, manipulating the host for efficient T4SS assembly and function and assisting in conjugative evasion of recipient cell immune functions. These genes, taken in a broad ecological context, play important roles in ensuring proper propagation of the conjugation system in a natural environment.


Assuntos
Conjugação Genética , Sistemas de Secreção Tipo IV , Plasmídeos , Sistemas de Secreção Tipo IV/genética , Transferência Genética Horizontal , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
Virulence ; 14(1): 2174294, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36760104

RESUMO

The transcriptional master regulator of the white opaque transition of Candida albicans WOR1 is important for the adaptation to the commensal lifestyle in the mammalian gut, a major source of invasive candidiasis. We have generated cells that overproduce Wor1 in mutants defective in the Hog1 MAP kinase, defective in several stress responses and unable to colonize the mice gut. WOR1 overexpression allows hog1 to be established as a commensal in the murine gut in a commensalism model and even compete with wild-type C. albicans cells for establishment. This increased fitness correlates with an enhanced ability to adhere to biotic surfaces as well as increased proteinase and phospholipase production and a decrease in filamentation in vitro. We also show that hog1 WOR1OE are avirulent in a systemic candidiasis model in mice.


Assuntos
Candida albicans , Candidíase Invasiva , Animais , Camundongos , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Adaptação Fisiológica , Regulação Fúngica da Expressão Gênica , Mamíferos
19.
Microbiome ; 11(1): 12, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670449

RESUMO

BACKGROUND: The plasmid-mediated resistance gene mcr-1 confers colistin resistance in Escherichia coli and paves the way for the evolution to pan-drug resistance. We investigated the impact of mcr-1 in gut colonization in the absence of antibiotics using isogenic E. coli strains transformed with a plasmid encoding or devoid of mcr-1. RESULTS: In gnotobiotic and conventional mice, mcr-1 significantly enhanced intestinal anchoring of E. coli but impaired their lethal effect. This improvement of intestinal fitness was associated with a downregulation of intestinal inflammatory markers and the preservation of intestinal microbiota composition. The mcr-1 gene mediated a cross-resistance to antimicrobial peptides secreted by the microbiota and intestinal epithelial cells (IECs), enhanced E. coli adhesion to IECs, and decreased the proinflammatory activity of both E. coli and its lipopolysaccharides. CONCLUSION: Overall, mcr-1 changed multiple facets of bacterial behaviour and appeared as a factor enhancing commensal lifestyle and persistence in the gut even in the absence of antibiotics. Video Abstract.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Camundongos , Escherichia coli/genética , Simbiose , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana
20.
Mol Microbiol ; 119(1): 112-125, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36545847

RESUMO

Candida albicans is a normal resident of humans and also a prevalent fungal pathogen. Lactate, a nonfermentative carbon source available in numerous anatomical niches, can be used by C. albicans as a carbon source. However, the key regulator(s) involved in this process remain unknown. Here, through a genetic screen, we report the identification of a transcription factor Zcf24 that is specifically required for lactate utilization in C. albicans. Zcf24 is responsible for the induction of CYB2, a gene encoding lactate dehydrogenase that is essential for lactate catabolism, in response to lactate. Chromatin immunoprecipitation showed a significantly higher signal of Zcf24 on the CYB2 promoter in lactate-grown cells than that in glucose-grown cells. Genome-wide transcription profiling indicates that, in addition to CYB2, Zcf24 regulates genes involved in the ß-oxidation of fatty acids, iron transport, and drug transport. Surprisingly, deleting ZCF24 confers enhanced commensal fitness. This could be attributed to Crz1-activated ß-glucan masking in the zcf24 mutant. The orthologs of Zcf24 are distributed in species most closely to C. albicans and some filamentous fungal species. Altogether, Zcf24 is the first transcription factor identified to date that regulates lactate catabolism in C. albicans and it is also involved in the regulation of commensalism.


Assuntos
Candida albicans , Proteínas Fúngicas , Ácido Láctico , Fatores de Transcrição , Candida albicans/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Ácido Láctico/metabolismo , Simbiose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...