Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecology ; 103(1): e03567, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34674221

RESUMO

Ecological selection is a major driver of community assembly. Selection is classified as stabilizing when species with intermediate trait values gain the highest reproductive success, whereas selection is considered directional when fitness is highest for species with extreme trait values. Previous studies have investigated the effects of different selection types on trait distribution, but the effects of selection on species diversity have remained unclear. Here, we propose a framework for inferring the type and strength of selection by studying species diversity and trait distribution together against null expectations. We use a simulation model to confirm our prediction that directional selection should lead to lower species diversity than stabilizing selection despite a similar effect on trait community-weighted variance. We apply the framework to a mesocosm system of annual plants to test whether differences in species diversity between two habitats that vary in productivity are related to differences in selection on seed mass. We show that, in both habitats, species diversity was lower than the null expectation, but that species diversity was lower in the more productive habitat. We attribute this difference to strong directional selection for large-seeded species in the productive habitat as indicated by trait community-weighted mean being higher and community-weighted variance being lower than the null expectations. In the less productive habitat, we found that community-weighted variance was higher than expected by chance, suggesting that seed mass could be a driver of niche partitioning under such conditions. Altogether, our results suggest that viewing species diversity and trait distribution as interrelated patterns driven by the same process, ecological selection, is helpful in understanding community assembly.


Assuntos
Ecossistema , Plantas , Biodiversidade , Fenótipo , Reprodução , Sementes
2.
Rev. biol. trop ; 69(1)2021.
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-1507810

RESUMO

Introducción: El conocimiento de las comunidades perifíticas es importante, dada su participación en la producción primaria de los ambientes fluviales; además, el perifiton es una valiosa comunidad bioindicadora. No obstante, hasta la fecha es poco lo que se conoce sobre la ecología funcional de esta comunidad en los ríos colombianos. Objetivo: En este trabajo se buscó caracterizar algunos aspectos funcionales de la comunidad de ficoperifiton de cuatro sistemas lóticos de la Reserva Natural La Planada, ubicada en el departamento de Nariño, Colombia. Métodos: Durante mayo de 2019, en cada río se establecieron entre uno y tres sitios de muestreo, en los cuales se midieron las características hidrológicas y fisicoquímicas y se determinó la composición taxonómica y algunos rasgos funcionales de las comunidades de algas perifíticas. Se calcularon la media ponderada comunitaria (MPC) y la varianza ponderada comunitaria (VPC) de estos rasgos y se exploró su relación con las variables abióticas mediante regresiones, correlaciones y análisis de correspondencia canónica (ACC). Resultados: Se registraron 59 géneros de algas, de los cuales a 47 se les midieron los rasgos funcionales. La MPC del rasgo exoesqueleto silíceo fue estadísticamente mayor en la quebrada El Tejón. La MPC y la VPC de los demás rasgos no varió entre ríos, pero en algunos de ellos la presencia de mucílago y la organización en filamentos tendió a ser mayor. La amplia fluctuación de la VPC de todos los rasgos funcionales parece señalar que estas comunidades ficoperifíticas no tienen limitaciones de recursos, la competencia es reducida y las especies tienden a ser funcionalmente diferentes. Las variables ambientales con mayor influencia fueron el caudal, la mineralización del agua, el pH y la transparencia. La presencia de mucílago se asoció con la dureza del agua y el predominio de algas filamentosas con la transparencia; el pH influyó positivamente la relación superficie/volumen (S/V). Conclusiones: Este estudio constituye una línea base que permitirá evaluar cambios en las comunidades de algas bentónicas ante posibles intervenciones y brindar pautas para eventuales acciones de restauración de los sistemas fluviales de esta región de importancia mundial por su elevada biodiversidad.


Introduction: Knowledge on the periphytic community is essential because of its central role in river primary production. Also, periphyton is a valuable bioindicator of the community. However, to the date, little is known about the functional ecology of these communities in Colombian rivers. Objective: This work sought to characterize functional aspects of the phycoperiphytic community of four lotic systems of the La Planada Natural Reserve, located in the Department of Nariño, Colombia. Methods: In May 2019, between one and three sampling sites were established in each river. Hydrological and physicochemical variables were measured. Periphyton was sample to determine the taxonomic composition of the benthic algae as well as some functional traits. From these traits, the community weighted mean (CWM) and community weighted variance (CWV) were calculated, and their relation with abiotic variables was explored using regressions, correlations, and a canonical correspondence analysis (CCA). Results: 59 genera of algae were recorded, from which 47 had its functional traits measured. The CWM of the siliceous exoskeleton trait was statistically higher in El Tejón creek. The other traits had similar CWM and CWV values in all rivers. However, the traits of the presence of mucilage and organization in filaments showed predominance in some streams. The fluctuating data of CWV in all rivers seem to indicate that these phycoperiphytic communities have no resource limitations, competition is low, and species tend to be functionally different. The environmental variables with the greatest influence were flow, water mineralization, pH, and water transparency. The hardness of the water and the presence of mucilage were associated, while the predominance of filamentous algae was related to transparency; pH positively influenced the surface/volume ratio (S/V). Conclusions: This study represents a baseline that will allow evaluating changes in the benthic algae communities in the face of possible interventions and providing guidelines for eventual actions to restore the river systems of this important region due to its high biodiversity.


Assuntos
Animais , Fatores Abióticos , Microalgas/crescimento & desenvolvimento , Colômbia
3.
Ecol Lett ; 22(1): 181-189, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30467931

RESUMO

The enormous variation in seed mass along gradients of soil resources has fascinated plant ecologists for decades. However, so far, this research has focused on the description of such variation, rather than its underlying mechanisms. Here we experimentally test a recent model relating such variation to two fundamental properties of plant growth: allometry of biomass growth and size-asymmetry of light competition. According to the model, mean seed mass should increase, and the variance of seed mass should show a unimodal response, to increasing soil resource availability (productivity). We test these predictions and their underlying assumptions using a combination of field observations, mesocosm experiments and greenhouse experiments focusing on Mediterranean annual plants. Our results support the predictions and assumptions of the model, and allow us to reject alternative models of seed mass variation. We conclude that growth-allometry and size-asymmetric light competition are key drivers of seed-mass variation along soil resource gradients.


Assuntos
Sementes , Solo , Biomassa , Plantas
4.
Ecology ; 99(10): 2196-2206, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30007370

RESUMO

The large variation in seed mass among species inspired a vast array of theoretical and empirical research attempting to explain this variation. So far, seed mass variation was investigated by two classes of studies. One class focuses on species varying in seed mass within communities, while the second focuses on variation between communities, most often with respect to resource gradients. Here, we develop a model capable of simultaneously explaining variation in seed mass within and between communities. The model describes resource competition (for both soil and light resources) in annual communities and incorporates two fundamental aspects: light asymmetry (higher light acquisition per unit biomass for larger individuals) and growth allometry (negative dependency of relative growth rate on plant biomass). Results show that both factors are critical in determining patterns of seed mass variation. In general, growth allometry increases the reproductive success of small-seeded species while light asymmetry increases the reproductive success of large-seeded species. Increasing availability of soil resources increases light competition, thereby increasing the reproductive success of large-seeded species and ultimately the community (weighted) mean seed mass. An unexpected prediction of the model is that maximum variation in community seed mass (a measure of functional diversity) occurs under intermediate levels of soil resources. Extensions of the model incorporating size-dependent seed survival and disturbance also show patterns consistent with empirical observations. These overall results suggest that the mechanisms captured by the model are important in determining patterns of species and functional diversity.


Assuntos
Plantas , Sementes , Biomassa , Reprodução , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...