Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Pharmacol Toxicol Methods ; 128: 107520, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830514

RESUMO

Allergic conjunctival disease is an immune-mediated inflammatory disease of the conjunctiva. To develop clinically useful drugs, it is necessary to develop quantitative evaluation methods that reflect the clinical symptoms in experimental animal models. Allergic conjunctivitis model mice were systemically sensitised with ovalbumin (OVA) administered intraperitoneally and locally sensitised with OVA eye drops between day 14-28. Next, conjunctivitis induced by ocular administration of OVA solution to sensitised mice was evaluated based on tear volume. Additionally, we evaluated increase in tear volume induced by direct ocular instillation of histamine, compound 48/80, and carrageenan. An increase in antigen-induced tear volume was observed in the mice model. Additionally, direct instillation of histamine, compound 48/80, and carrageenan increased tear volume. Furthermore, levocabastine inhibited the increase in tear volume in antigen-induced allergic conjunctivitis and histamine- and compound 48/80-induced conjunctivitis models. In contrast, betamethasone suppressed carrageenan-induced tear volume but not histamine- or compound 48/80-induced tear volume. Histamine may be involved in increased tear volume in allergic conjunctivitis. Betamethasone is not directly involved in the action of histamine and is thought to suppress increase in tear volume. Evaluation of tear volume in a conjunctivitis mice model is highly quantitative; therefore, it is possible to evaluate drug efficacy. This is considered a useful index compared with conventional methods.

2.
Immunol Res ; 72(2): 331-346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38001385

RESUMO

In vitro investigations of mast cell (MC) degranulation are essential for studying many diseases, particularly allergy and urticaria. Many MC-degranulation inducers are currently available. However, there is no previous systematic comparative analysis of these available inducers in term of their efficacies to induce MC degranulation. Herein, we performed systematic comparisons of efficacies of five well-known and commonly used MC-degranulation inducers. RBL-2H3 cells were sensitized with 50 ng/ml anti-DNP IgE or biotinylated IgE followed by stimulation with 100 ng/ml DNP-BSA or streptavidin, respectively. For non-IgE-mediated inducers, the cells were treated with 5 µg/ml substance P, compound 48/80, or A23187. At 15-, 30-, 45- and 60-min post-induction, several common MC-degranulation markers (including intracellular [Ca2+], ß-hexosaminidase release, tryptase expression by immunofluorescence staining, cellular tryptase level by immunoblotting, secretory tryptase level by immunoblotting, CD63 expression by immunofluorescence staining, and CD63 expression by flow cytometry) were evaluated. The data showed that all these markers significantly increased after activation by all inducers. Among them, A23187 provided the greatest degrees of increases in intracellular [Ca2+] and ß-hexosaminidase release at all time-points and upregulation of CD63 at one time-point. These data indicate that all these IgE-mediated (anti-DNP IgE/DNP-BSA and biotinylated IgE/streptavidin) and non-IgE-mediated (substance P, compound 48/80, and A23187) inducers effectively induce MC degranulation, while A23187 seems to be the most effective inducer for MC degranulation.

3.
Biomed Pharmacother ; 170: 116009, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134632

RESUMO

The goal of the present work was to develop novel ß-substituted-α-halomethyl acrylates from a methodology in an aqueous phase and to evaluate their bioactivity as potential inhibitors of mast cell activation. Eleven ß-substituted-α-halomethyl acrylates were synthesized through a modified Horner-Wadsworth-Emmons reaction. Compound 48/80 and the calcium ionophore A23187 stimulated the release of ß-hexosaminidase from mast cells. The effect induced by compound 48/80 was inhibited by compound 5 (320 µM) and compound 9 (160 and 320 µM) without causing cytotoxic effects. The effect induced by A23187 was inhibited by compound 5 (40, 80, 160, and 320 µM) without affecting cell viability. The inhibitory effects exhibited by compounds 5 and 9 were more potent than those of the reference compound sodium cromoglycate at the same concentrations. The biochemical results were consistent with the morphological findings obtained by light and transmission electron microscopy. This study reports, for the first time, that the new synthetic compounds methyl (Z)- 2-bromo-3-(furan-3-yl)acrylate (compound 5) and methyl (E)- 2-bromo-3-(3-bromophenyl)acrylate (compound 9) strongly inhibit mast cell degranulation, without affecting cell viability. The implications of these results are relevant as a basis for developing new anti-inflammatory and mast cell stabilizing drugs.


Assuntos
Degranulação Celular , Mastócitos , Calcimicina/farmacologia , Acrilatos/farmacologia , p-Metoxi-N-metilfenetilamina/farmacologia
4.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446928

RESUMO

Formononetin (FNT) is a plant-derived isoflavone natural product with anti-inflammatory, antioxidant, and anti-allergic properties. We showed previously that FNT inhibits immunoglobulin E (IgE)-dependent mast cell (MC) activation, but the effect of FNT on IgE-independent MC activation is yet unknown. Our aim was to investigate the effects and possible mechanisms of action of FNT on IgE-independent MC activation and pseudoallergic inflammation. We studied the effects of FNT on MC degranulation in vitro with a cell culture model using compound C48/80 to stimulate either mouse bone marrow-derived mast cells (BMMCs) or RBL-2H3 cells. We subsequently measured ß-hexosaminase and histamine release, the expression of inflammatory factors, cell morphological changes, and changes in NF-κB signaling. We also studied the effects of FNT in several in vivo murine models of allergic reaction: C48/80-mediated passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA), and 2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD). The results showed that FNT inhibited IgE-independent degranulation of MCs, evaluated by a decrease in the release of ß-hexosaminase and histamine and a decreased expression of inflammatory factors. Additionally, FNT reduced cytomorphological elongation and F-actin reorganization and attenuated NF-κB p65 phosphorylation and NF-κB-dependent promoter activity. Moreover, the administration of FNT alleviated pseudoallergic responses in vivo in mouse models of C48/80-stimulated PCA and ASA, and DNCB-induced AD. In conclusion, we suggest that FNT may be a novel anti-allergic drug with great potential to alleviate pseudoallergic responses via the inhibition of IgE-independent MC degranulation and NF-κB signaling.


Assuntos
Anafilaxia , Antialérgicos , Isoflavonas , Camundongos , Animais , Mastócitos , p-Metoxi-N-metilfenetilamina/farmacologia , NF-kappa B/metabolismo , Degranulação Celular , Dinitroclorobenzeno/metabolismo , Anafilaxia/tratamento farmacológico , Isoflavonas/metabolismo , Imunoglobulina E/metabolismo , Antialérgicos/uso terapêutico
5.
Front Pharmacol ; 12: 764321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737708

RESUMO

Dimerized translationally controlled tumor protein (dTCTP) amplifies allergic responses through activation of several types of immune cells and release of inflammatory mediators. In particular, dTCTP plays an important role in histamine release by triggering mast cells and has been proposed as a target in the treatment of allergic diseases. dTCTP-binding peptide 2 (dTBP2) is known to attenuate severe allergic rhinitis and asthma through inhibition of dTCTP activity on airway epithelial cells and T cells; however, it is unclear whether dTBP2 affects mast cell function and mast cell disease. In this study, we explored the effects of dTBP2 on mast cell degranulation and allergen-induced anaphylactic reactions. We found that bacterial product lipopolysaccharide increased the expression of dTCTP in mast cells and rapidly released dTCTP by the mast cell stimulator compound 48/80. Interestingly, the released dTCTP further promoted mast cell degranulation in an autocrine activation manner and increased calcium mobilization in mast cells, which is essential for degranulation. Furthermore, dTBP2 directly and dose-dependently inhibited in vitro mast cell degranulation enhanced by compound 48/80, suggesting a direct and potent anti-anaphylactic activity of dTBP2. dTBP2 also significantly suppressed the dTCTP-induced degranulation and histamine release through inhibition of the p38 MAPK signaling pathway and suppression of lysosomal expansion and calcium mobilization in mast cells. More importantly, in vivo administration of dTBP2 decreased mortality and significantly attenuated histamine release and inflammatory cytokine production in compound 48/80-induced systemic anaphylactic reactions. These results suggest that dTBP2 is beneficial for the control of anaphylaxis with increased dTCTP.

6.
Front Immunol ; 12: 689484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557187

RESUMO

Mast cells (MCs) are main effector cells in allergic inflammation and after activation, they release stored (histamine, heparin, proteases) and newly synthesized (lipid mediators and cytokines) substances. In the gastrointestinal tract the largest MC population is located in the lamina propria and submucosa whereas several signals such as the cytokine IL-4, seem to increase the granule content and to stimulate a remarkable expansion of intestinal MCs. The broad range of MC-derived bioactive molecules may explain their involvement in many different allergic disorders of the gastrointestinal tract. Annexin A1 (AnxA1) is a 37 KDa glucocorticoid induced monomeric protein selectively distributed in certain tissues. Its activity can be reproduced by mimetic peptides of the N-terminal portion, such as Ac2-26, that share the same receptor FPR-L1. Although previous reports demonstrated that AnxA1 inhibits MC degranulation in murine models, the effects of exogenous peptide Ac2-26 on intestinal MCs or the biological functions of the Ac2-26/FPR2 system in human MCs have been poorly studied. To determine the effects of Ac2-26 on the function of MCs toward the possibility of AnxA1-based therapeutics, we treated WT and IL-4 knockout mice with peptide Ac2-26, and we examined the spontaneous and compound 48/80 stimulated colonic MC degranulation and cytokine production. Moreover, in vitro, using human mast cell line HMC-1 we demonstrated that exogenous AnxA1 peptide is capable of interfering with the HMC-1 degranulation in a direct pathway through formyl peptide receptors (FPRs). We envisage that our results can provide therapeutic strategies to reduce the release of MC mediators in inflammatory allergic processes.


Assuntos
Anexina A1/farmacologia , Degranulação Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Mastócitos/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Linhagem Celular , Colo/imunologia , Colo/metabolismo , Humanos , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Formil Peptídeo/metabolismo , Técnicas de Cultura de Tecidos
7.
Int Immunopharmacol ; 97: 107735, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33990023

RESUMO

Anaphylaxis is a life-threatening allergic reaction, for which the worldwide prevalence is rapidly increasing. The currently used synthetic antiallergic drugs have a high tendency to cause adverse effects, like gastric ulcers, in long-term use. Therefore, a great deal of attention has been given to develop new safer and more effective antiallergic agents from natural compounds that are chemically/enzymatically-modified. Here, we evaluated/compared the efficacy of two different doses (50 and 100 mg/kg body weight "b.w", given orally) of sodium R-lipoate (NaRLA) and enzymatically-modified isoquercitrin (EMIQ) in alleviating both local/systemic non-immunological anaphylactic reactions and stress-induced gastric ulceration in mice, in comparison with sulfasalazine (SSZ) as a reference drug. The results indicated that the pre-treatment of animals with NaRLA or EMIQ (especially at 100 mg/kg b.w) completely succeeded, as SSZ, in alleviating the hind paw edema induced by either histamine or compound 48/80 (Cpd 48/80). Furthermore, NaRLA and EMIQ prevented the mast cell degranulation and anaphylactic shock caused by Cpd 48/80 (in a dose-dependent manner) and reduced significantly (P < 0.001) the histamine release from the mouse peritoneal mast cells, like SSZ. Moreover, their use was associated with alleviating both gastric histopathological and biochemical alterations in the water-restraint stress (WRS) mice model towards the control values. They also decreased the percentage of degranulated mesenteric mast cells in the WRS mice model. In conclusion, our findings provide possibility that both NaRLA and EMIQ may serve as an effective therapeutic agents for mast cells-dependent anaphylactic reactions without risks of inducing gastric ulcers.


Assuntos
Anafilaxia/tratamento farmacológico , Antialérgicos/administração & dosagem , Quercetina/análogos & derivados , Úlcera Gástrica/tratamento farmacológico , Ácido Tióctico/administração & dosagem , Administração Oral , Anafilaxia/imunologia , Animais , Antialérgicos/efeitos adversos , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Modelos Animais de Doenças , Mucosa Gástrica/efeitos dos fármacos , Liberação de Histamina/efeitos dos fármacos , Humanos , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Quercetina/administração & dosagem , Quercetina/efeitos adversos , Organismos Livres de Patógenos Específicos , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/psicologia , Estresse Psicológico/complicações , Sulfassalazina/administração & dosagem , Ácido Tióctico/efeitos adversos , p-Metoxi-N-metilfenetilamina/administração & dosagem , p-Metoxi-N-metilfenetilamina/imunologia
8.
Front Immunol ; 12: 625284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790895

RESUMO

The Mas-related G-protein-coupled receptor X2 (MRGPRX2) is prominently expressed by mast cells and induces degranulation upon binding by different ligands. Its activation has been linked to various mast cell-related diseases, such as chronic spontaneous urticaria, atopic dermatitis and asthma. Therefore, inhibition of MRGPRX2 activity represents a therapeutic target for these conditions. However, the exact pathophysiology of this receptor is still unknown. In vitro research with mast cells is often hampered by the technical limitations of available cell lines. The human mast cell types LAD2 and HuMC (human mast cells cultured from CD34+ progenitor cells) most closely resemble mature human mast cells, yet have a very slow growth rate. A fast proliferating alternative is the human mast cell line HMC1, but they are considered unsuitable for degranulation assays due to their immature phenotype. Moreover, the expression and functionality of MRGPRX2 on HMC1 is controversial. Here, we describe the MRGPRX2 expression and functionality in HMC1 cells, and compare these with LAD2 and HuMC. We also propose a model to render HMC1 suitable for degranulation assays by pre-incubating them with latrunculin-B (Lat-B). Expression of MRGPRX2 by HMC1 was proven by RQ-PCR and flowcytometry, although at lower levels compared with LAD2 and HuMC. Pre-incubation of HMC1 cells with Lat-B significantly increased the overall degranulation capacity, without significantly changing their MRGPRX2 expression, phenotype or morphology. The MRGPRX2 specific compound 48/80 (C48/80) effectively induced degranulation of HMC1 as measured by CD63 membrane expression and ß-hexosaminidase release, albeit in lower levels than for LAD2 or HuMC. HMC1, LAD2 and HuMC each had different degranulation kinetics upon stimulation with C48/80. Incubation with the MRGPRX2 specific inhibitor QWF inhibited C48/80-induced degranulation, confirming the functionality of MRGPRX2 on HMC1. In conclusion, HMC1 cells have lower levels of MRGPRX2 expression than LAD2 or HuMC, but are attractive for in vitro research because of their high growth rate and stable phenotype. HMC1 can be used to study MRGPRX2-mediated degranulation after pre-incubation with Lat-B, which provides the opportunity to explore MPRGRX2 biology in mast cells in a feasible way.


Assuntos
Degranulação Celular , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Ligantes , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de IgE/metabolismo , Transdução de Sinais , Tetraspanina 30/metabolismo , Tiazolidinas/farmacologia , beta-N-Acetil-Hexosaminidases/metabolismo , p-Metoxi-N-metilfenetilamina/farmacologia
9.
Behav Brain Res ; 403: 113143, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33516739

RESUMO

Mast cells (MCs) exist intracranially and have been reported to affect higher brain functions in rodents. However, the role of MCs in the regulation of emotionality and social behavior is unclear. In the present study, using male mice, we examined the relationship between MCs and social behavior and investigated the underlying mechanisms. Wild-type male mice intraventricularly injected with a degranulator of MCs exhibited a marked increase in a three-chamber sociability test. In addition, removal of MCs in Mast cell-specific Toxin Receptor-mediated Conditional cell Knock out (Mas-TRECK) male mice showed reduced social preference levels in a three-chamber sociability test without other behavioral changes, such as anxiety-like and depression-like behavior. Mas-TRECK male mice also had reduced serotonin content and serotonin receptor expression and increased oxytocin receptor expression in the brain. These results suggested that MCs may contribute to the regulation of social behavior in male mice. This effect may be partially mediated by serotonin derived from MCs in the brain.


Assuntos
Comportamento Animal/fisiologia , Encéfalo , Mastócitos/fisiologia , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Comportamento Social , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Masculino , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , p-Metoxi-N-metilfenetilamina/farmacologia
10.
Front Immunol ; 11: 559589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101278

RESUMO

Numerous inflammatory skin disorders display a high prevalence of itch. The Mas-related G protein coupled receptor X2 (MRGPRX2) has been shown to modulate itch by inducing non-IgE-mediated mast cell degranulation and the release of endogenous inducers of pruritus. Various substances collectively known as basic secretagogues, which include inflammatory peptides and certain drugs, can trigger MRGPRX2 and thereby induce pseudo-allergic reactions characterized by histamine and protease release as well as inflammation. Here, we investigated the capacity of an immunomodulatory single-stranded oligonucleotide (ssON) to modulate IgE-independent mast cell degranulation and, more specifically, its ability to inhibit the basic secretagogues compound 48/80 (C48/80)-and LL-37 in vitro and in vivo. We examined the effect of ssON on MRGPRX2 activation in vitro by measuring degranulation in a human mast cell line (LAD2) and calcium influx in MRGPRX2-transfected HEK293 cells. To determine the effect of ssON on itch, we performed behavioral studies in established mouse models and collected skin biopsies for histological analysis. Additionally, with the use of a rosacea mouse model and RT-qPCR, we investigated the effect on ssON on LL-37-induced inflammation. We reveal that both mast cell degranulation and calcium influx in MRGPRX2 transfected HEK293 cells, induced by the antimicrobial peptide LL-37 and the basic secretagogue C48/80, are effectively inhibited by ssON in a dose-dependent manner. Further, ssON demonstrates a capability to inhibit LL-37 and C48/80 activation in vivo in two mouse models. We show that intradermal injection of ssON in mice is able to block itch induced via C48/80 in a dose-dependent manner. Histological staining revealed that ssON inhibits acute mast cell degranulation in murine skin treated with C48/80. Lastly, we show that ssON treatment ameliorates LL-37-induced inflammation in a rosacea mouse model. Since there is a need for new therapeutics targeting non-IgE-mediated activation of mast cells, ssON could be used as a prospective drug candidate to resolve itch and inflammation in certain dermatoses.


Assuntos
DNA de Cadeia Simples/genética , Inflamação/genética , Mastócitos/imunologia , Proteínas do Tecido Nervoso/metabolismo , Oligonucleotídeos/genética , Prurido/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Comportamento Animal , Degranulação Celular , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Prurido/imunologia , p-Metoxi-N-metilfenetilamina/imunologia , Catelicidinas
11.
J Pharm Pharmacol ; 72(9): 1221-1231, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32557699

RESUMO

OBJECTIVES: To investigate the inhibitory effects of Kaempferol, a natural flavonol active compound, on pseudo-allergic reactions (in vivo and in vitro), particularly on the mechanism underlying its effect in human mast cells. METHODS: Compound 48/80 (C48/80)-induced immunoglobulin E (IgE)-independent passive cutaneous anaphylaxis (PCA) model and systemic anaphylaxis were applied to investigate the anti-allergic activity of Kaempferol. The degranulation assay, calcium imaging and the secretion of cytokines and chemokines were used to evaluate the inhibitory effect on mast cell activation. Western blot analysis was performed to investigate intracellular calcium fluctuation-related signalling pathways. KEY FINDINGS: Kaempferol dose-dependently attenuated C48/80-induced mice hind paw swelling, dye extravasation and skin mast cell degranulation, and rehabilitated the hypothermia, as well as reduced the serum concentrations of histamine, tryptase, tumour necrosis factor-alpha (TNF-α), interleukin-8 (IL-8) and monocyte chemo-attractant protein-1 (MCP-1). Furthermore, Kaempferol suppressed C48/80-triggered human MC degranulation and calcium fluctuations by inhibiting phospholipase Cγ (PLCγ) phosphorylation and subsequent cytokines synthesis pathways. CONCLUSIONS: The inhibition of the process of PLCγ phosphorylation to Ca2+ mobilization represents a major strategy in Kaempferol-suppressed pseudo-allergic reactions. Thus, Kaempferol could be considered as a therapeutic drug candidate for non-IgE-mediated allergic reactions or inflammations.


Assuntos
Anafilaxia/tratamento farmacológico , Antialérgicos/farmacologia , Cálcio/metabolismo , Quempferóis/farmacologia , Anafilaxia/imunologia , Animais , Antialérgicos/administração & dosagem , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Imunoglobulina E/imunologia , Quempferóis/administração & dosagem , Masculino , Mastócitos , Camundongos , Camundongos Endogâmicos C57BL , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Anafilaxia Cutânea Passiva/imunologia , Secretagogos/imunologia , p-Metoxi-N-metilfenetilamina/imunologia
12.
Molecules ; 25(10)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456051

RESUMO

The purpose of this study was to determine the antiallergic effects of AF-343, a mixture of natural plant extracts from Cassia tora L., Ulmus pumila L., and Taraxacum officinale, on rat basophilic leukemia (RBL-2H3) cells. The inhibitory effects on cell degranulation, proinflammatory cytokine secretion, and reactive oxygen species (ROS) production were studied in compound 48/80-treated RBL-2H3 cells. The bioactive compounds in AF-343 were also identified by HPLC-UV. AF-343 was found to effectively suppress compound 48/80-induced b-hexosaminidase release, and interleukin (IL)-4 and tumor necrosis factor-a (TNF-a) production in RBL-2H3 cells. In addition, AF-343 exhibited DPPH free radical scavenging effects in vitro (half-maximal inhibitory concentration (IC50) = 105 µg/mL) and potently inhibited compound 48/80-induced cellular ROS generation in a 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. Specifically, treatment with AF-343 exerted stronger antioxidant effects in vitro and antiallergic effects in cells than treatment with three single natural plant extracts. Furthermore, AF-343 was observed to contain bioactive compounds, including catechin, aurantio-obtusin, and chicoric acid, which have been reported to elicit antiallergic responses. This study reveals that AF-343 attenuates allergic responses via suppression of b-hexosaminidase release, IL-4 and TNF-a secretion, and ROS generation, perhaps through mechanisms related to catechin, aurantio-obtusin, and chicoric acid. The results indicate that AF-343 can be considered a treatment for various allergic diseases.


Assuntos
Cinnamomum aromaticum/química , Hipersensibilidade/tratamento farmacológico , Taraxacum/química , Ulmus/química , Animais , Antialérgicos/química , Antialérgicos/farmacologia , Degranulação Celular/efeitos dos fármacos , Combinação de Medicamentos , Humanos , Mastócitos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , p-Metoxi-N-metilfenetilamina
13.
J Toxicol Pathol ; 33(1): 1-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32051659

RESUMO

Although several liposomal drugs, including liposomal doxorubicin, have been approved, the etiology of the pathological responses caused by their physicochemical properties remains unknown. Herein, we investigated the pathological changes in the liver and the gallbladder of dogs following a single injection of liposomal doxorubicin (1 or 2.5 mg/kg) or an empty liposomal formulation (i.e., liposomal formulation without doxorubicin, ca. 21 mg/kg as lipid content). Injection of liposomal doxorubicin or the empty liposomal formulation induced hemorrhagic changes in the liver and the gallbladder. These changes were accompanied by minimal cellular infiltration with no obvious changes in the blood vessels. As there were no differences in the incidence and severity of hemorrhage between the groups administered comparable amounts of total lipid, the physicochemical properties of the liposomal formulation rather than an active pharmacological ingredient, doxorubicin, were associated with the hemorrhagic changes. Furthermore, decreased cytoplasmic granules with low electron density in mast cells beneath the endothelium of the hepatic vein were observed in the liver of dogs treated with liposomal doxorubicin or empty liposomal formulation. Injection of compound 48/80, a histamine releaser induced comparable hemorrhage in dogs, implying that hemorrhage caused by injection of liposomal doxorubicin or the empty liposomal formulation could be attributed to the histamine released from mast cells. The absence of similar hemorrhagic lesions in other species commonly used in toxicology studies (i.e., rats and monkeys), as well as humans, is due to the lack of mast cells beneath the endothelium of the hepatic vein in these species.

15.
Pharmaceutics ; 11(2)2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744102

RESUMO

Current vaccine research is mostly based on subunit antigens. Despite the better toxicity profile of these antigens they are often poorly immunogenic, so adjuvant association has been explored as a strategy to obtain a potent vaccine formulation. Recently, mast cell activators were recognized as a new class of vaccine adjuvants capable of potentiating mucosal and systemic immune responses. In this study, a co-adjuvanted delivery system was developed and characterized, combining the mast cell activator C48/80 with chitosan nanoparticles (Chi-C48/80 NPs), and the results were compared with plain chitosan nanoparticles. The adsorption of model antigens onto the NP surface as well as the biocompatibility of the system was not affected by the incorporation of C48/80 in the formulation. The stability of the nanoparticles was demonstrated by studying the variation of size and zeta potential at different times, and the ability to be internalized by antigen presenting cells was confirmed by confocal microscopy. Vaccination studies with hepatitis B surface antigen loaded Chi-C48/80 NPs validated the adjuvanticity of the delivery system, demonstrating for the first time a successful association between a mast cell activator and chitosan nanoparticles as a vaccine adjuvant for hepatitis B virus, applied to a nasal vaccination strategy.

16.
Domest Anim Endocrinol ; 66: 57-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472035

RESUMO

Infectious conditions are associated with reduced food passage through the digestive tract in both mammals and chicks; however, the precise mechanism mediating this response in chicks remains unclear. The purpose of the present study was to determine if mast cells, a blood cell type which plays an important role in the immune system, might affect food passage through the digestive tract in chicks. Specifically, we performed intraperitoneal (IP) injections of compound 48/80, an inducer of mast cell degranulation, and measured crop emptying. The IP injection of compound 48/80 significantly reduced the crop-emptying rate, but it did not affect the proventriculus to small intestine transit rate or the number of defecations. We also found that IP-injected histamine, which is secreted by mast cells, also reduced the crop-emptying rate. In addition, IP injection of 2-pyridylethylamine (histamine H1 receptor agonist), but not dimaprit, (R)-(-)-α-methylhistamine, and VUF8430 (histamine H2, H3, and H4 receptor agonists, respectively), reduced the crop-emptying rate, implying that histamine reduces the crop emptying rate via the histamine H1 receptor. Finally, we found that IP injection of compound 48/80 reduced mRNA expression of histidine decarboxylase, a rate-limiting enzyme for histamine synthesis, in the esophagus and proventriculus at 1 h and the proventriculus and duodenum at 3 h after the injection. In sum, the present study suggests that the degranulation of mast cells causes a reduction in the crop-emptying rate, possibly via the histamine pathway in chicks.


Assuntos
Galinhas/fisiologia , Papo das Aves/fisiologia , Histamina/fisiologia , Mastócitos/fisiologia , p-Metoxi-N-metilfenetilamina/farmacologia , Animais , Papo das Aves/efeitos dos fármacos , Digestão/efeitos dos fármacos , Digestão/fisiologia , Expressão Gênica/efeitos dos fármacos , Histidina Descarboxilase/genética , Injeções Intraperitoneais/veterinária , Masculino , Mastócitos/efeitos dos fármacos
17.
Front Immunol ; 9: 1870, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210490

RESUMO

Innate inflammatory responses are crucial for induction and regulation of T cell and antibody responses. Mast cell (MC)-deficient Kit mutant mice showed impaired adaptive immunity, suggesting that MCs provide essential adjuvant activities, and pharmacological MC activation was proposed as a new adjuvant principle. However, the Kit mutations result in complex alterations of the immune system in addition to MC deficiency. We revisited the role of MCs in vaccination responses using Mcpt5-Cre R26DTA/DTA and Cpa3Cre/+ mice that lack connective tissue MCs or all MCs, respectively, but feature an otherwise normal immune system. These animals showed no impairment of T and B cell responses to intradermal vaccination with protein antigen plus complete Freund's adjuvant. Moreover, we demonstrate that the adjuvant effects of the MC secretagogue c48/80 in intradermal or mucosal immunization are independent of the presence of MCs. We hence find no evidence for a regulation by MCs of adaptive immune responses to protein antigens. The finding that immunological MC functions differ from those suggested by experiments in Kit mutants, emphasizes the importance of rigorous tests in Kit-independent MC-deficiency models.


Assuntos
Adjuvantes Imunológicos , Antígenos/imunologia , Imunidade , Mastócitos/imunologia , Mastócitos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Imunidade Adaptativa , Animais , Modelos Animais de Doenças , Escherichia coli/imunologia , Imunidade nas Mucosas/imunologia , Imunização , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Knockout , Peptídeos/imunologia , Proteínas Proto-Oncogênicas c-kit/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
Eur J Pharmacol ; 833: 124-130, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29859836

RESUMO

Galectin-1 (Gal-1) is a ß-galactoside-binding protein with diverse biological activities in the pathogenesis of inflammation, however the mechanisms by which Gal-1 modulates cellular responses in allergic inflammatory processes have not been fully determined. In this study, we evaluated the therapeutic potential of Gal-1 eye drops in an experimental model of conjunctivitis. Wistar rats received a topical application of compound (C)48/80 (100 mg/ml) into right eyes and a drop of vehicle into the contralateral eye. Another group of rats received Gal-1 (0.3 or 3 µg/eye) or sodium cromoglycate (SCG; 40 mg/ml) in both eyes and, after 15 min, right eye was challenged with C48/80. Conjunctivitis-induced by C48/80 was characterized by severe eyelid oedema and tearing, but clinical signs were ameliorated by eye drop doses of both Gal-1 (0.3/3 µg) and SCG. As expected, an increased proportion of degranulated mast cells (62%, P < 0.01) and lower histamine levels were observed after 6 h of C48/80 challenge, compared to control (32%). This effect was abrogated by Gal-1 and SCG, which reduced mast cell degranulation (31-36%), eosinophil migration and eosinophil peroxidase levels in the eyes. Gal-1 (3 µg) and SCG treatments also decreased IL-4 levels, as well as activation of mitogen activated protein kinases compared to untreated C48/80 eyes. Our findings suggest that Gal-1 eye drops represent a new therapeutic strategy for ocular allergic inflammation.


Assuntos
Antialérgicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Conjuntivite Alérgica/tratamento farmacológico , Galectina 1/uso terapêutico , Animais , Antialérgicos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Degranulação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Conjuntivite Alérgica/induzido quimicamente , Conjuntivite Alérgica/imunologia , Conjuntivite Alérgica/patologia , Citocinas/imunologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/enzimologia , Eosinófilos/fisiologia , Olho/efeitos dos fármacos , Olho/imunologia , Olho/patologia , Galectina 1/administração & dosagem , Histamina/imunologia , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Proteínas Quinases Ativadas por Mitógeno/imunologia , Soluções Oftálmicas , Peroxidases/metabolismo , Ratos Wistar , p-Metoxi-N-metilfenetilamina
19.
Arch Pharm (Weinheim) ; 351(5): e1800019, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29644714

RESUMO

Mast cell degranulation plays a momentous role in myriad diseases like asthma, eczema, allergic rhinitis, and conjunctivitis as well as anaphylactic shock; hence, there is an unmet need for developing new mast cells stabilizers. The reported mast cell stabilizers have a heterocyclic moiety and an acidic group. Furthermore, the role of tryptophan in suppression of mast cell activation is established. Hence, we prepared constrained analogs of tryptophan, which are derivatives of 2,3,4,9-tetrahydrospiro-ß-carboline-3-carboxylic acid, and evaluated them for ex vivo inhibition of compound 48/80-induced mast degranulation activity. By comparing IC50 (µM) values with that of the standard drug sodium cromoglycate (IC50 = 0.489 ± 0.003 µM), compounds with bulky groups like heptyl (compound 9; IC50 = 0.389 ± 0.015 µM) and octyl (compound 10; IC50 = 0.354 ± 0.023 µM) were found to be of similar potency as sodium cromoglycate. Furthermore, the polar group-containing compounds like the chloropropyl (compound 16; IC50 = 0.382 ± 0.083 µM) and benzoyl derivative (compound 14; IC50 = 00.469 ± 0.032 µM) were also found to be of similar potency as sodium cromoglycate. This is a seminal study of spiro-ß-carboline mast cell stabilization having a wider scope in mast cell research; yet, the mechanism of action remains elusive.


Assuntos
Antialérgicos/farmacologia , Carbolinas/farmacologia , Desenho de Fármacos , Mastócitos/efeitos dos fármacos , Animais , Antialérgicos/síntese química , Antialérgicos/química , Carbolinas/síntese química , Carbolinas/química , Cromolina Sódica/farmacologia , Concentração Inibidora 50 , Masculino , Mastócitos/metabolismo , Ratos , Ratos Wistar , Relação Estrutura-Atividade
20.
Cell Calcium ; 71: 24-33, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29604961

RESUMO

All three members of the Orai family of cation channels-Orai1, Orai2 and Orai3-are integral membrane proteins that can form store-operated Ca2+ channels resembling endogenous calcium release-activated channels (CRAC) in many aspects. Loss of function studies in human and murine models revealed many functions of Orai1 proteins not only for Ca2+ homeostasis, but also for cellular and systemic functions in many cell types. By contrast, the knowledge regarding the contribution of Orai2 and Orai3 proteins in these processes is sparse. In this study, we report the generation of mouse models with targeted inactivation of the Orai2 gene to study Orai2 function in peritoneal mast cells (PMC), a classical cell model for CRAC channels and Ca2+-dependent exocytosis of inflammatory mediators. We show that the Ca2+ rise triggered by agonists acting on high-affinity Fc receptors for IgE or on MAS-related G protein-coupled receptors is significantly increased in Orai2-deficient mast cells. Ca2+ entry triggered by depletion of intracellular stores (SOCE) is also increased in Orai2-/- PMCs at high (2mM) extracellular Ca2+ concentration, whereas SOCE is largely reduced upon re-addtion of lower (0.1mM) Ca2+ concentration. Likewise, the density of CRAC currents, Ca2+-dependent mast cell degranulation, and mast cell-mediated anaphylaxis are intensified in Orai2-deficient mice. These results show that the presence of Orai2 proteins limits receptor-evoked Ca2+ transients, store-operated Ca2+ entry (SOCE) as well as degranulation of murine peritoneal mast cells but also raise the idea that Orai2 proteins contribute to Ca2+ entry in connective tissue type mast cells in discrete operation modes depending on the availability of calcium ions in the extracellular space.


Assuntos
Anafilaxia/metabolismo , Cálcio/metabolismo , Degranulação Celular , Deleção de Genes , Ativação do Canal Iônico , Mastócitos/fisiologia , Proteína ORAI2/genética , Alelos , Animais , Proteínas de Bactérias/metabolismo , Sinalização do Cálcio , Separação Celular , Espaço Extracelular/metabolismo , Marcação de Genes , Genes Reporter , Proteínas Luminescentes/metabolismo , Camundongos Endogâmicos C57BL , Cavidade Peritoneal/citologia , Receptores de IgE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...