Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.854
Filtrar
1.
Food Chem ; 460(Pt 2): 140633, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39068807

RESUMO

Hickory is an abundant source of phenolic compounds that exhibit a diverse range of bioactivities. In this study, phenolic compounds were extracted and purified from hickory green husk (HG), hickory nutshell (HN), and hickory seed coat (HS) using solid-phase extraction and ultrasonication (SPE-US). The effects of the SPE-US treatment on the structure and properties of the phenolic compounds were then investigated, including their composition, antioxidant activity, and antimicrobial activity. The dominant phenolic substances in the different extracts after SPE-US treatment were: ellagic acid and trans ferulic acid (HS); ellagic acid and sinapic acid (HN); and rutin (HG). The HS-SPE-US1 extract exhibited the highest total polyphenol content (416 ± 11 mg GAE/g DW), total flavonoid content (47.51 ± 0.68 mg RE/g DW), Fe3+ reduction ability (74.2 ± 1.0 mmol Fe2+/g DW), radical (DPPH and ABTS) scavenging ability, and antimicrobial activity against Staphylococcus aureus.

2.
Plant Sci ; : 112205, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069007

RESUMO

Secondary metabolites play an essential role in plant defense. However, the role of glucosinolates and phenols in brassica crop yield in the context of environmentally friendly agricultural practices has not been established. Our study investigated the effects of a Brassica extract, rich in these metabolites, on the physiology and metabolism of broccoli (Brassica oleracea L. var. italica) seedlings and the subsequent development of the plants in adult stages. The results showed an increase in growth in the extract-treated seedlings, which was associated with an alteration of primary and secondary metabolism. In particular, there was an increase in the levels of amino acids, phenolic compounds and hormones, while the levels of glucosinolates decreased. Lipid peroxidation diminished in treated plants, indicating improved membrane integrity. Treated plants subsequently grown in hydroponically showed increased water use efficiency, transpiration, and internal carbon, which contributed to the improved growth of these plants. Overall, our findings underscore the potential of the glucosinolates and phenols ratio as essential to improve crop growth and stress tolerance, as well as revealed the interest of studying the mechanisms involved in the possible uptake and integration of GSLs by broccoli seedlings after external application.

3.
J Struct Biol ; : 108112, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069032

RESUMO

Viruses often use ion channel proteins to initialise host infections. Defects in ion channel proteins are also linked to several metabolic disorders in humans. In that instance, modulation of ion channel activities becomes central to development of antiviral therapies and drug design. Kesv, a potassium-selective ion channel protein expressed by Ectocarpus Siliculosus virus (EsV), possesses remarkable properties which can help to characterise the molecular basis of the functional processes relevant to virus biology and human physiology. The small structural features of this ion channel could serve as a fundamental primer to study more complex ion channels from humans. Therefore, in spite of their evolutionary distance, the potential link between viral and human ion channel proteins, could provide opportunities for therapeutic and biotechnological applications.

4.
Curr Med Chem ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39069712

RESUMO

Recently, considerable attention has been focused on the recovery and re-use of waste plant matrices as promising sources of bioactive compounds with health effects. As the Mediterranean diet involves the consumption of great amounts of fruits and vegetables, large quantities of agro-food by-products are generated, causing economic and environmental problems. Such by-products contain a great variety of bioactive compounds whose potential health benefits include anti-inflammatory, antioxidant, anti-- cancer, antimicrobial, hypoglycemic, antidepressant, cardio- and neuro-protective activities. Therefore, in this review, by-products from the most common fruits and vegetables processed in the Mediterranean area, such as tomato, olive, citrus fruit, almond, pomegranate, carob, date, and grape, were taken into account, pointing out the content of bioactive ingredients in extracts obtained from different parts of plants, fruits, and vegetables. Furthermore, studies performed to assess the beneficial effects of extracts obtained from Mediterranean agro-food by-products were reviewed, highlighting the potential benefits of waste plant matrices re-usage in the pharmaceutical, nutraceutical, and cosmetic fields.

5.
Immunopharmacol Immunotoxicol ; : 1-14, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069754

RESUMO

OBJECTIVE: Polyphenols are organic compounds with diverse biological activities such as anti-inflammatory and antioxidant effects, making them important candidates for the development of anti-aging drugs. In this systematic review, we aimed to answer the question: can plant-derived polyphenols have an immunomodulatory effect in experimental models of aging? METHODS: We systematically searched Web of Science, MEDLINE/Pubmed, and Embase to select articles using the following combinations of terms and synonyms: polyphenols, phenols, senescence, aging, and immune. The selected articles were evaluated for reporting quality and risk-of-bias according to standard guidelines. RESULTS: The most used polyphenol was resveratrol, followed by curcumin, salidroside, and gallic acid. These molecules demonstrated an ability to restore immune function both in vitro and in vivo. The mechanism of action was not completely elucidated in these studies, but inhibition of NF-kB signaling, and antioxidant properties seemed to account for the anti-aging effects. All articles included in the review had good quality of reporting but failed to describe an adequate sample size, criteria for inclusion/exclusion, randomization, and blinding. CONCLUSION: We conclude that polyphenols are promising immunomodulatory substances for use in anti-aging therapies. However, more research with standardized analysis is needed to understand the role of these molecules in the prevention or reduction of damage associated with the aging process, as well as to determine the safety profile and consequences of systemic action.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39071051

RESUMO

Recognized as a common microvascular complication of diabetes mellitus (DM), diabetic nephropathy (DN) is the principal cause of chronic end-stage renal disease (ESRD). Patients with diabetes have an approximately 25% risk of developing progressive renal disease. The underlying principles of DN control targets the dual outcomes of blood glucose regulation through sodium glucose cotransporter 2 (SGLT 2) blockade and hypertension management through renin-angiotensin-aldosterone inhibition. However, these treatments are ineffective in halting disease progression to kidney failure and cardiovascular comorbidities. Recently, the dysregulation of subcellular signaling pathways has been increasingly implicated in DN pathogenesis. Natural compounds are emerging as effective and side-effect-free therapeutic agents that target intracellular pathways. This narrative review synthesizes recent insights into the dysregulation of maintenance pathways in DN, drawing from animal and human studies. To compile this review, articles reporting DN signaling pathways and their treatment with natural flavonoids were collected from PubMed, Cochrane Library Web of Science, Google Scholar and EMBASE databases since 2000. As therapeutic interventions are frequently based on the results of clinical trials, a brief analysis of data from current phase II and III clinical trials on DN is discussed.

7.
PeerJ ; 12: e17665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071128

RESUMO

The sweetpotato whitefly, Bemisia tabaci MEAM1, is one of the most devastating pests of row-crop vegetables worldwide, damaging crops directly through feeding and indirectly through the transmission of many different viruses, including the geminivirus Tomato yellow leaf curl virus (TYLCV). Y-tube olfactometer tests were conducted at different stages of TYLCV infection in tomatoes to understand how TYLCV affects B. tabaci behavior. We also recorded changes in tomato hosts' color and volatile profiles using color spectrophotometry and gas chromatography-mass spectrometry (GC-MS). We found that the infection status of B. tabaci and the infection stage of TYLCV influenced host selection, with uninfected whiteflies showing a preference for TYLCV-infected hosts, especially during the late stages of infection. Viruliferous B. tabaci attraction to visual targets significantly differed from non-viruliferous B. tabaci. Late-stage infected hosts had larger surface areas reflecting yellow-green wavelengths and higher emissions of methyl salicylate in their volatile profiles. These findings shed new light on several critical mechanisms involved in the viral manipulation of an insect vector and its economically important host.


Assuntos
Begomovirus , Hemípteros , Doenças das Plantas , Solanum lycopersicum , Animais , Hemípteros/virologia , Hemípteros/fisiologia , Begomovirus/fisiologia , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Compostos Orgânicos Voláteis/metabolismo , Sinais (Psicologia) , Insetos Vetores/virologia , Cromatografia Gasosa-Espectrometria de Massas
8.
Laryngoscope Investig Otolaryngol ; 9(4): e1261, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39071205

RESUMO

Objectives: Disruption of the oxidative stress defense system is involved in developing various diseases. Sulfur compounds such as glutathione (GSH) and cysteine (CysSH) are representative antioxidants in the body. Recently, supersulfides, including reactive persulfide and polysulfide species, have gained attention as potent antioxidants regulating oxidative stress and redox signaling. However, their involvement in the pathogenesis of chronic rhinosinusitis (CRS) remains unclear. Methods: To clarify the changes in sulfur compounds within the sinus mucosa of each CRS subtype, we measured sulfur compound levels in the sinus mucosa of control individuals (n = 9), patients with eosinophilic CRS (ECRS) (n = 13), and those with non-ECRS (nECRS) (n = 11) who underwent sinus surgery using mass spectrometry. Results: GSH and CysSH levels were significantly reduced, and the glutathione disulfide (GSSG)/GSH ratio, an oxidative stress indicator, was increased in patients with ECRS. Despite the absence of notable variations in supersulfides, patients with ECRS and nECRS exhibited a significant reduction in glutathione trisulfide (GSSSG), which serves as the precursor for supersulfides. Conclusions: This study is the first quantitative assessment of supersulfides in normal and inflamed sinus mucosa, suggesting that sulfur compounds contribute to the pathogenesis of CRS. Level of Evidence: N/A.

9.
Heliyon ; 10(13): e34152, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071552

RESUMO

Excess soil salinity is a major stress factor that inhibits plant growth, development, and production. Among the growth stages, seed germination is particularly susceptible to salt stress. Okra, a nutraceutical vegetable, has a low germination percentage. Literature has revealed genetic diversity in okra, which can be studied to develop salt-tolerant varieties. This study examined the salt tolerance of 13 okra varieties using germination tests and then tested five varieties in pot experiments with different NaCl levels (75, 100, and 125 mM NaCl). Results showed that salt levels affected all varieties, with differential variations in stress response. Salt stress reduced agronomic, and physiochemical traits in the studied varieties. In variety "MALAV-27", the highest salt concentration significantly reduced the shoot length (68.12 %), root length (65.11 %), shoot fresh weight (78.73 %), root fresh weight (68.32 %), shoot dry weight (75.60 %), and root dry weight (75.81 %), along with different physiochemical traits. Variety "NAYAB-F1" performed the best, and maintained the highest shoot length (57.12 %), root length (58.72 %), shoot fresh weight (68.26 %), and root fresh weight (58.34 %), shoot dry weight (69.23 %), root dry weight (62.50 %), and numerous physiochemical traits such as sugar (0.74 µg/g), proline (0.51 µmol/g), and chlorophyll 'a' (7.97 mg/g), chlorophyll 'b' (9.56 mg/g). The study recommended 'NAYAB-F1', 'Arka anamika', and 'Shehzadi' as salt-tolerant varieties suitable for selection in salt-tolerant okra breeding programs.

10.
J Agric Food Chem ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072357

RESUMO

Diet is one of the main exogenous sources of potentially carcinogenic nitrosamines (NAs) along with tobacco and cosmetics. Several factors can affect endogenous N-nitroso compounds (NOCs) formation and therefore the potential damage of the intestinal mucosa at initial colorectal cancer stages. To address this issue, 49 volunteers were recruited and classified according to histopathological analyses. Lifestyle and dietary information were registered after colonoscopy. The mutagenicity of fecal supernatants was assayed by a modified Ames test. Fecal heme-derived NOCs and total NOC concentrations were determined by selective denitrosation and chemiluminescence-based detection. Results revealed processed meats as the main source of dietary nitrites and NAs, identifying some of them as predictors of the fecal concentration of heme-derived and total NOCs. Furthermore, increased fecal NOC concentrations were found as the severity of colonic mucosal damage increased from the control to the adenocarcinoma group, these concentrations being strongly correlated with the intake of the NAs N-nitrosodimethylamine, N-nitrosopiperidine, and N-nitrosopyrrolidine. Higher fecal NOC concentrations were also noted in higher fecal mutagenicity samples. These results could contribute to a better understanding of the importance of modulating dietary derived xenobiotics as related with their impact on the intestinal environment and colonic mucosa damage.

11.
Future Med Chem ; : 1-9, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072451

RESUMO

Aim: To identify potential antischistosomal agents through 3D pharmacophore-based virtual screening of US FDA approved drugs. Materials & methods: A comprehensive virtual screening was conducted on a dataset of 10,000 FDA approved drugs, employing praziquantel as a template. Promising candidates were selected and assessed for their impact on Schistosoma mansoni viability in vitro and in vivo using S. mansoni infected mice. Results & conclusion: Among the selected drugs, betamethasone and doxazosin demonstrated in vitro efficacy, with effective concentration 50% (EC50) values ranging from 35 to 60 µM. In vivo studies revealed significant (>50%) reductions in worm burden for both drugs. These findings suggest that betamethasone and doxazosin hold promise for repurposing in treating schistosomiasis. Additionally, the study showcases a useful approach for identifying new antischistosomal drugs.


Discovering new treatments for #schistosomiasis is crucial[Formula: see text]. Our study used virtual screening to identify potential antischistosomal drugs from US FDA approved compounds [Formula: see text]. Promising results in vitro and in vivo. [Formula: see text] #drugdiscovery #tropicaldiseases.

12.
J Sci Food Agric ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072782

RESUMO

BACKGROUND: The unintended co-extraction of chlorophylls during the recovery of polyphenols from plant sources yields green-coloured phenolic extracts with limited use in colour-sensitive foods. This study aimed at decolourizing the ethanolic extracts of sugar beet leaves using a UV-A treatment (390 nm). RESULTS: Exposure of the phenolic extracts to 30 UV-A LEDs at 8.64 J m-2 radiation dose decreased the total chlorophyll content by 69.23% and reduced the greenness parameter (-a*) significantly (P < 0.05) from 27.33 ± 0.32 to 8.64 ± 0.16. Additionally, UV-A treatment increased the content of most individual phenolic compounds (e.g. gallic acid, ferulic acid, etc.) significantly, resulting in an increase in the overall phenolic content in the extracts from 900.56 ± 14.11 µg g-1 fresh weight (FW) to a maximum of 975.09 ± 9.62 µg g-1 FW at 0.67 J m-2. However, rutin content had a significant decrease at the highest radiation dose (8.64 J m-2). The soluble sugar content (i.e. glucose and fructose) increased simultaneously with phenolic compounds after the UV-A treatment. Although the UV treatment reduced the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, it had no significant effect on the ferrous chelating activity and the extract's ability to delay lipid oxidation in corn oil. The antioxidant activity index of the treated extract was comparable to that of butylated hydroxytoluene, a synthetic antioxidant. CONCLUSION: Key findings of this study include successful decolourization of the extract, decomposition of bound polyphenols to their free form, and maintaining the antioxidant activity of the extract in the oil system after UV-A exposure. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

13.
Sci Rep ; 14(1): 17208, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060430

RESUMO

We analyzed the effects of foliar spraying with amino acids, chitosan (CHS) and nanocomposites (NCs) of chitosan with the amino acids proline, L-cysteine and glycine betaine (CHS-Pro NCs; CHS-Cys NCs, CHS-GB NCs, respectively) on the changes in the physiological and biochemical parameters of iceberg lettuce grown at the control temperature (20 °C) and under chilling conditions (4 °C). The physicochemical parameters of the phospholipid monolayers (PLs) extracted from plants showed the effects of the treatments on the properties of the monolayers, namely, the packing density and flexibility. We observed increased accumulation of proline at 4 °C, and differences in the concentrations of sugars in most of the analyzed variants were a consequence of the lowered temperature and/or the use of organic compounds. A temperature of 4 °C caused a significant increase in the L-ascorbic acid level compared with that at 20 °C. Differences were also found in glutathione (GSH) content depending on the temperature and treatment with the tested organic compounds. CHS NCs loaded with Pro and GB were effective at increasing the amount of phenols under stress temperature conditions. We noted that a significant increase in the antioxidant activity of plants at 4 °C occurred after priming with Cys, CHS-Cys NCs, Pro and CHS-Pro NCs, and the CHS nanocomposites were more effective in this respect. Both low-temperature stress and foliar spraying of lettuce with various organic compounds caused changes in the activity of antioxidant enzymes. Two forms of dismutase (SOD), iron superoxide dismutase (FeSOD) and copper/zinc superoxide dismutase (Cu/ZnSOD), were identified in extracts from the leaves of iceberg lettuce seedlings. The application of the tested organic compounds, alone or in combination with CHS, increased the amount of malondialdehyde (MDA) in plants grown under controlled temperature conditions. Chilling caused an increase in the content of MDA, but some organic compounds mitigated the impact of low temperature. Compared with that of plants subjected to 20 °C, the fresh weight of plants exposed to chilling decreased. However, the tested compounds caused a decrease in fresh weight at 4 °C compared with the corresponding control samples. An interesting exception was the use of Cys, for which the difference in the fresh weight of plants grown at 20 °C and 4 °C was not statistically significant. After Cys application, the dry weight of the chilled plants was greater than that of the chilled control plants but was also greater than that of the other treated plants in this group. To our knowledge, this is the first report demonstrating that engineered chitosan-amino acid nanocomposites could be applied as innovative protective agents to mitigate the effects of chilling stress in crop plants.


Assuntos
Aminoácidos , Quitosana , Lactuca , Nanocompostos , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Lactuca/crescimento & desenvolvimento , Nanocompostos/química , Quitosana/química , Aminoácidos/metabolismo , Aminoácidos/química , Estresse Fisiológico/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Temperatura , Antioxidantes/metabolismo , Cisteína/metabolismo , Cisteína/química , Prolina/metabolismo , Glutationa/metabolismo
14.
Med Oncol ; 41(9): 208, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060448

RESUMO

Currently, breast cancer is the most common cause of mortality caused by neoplasia in women worldwide. The unmet challenges of conventional cancer therapy are chemoresistance and lack of selectivity, which can lead to serious side effects in patients; therefore, new treatments based on natural compounds that serve as adjuvants in breast cancer therapy are urgently needed. Tocopherols are naturally occurring antioxidant compounds that have shown antitumor activity against several types of cancer, including breast cancer. This review summarizes the antitumoral activity of tocopherols, such as the antiproliferative, apoptotic, anti-invasive, and antioxidant effects of tocopherols, through different molecular mechanisms. According to the studies described, α-T, δ-T and γ-T are the most studied in breast tumor cells; however, α-T and γ-T show a more critical antitumor activity and significant potential as a complements to chemotherapeutic drugs against breast cancer, enhancing toxicity against tumor cells and preventing cytotoxicity in nontumor cells. However, the possible relationship between tocopherol intake, related to concentration, and the promotion of cancer in particular cases should not be ruled out, so additional studies are required to determine the correct dose to obtain the desired antitumor effect. Moreover, nanomicelles of D-α-tocopherol have promising potential as pharmaceutical excipients for drug delivery to improve the cytotoxicity and selectivity of first-line chemotherapeutics against breast cancer.


Assuntos
Neoplasias da Mama , Tocoferóis , Humanos , Neoplasias da Mama/tratamento farmacológico , Tocoferóis/farmacologia , Tocoferóis/uso terapêutico , Feminino , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos
15.
Antibiotics (Basel) ; 13(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39061295

RESUMO

Antimicrobial resistance poses a global health threat, with Staphylococcus aureus emerging as a notorious pathogen capable of forming stubborn biofilms and regulating virulence through quorum sensing (QS). In the quest for novel therapeutic strategies, this groundbreaking study unveils the therapeutic potential of Paederia foetida Linn., an Asian medicinal plant containing various bioactive compounds, contributing to its antimicrobial activities, in the battle against S. aureus. Through a comprehensive approach, we investigated the effect of ethanolic P. foetida leaf extract on S. aureus biofilms, QS, and antimicrobial activity. The extract exhibited promising inhibitory effects against S. aureus including the biofilm-forming strain and MRSA. Real-time PCR analysis revealed significant downregulation of key virulence and biofilm genes, suggesting interference with QS. Biofilm assays quantified the extract's ability to disrupt and prevent biofilm formation. LC-MS/MS analysis identified quercetin and kaempferol glycosides as potential bioactive constituents, while molecular docking studies explored their binding to the QS transcriptional regulator SarA. Computational ADMET predictions highlighted favorable intestinal absorption but potential P-glycoprotein interactions limiting oral bioavailability. While promising anti-virulence effects were demonstrated, the high molecular weights and excessive hydrogen bond donors/acceptors of the flavonoid glycosides raise concerns regarding drug-likeness and permeability. This integrated study offers valuable insights for developing novel anti-virulence strategies to combat antimicrobial resistance.

16.
Antibiotics (Basel) ; 13(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39061307

RESUMO

In the current era of widespread antimicrobial resistance, the utilization of essential oils (EOs) derived from plants has emerged as a promising alternative in combating pathogens that have developed resistance to antibiotics. This review explores the therapeutic potential of essential oils as valuable tools in restoring the efficacy of antibiotics, highlighting their unique ability to affect bacteria in multiple ways and target various cellular systems. Despite the challenge of elucidating their precise mode of action, EOs have shown remarkable results in rigorous testing against a diverse range of bacteria. This review explores the multifaceted role of EOs in combating bacterial microorganisms, emphasizing their extraction methods, mechanisms of action, and comparative efficacy against synthetic antibiotics. Key findings underscore the unique strategies EOs deploy to counter bacteria, highlighting significant differences from conventional antibiotics. The review extends to advanced coating solutions for medical devices, exploring the integration of EO formulations into these coatings. Challenges in developing effective EO coatings are addressed, along with various innovative approaches for their implementation. An evaluation of these EO coatings reveals their potential as formidable alternatives to traditional antibacterial agents in medical device applications. This renaissance in exploring natural remedies emphasizes the need to combine traditional wisdom with modern scientific advancements to address the urgent need for effective antimicrobial solutions in the post-antibiotic era.

17.
Diagnostics (Basel) ; 14(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39061700

RESUMO

Volatile organic compounds have drawn significant attention in recent years as a novel tool for non-invasive detection of a wide range of diseases, including gastrointestinal cancers, for which the need for effective, affordable, and non-invasive screening methods is substantial. Sample preparation is a fundamental step that greatly influences the quality of results and the feasibility of wide-range applications. This review summarizes sampling methods used in studies aiming at testing the diagnostic value of volatile organic compounds in gastrointestinal cancers, discussing in detail some of the recent advancements in automated sampling techniques. Finally, we propose some directions in which sample collection and processing can improve for VOC analysis to be popularized in clinical settings.

18.
Antioxidants (Basel) ; 13(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39061834

RESUMO

Pyracantha is a genus of wild perennial shrubs native in an area extending from Southwest Europe to Southeast Asia, and it is used in traditional medicine for the diuretic, cardiac, and tonic properties of its fruits, which can also be cooked to make jellies, jams, and sauces. This work aims to study and compare the antioxidant activity and the phenolic and anthocyanin composition of three varieties of Pyracantha coccinea: Red Column (PCR), Orange Glow (PCO), and Soleil d'Or (PCS), and one of Pyracantha angustifolia: Orange glow (PAO), collected from the spontaneous flora of the Mediterranean region (Southern Italy). Two different extraction processes were tested using methanol and an aqueous methanol solution (80% MeOH) to evaluate the polyphenolic content and antioxidant activity of freeze-dried berries. The highest total phenolic content was found in PCR and PAO berries (174.21 ± 0.149 and 168.01 ± 0.691 mg of gallic acid equivalent per gram of dry matter, respectively) extracted with an aqueous methanol solution (80% MeOH). Polyphenolic extracts analyzed by HPLC-DAD-ESI/MS confirmed the presence of rutin, quercetin hexose, neoeriocitrin, procyanidin B, and resveratrol. Moreover, the total antioxidant activity of the berries' extracts was measured by comparing two different spectrophotometric methods (ABTS and DPPH), showing that the varieties with the highest total phenolic content, PCR and PAO, also had the highest scavenging activity. Finally, a suitable extraction process was chosen for the evaluation of the anthocyanins' composition of all frozen berries, and in all MS spectra of Pyracantha varieties, two ionic species at 449 m/z attributable to two cyanidin derivatives were found.

19.
Antioxidants (Basel) ; 13(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39061843

RESUMO

Rheumatoid arthritis (RA) is a persistent autoimmune disorder that is characterized by joint inflammation, discomfort, and impairment. Despite the existence of several therapeutic approaches, their effectiveness is often restricted and may be linked to unfavorable side effects. Consequently, there has been growing interest in investigating naturally derived compounds as plausible therapeutic agents for RA disease. The objective of this review is to summarize the existing preclinical and clinical evidence regarding the efficacy of naturally extracted compounds and plant extracts in the treatment of RA, focusing on their anti-inflammatory, anti-oxidative, and immunomodulatory properties. Some of the problems with using natural chemicals are the uneven quality of commercially available preparations and the poor bioavailability of these compounds. Future investigations should focus on improving the formulations, conducting thorough clinical trials, and exploring different techniques to fully utilize the intrinsic potential of naturally derived chemicals in treating RA.

20.
Antioxidants (Basel) ; 13(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39061845

RESUMO

Olea europaea L. is the most valuable species of the Olea type, and its products offer a wide range of therapeutical uses. The olive tree has been extensively studied for its nourishing qualities, and the "Mediterranean diet", which includes virgin olive oil as a key dietary component, is strongly associated with a reduced risk of cardiovascular disease and various malignancies. Olive leaves, a by-product in the olive harvesting process, are valued as a resource for developing novel phytomedicines. For this purpose, two ethanolic extracts obtained from Olivae folium from Spain (OFS) and Greece (OFG) were investigated. Our findings contribute to a wider characterization of olive leaves. Both extracts displayed important amounts of phenolic compounds and pentacyclic triterpenes, OFG having higher concentrations of both polyphenols, such as oleuropein and lutein, as well as triterpenes, such as oleanolic acid and maslinic acid. The antioxidant capacity is similar for the two extracts, albeit slightly higher for OFG, possibly due to metal polyphenol complexes with antioxidant activity. The extracts elicited an antimicrobial effect at higher doses, especially against Gram-positive bacteria, such as Streptococcus pyogenes. The extract with lower inorganic content and higher content of polyphenols and triterpenic acids induced a strong anti-radical capacity, a selective cytotoxic effect, as well as antimigratory potential on A375 melanoma cells and antiangiogenic potential on the CAM. No irritability and a good tolerability were noted after evaluating the extracts on the in vivo Hen's Egg Test-Chorioallantoic Membrane (HET-CAM). Therefore, the present data are suggestive for the possible use of the two types of olive leaf products as high-antioxidant extracts, potentially impacting the healthcare system through their use as antimicrobial agents and as anticancer and anti-invasion treatments for melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...