RESUMO
Conducting polymers used in chemical sensors are attractive because of their ability to confer reversible properties controlled by the doping/de-doping process. Polyaniline (PANI) is one of the most prominent materials used due to its ease of synthesis, tailored properties, and higher stability. Here, PANI thin films deposited by the drop-casting method on fluorine-doped tin oxide (FTO) substrates were used in electrochemical and optical sensors for pH measurement. The response of the devices was correlated with the deposition parameters; namely, the volume of deposition solution dropped on the substrate and the concentration of the solution, which was determined by the weight ratio of polymer to solvent. The characterisation of the samples aimed to determine the structure-property relationship of the films and showed that the chemical properties, oxidation states, and protonation level are similar for all samples, as concluded from the cyclic voltammetry and UV-VIS spectroscopic analysis. The sensing performance of the PANI film is correlated with its relative physical properties, thickness, and surface roughness. The highest electrochemical sensitivity obtained was 127.3 ± 6.2 mV/pH, twice the Nernst limit-the highest pH sensitivity reported to our knowledge-from the thicker and rougher sample. The highest optical sensitivity, 0.45 ± 0.05 1/pH, was obtained from a less rough sample, which is desirable as it reduces light scattering and sample oxidation. The results presented demonstrate the importance of understanding the structure-property relationship of materials for optimised sensors and their potential applications where high-sensitivity pH measurement is required.
RESUMO
Brain-Computer Interfaces (BCIs) offer the potential to facilitate neurorehabilitation in stroke patients by decoding user intentions from the central nervous system, thereby enabling control over external devices. Despite their promise, the diverse range of intervention parameters and technical challenges in clinical settings have hindered the accumulation of substantial evidence supporting the efficacy and effectiveness of BCIs in stroke rehabilitation. This article introduces a practical guide designed to navigate through these challenges in conducting BCI interventions for stroke rehabilitation. Applicable regardless of infrastructure and study design limitations, this guide acts as a comprehensive reference for executing BCI-based stroke interventions. Furthermore, it encapsulates insights gleaned from administering hundreds of BCI rehabilitation sessions to stroke patients.â¢Presents a comprehensive methodology for implementing BCI-based upper extremity therapy in stroke patients.â¢Provides detailed guidance on the number of sessions, trials, as well as the necessary hardware and software for effective intervention.
RESUMO
Organic electrochemical transistors (OECTs) are important devices for the development of flexible and wearable sensors due to their flexibility, low power consumption, sensitivity, selectivity, ease of fabrication, and compatibility with other flexible materials. These features enable the creation of comfortable, versatile, and efficient portable devices that can monitor and detect a wide range of parameters for various applications. Herein, we present OECTs based on PEDOT-polyamine thin films for the selective monitoring of phosphate-containing compounds. Our findings reveal that supramolecular single phosphate-amino interaction induces higher changes in the OECT response compared to ATP-amino interactions, even at submillimolar concentrations. The steric character of binding anions plays a crucial role in OECT sensing, resulting in a smaller shift in maximum transconductance voltage and threshold voltage for bulkier binding species. The OECT response reflects not only the polymer/solution interface but also events within the conducting polymer film, where ion transport and concentration are affected by the ion size. Additionally, the investigation of enzyme immobilization reveals the influence of phosphate species on the assembly behavior of acetylcholinesterase (AchE) on PEDOT-PAH OECTs, with increasing phosphate concentrations leading to reduced enzyme anchoring. These findings contribute to the understanding of the mechanisms of OECT sensing and highlight the importance of careful design and optimization of the biosensor interface construction for diverse sensing applications.
RESUMO
The comprehension of potentiometric pH sensors with polymeric thin films for new and advanced applications is a constant technological need. The present study aimed to explore the relationship between the sensitivity and correlation coefficient of potentiometric pH sensors and the structure-property relationship of polyaniline thin films. The effect of the deposition method on the sample's properties was evaluated. Galvanostatically electrodeposited and spin-coated polyaniline thin films were used as the sensing stage. Samples were electrodeposited with a current density of 0.5 mA/cm2 for 300, 600, and 1200 s and were spin coated for 60 s with an angular velocity of 500, 1000, and 2000 rpm. The electrodeposited set of films presented higher average sensitivity, 73.4 ± 1.3 mV/pH, compared to the spin-coated set, 59.2 ± 2.5 mV/pH. The electrodeposited films presented higher sensitivity due to their morphology, characterized by a larger roughness and thickness compared to spin-coated ones, favoring the potentiometric response. Also, their oxidation state, evaluated with cyclic voltammetry and UV-VIS spectroscopy, corroborates their sensing performance. The understanding of the structure-property relationship of the polymeric films affecting the pH detection is discussed based on the characteristics of the deposition method used.
RESUMO
Polypyrrole adhesion to indium-tin oxide electrodes was improved by adding pre-hydrolyzed alkoxysilanes to the electrodeposition media. The pyrrole oxidation and film growth rates were studied by potentiostatic polymerization in acidic media. The morphology and thickness of the films were studied by contact profilometry and surface-scanning electron microscopy. The bulk and surface semiquantitative chemical composition was studied by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Finally, the adhesion was studied by scotch-tape adhesion test, where both alkoxysilanes showed a significant improvement in adhesion. We proposed a hypothesis for the improvement in adhesion, that involves the formation of siloxane material as well as in situ surface modification of the transparent metal oxide electrode.
RESUMO
Due to the energy requirements for various human activities, and the need for a substantial change in the energy matrix, it is important to research and design new materials that allow the availability of appropriate technologies. In this sense, together with proposals that advocate a reduction in the conversion, storage, and feeding of clean energies, such as fuel cells and electrochemical capacitors energy consumption, there is an approach that is based on the development of better applications for and batteries. An alternative to commonly used inorganic materials is conducting polymers (CP). Strategies based on the formation of composite materials and nanostructures allow outstanding performances in electrochemical energy storage devices such as those mentioned. Particularly, the nanostructuring of CP stands out because, in the last two decades, there has been an important evolution in the design of various types of nanostructures, with a strong focus on their synergistic combination with other types of materials. This bibliographic compilation reviews state of the art in this area, with a special focus on how nanostructured CP would contribute to the search for new materials for the development of energy storage devices, based mainly on the morphology they present and on their versatility to be combined with other materials, which allows notable improvements in aspects such as reduction in ionic diffusion trajectories and electronic transport, optimization of spaces for ion penetration, a greater number of electrochemically active sites and better stability in charge/discharge cycles.
RESUMO
In this work, a conducting polymer (CP) was obtained through three electrochemical procedures to study its effect on the development of an electrochemical immunosensor for the detection of immunoglobulin G (IgG-Ag) by square wave voltammetry (SWV). The glassy carbon electrode modified with poly indol-6-carboxylic acid (6-PICA) applied the cyclic voltammetry technique presented a more homogeneous size distribution of nanowires with greater adherence allowing the direct immobilization of the antibodies (IgG-Ab) to detect the biomarker IgG-Ag. Additionally, 6-PICA presents the most stable and reproducible electrochemical response used as an analytical signal for developing a label-free electrochemical immunosensor. The different steps in obtaining the electrochemical immunosensor were characterized by FESEM, FTIR, cyclic voltammetry, electrochemical impedance spectroscopy, and SWV. Optimal conditions to improve performance, stability, and reproducibility in the immunosensing platform were achieved. The prepared immunosensor has a linear detection range of 2.0-16.0 ng·mL-1 with a low detection limit of 0.8 ng·mL-1. The immunosensing platform performance depends on the orientation of the IgG-Ab, favoring the formation of the immuno-complex with an affinity constant (Ka) of 4.32 × 109 M-1, which has great potential to be used as point of care testing (POCT) device for the rapid detection of biomarkers.
RESUMO
The fabrication of efficient organic electrochemical transistors (OECTs)-based biosensors requires the design of biocompatible interfaces for the immobilization of biorecognition elements, as well as the development of robust channel materials to enable the transduction of the biochemical event into a reliable electrical signal. In this work, PEDOT-polyamine blends are shown as versatile organic films that can act as both highly conducting channels of the transistors and non-denaturing platforms for the construction of the biomolecular architectures that operate as sensing surfaces. To achieve this goal, we synthesized and characterized films of PEDOT and polyallylamine hydrochloride (PAH) and employed them as conducting channels in the construction of OECTs. Next, we studied the response of the obtained devices to protein adsorption, using glucose oxidase (GOx) as a model system, through two different strategies: The direct electrostatic adsorption of GOx on the PEDOT-PAH film and the specific recognition of the protein by a lectin attached to the surface. Firstly, we used surface plasmon resonance to monitor the adsorption of the proteins and the stability of the assemblies on PEDOT-PAH films. Then, we monitored the same processes with the OECT showing the capability of the device to perform the detection of the protein binding process in real time. In addition, the sensing mechanisms enabling the monitoring of the adsorption process with the OECTs for the two strategies are discussed.
Assuntos
Técnicas Biossensoriais , Polímeros , Ligação Proteica , Polímeros/química , Glucose Oxidase/química , PoliaminasRESUMO
There is a recognized need for the development of cost-effective, stable, fast, and optimized novel materials for technological applications. Substantial research has been undertaken on the role of polymeric nanocomposites in sensing applications. However, the use of PANI-based nanocomposites in impedimetric and capacitive electrochemical sensors has yet to be understood. The present study aimed to explore the relationship between the sensitivity and linearity of electrochemical pH sensors and the composition of nanocomposites. Thin films of PANI/CeO2 and PANI/WO3 were deposited via spin coating for characterization and application during the electrochemical impedance and capacitance spectroscopy (EIS and ECS) transduction stages. The findings showed that the optimized performance of the devices was extended not only to the sensitivity but also to the linearity. An increase of 213% in the ECS sensitivity of the PANI/CeO2 compared to the metal oxide and an increase of 64% in the ECS linearity of the PANI/WO3 compared to the polymeric sensitivity were reported. This study identified the structure-property relationship of nanocomposite thin films of PANI with metal oxides for use in electrochemical sensors. The developed materials could be applied in devices to be used in different fields, such as food, environment, and biomedical monitoring.
RESUMO
Electrically conducting and semiconducting polymers represent a special and still very attractive class of functional chromophores, especially due to their unique optical and electronic properties and their broad device application potential. They are potentially suitable as materials for several applications of high future relevance, for example flexible photovoltaic modules, components of displays/screens and batteries, electrochromic windows, or photocatalysts. Therefore, their synthesis and structure elucidation are still intensely investigated. This article will demonstrate the very fruitful interplay of current electropolymerization research and its exploitation for science education issues. Experiments involving the synthesis of conducting polymers and their assembly into functional devices can be used to teach basic chemical and physical principles as well as to motivate students for an innovative and interdisciplinary field of chemistry.
Assuntos
Eletrônica , Polímeros , Humanos , Polímeros/química , Oxirredução , Estresse OxidativoRESUMO
This review of the quantitative electrostatics of field emitters, covering analytical, numerical and 'fitted formula' approaches, is thought the first of its kind in the 100 years of the subject. The review relates chiefly to situations where emitters operate in an electronically ideal manner, and zero-current electrostatics is applicable. Terminology is carefully described and is 'polarity independent', so that the review applies to both field electron and field ion emitters. It also applies more generally to charged, pointed electron-conductors-which exhibit the 'electrostatic lightning-rod effect', but are poorly discussed in general electricity and magnetism literature. Modern electron-conductor electrostatics is an application of the chemical thermodynamics and statistical mechanics of electrons. In related theory, the primary role of classical electrostatic potentials (rather than fields) becomes apparent. Space and time limitations have meant that the review cannot be comprehensive in both detail and scope. Rather, it focuses chiefly on the electrostatics of two common basic emitter forms: the needle-shaped emitters used in traditional projection technologies; and the post-shaped emitters often used in modelling large-area multi-emitter electron sources. In the post-on-plane context, we consider in detail both the electrostatics of the single post and the interaction between two identical posts that occurs as a result of electrostatic depolarization (often called 'screening' or 'shielding'). Core to the review are discussions of the 'minimum domain dimensions' method for implementing effective finite-element-method electrostatic simulations, and of the variant of this that leads to very precise estimates of dimensionless field enhancement factors (error typically less than 0.001% in simple situations where analytical comparisons exist). Brief outline discussions, and some core references, are given for each of many 'related considerations' that are relevant to the electrostatic situations, methods and results described. Many areas of field emitter electrostatics are suggested where further research and/or separate mini-reviews would probably be useful.
RESUMO
Polypyrrole (PPy) is an interesting conducting polymer due to its good environmental stability, high conductivity, and biocompatibility. The association between PPy and metallic nanoparticles has been widely studied since it enhances electrochemical properties. In this context, gold ions are reduced to gold nanoparticles (AuNPs) directly on the polymer surface as PPy can be oxidized to an overoxidized state. This work proposes the PPy electrochemical synthesis followed by the direct reduction of gold on its surface in a fast reaction. The modified electrodes were characterized by electronic microscopic and infrared spectroscopy. The effect of reduction time on the electrochemical properties was evaluated by the electrocatalytic properties of the obtained material from the oxidation of ascorbic acid (AA) and electrochemical impedance spectroscopy studies. The presence of AuNPs improved the AA electrocatalysis by reducing oxidation potential and lowering charge transfer resistance. EIS data were fitted using a transmission line model. The results indicated an increase in the electronic transport of the polymeric film in the presence of AuNPs. However, PPy overoxidation occurs when the AuNPs' deposition is higher than 30 s. In PPy/AuNPs 15 s, smaller and less agglomerated particles were formed with fewer PPy overoxidized, confirming the observed electrocatalytic behavior.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ácido Ascórbico , Técnicas Biossensoriais/métodos , Ouro/química , Íons , Polímeros/química , Pirróis/químicaRESUMO
A realização deste estudo teve como objetivo identificar as concepções que as mães e os pais do primeiro e do segundo ciclos do Ensino Fundamental têm sobre a Competência Social de professores de escolas públicas e privadas da região do Rio de Janeiro, Niterói e São Gonçalo. A partir de entrevistas com 16 mães, pais e responsáveis de filhos matriculados no primeiro e segundo ciclo do Ensino Fundamental, procurou-se descrever as características esperadas desses importantes agentes no processo de formação. Com uma metodologia qualitativa de análise dos discursos, a partir de um corpus criado com as entrevistas, as discussões em grupo foram aprofundadas para conceitualizar e caracterizar, segundo a visão das mães e pais, um professor competente socialmente. Pelos dados coletados, os pais valorizam especialmente a dimensão relacional, que deve ser complementar com o domínio técnico. Destaca-se nos dados coletados das mães e pais do primeiro ciclo que seus filhos não possuem maturidade suficiente para auto avaliação e determinação de temas para serem discutidos em sala, diferentemente dos pais do segundo ciclo, que imaginam um cenário ideal com o desenvolvimento dessas atividades.
This study aimed to identify the conceptions that mothers and fathers from the first and second cycles of elementary school have about the Social Competence of public and private schools teachers in the region of Rio de Janeiro, Niterói and São Gonçalo. Based on interviews with 16 mothers, fathers and guardians of children enrolled in the first and second segments of elementary school, we sought to describe the characteristics expected of these important agents in the training process. With a qualitative methodology of discourse analysis, based on a corpus created with the interviews, the group discussions were deepened to conceptualize and characterize, according to the view of mothers and fathers, a socially competent teacher. Based on the data collected, parents value the relational dimension, which must complement itself with the technical domain. It is highlighted in the data collected from mothers and fathers in the first cycle that their children are not mature enough for self-assessment and determining themes to be discussed in the classroom. Unlike the parents in the second cycle who imagine an ideal scenario with the development of these activities.
El propósito de este estudio fue identificar las concepciones que tienen las madres y los padres del primer y segundo ciclo de la escuela primaria sobre la Competencia Social de los docentes de escuelas públicas y privadas de la región de Río de Janeiro, Niterói y São Gonçalo. A partir de entrevistas con 16 padres y tutores de niños matriculados en el primer y segundo ciclo de la escuela primaria, se buscó describir las características que se esperan de estos importantes agentes en el proceso de formación. Con una metodología cualitativa de análisis del discurso, a partir de un corpus elaborado con entrevistas, se profundizaron las discusiones grupales para conceptualizar y caracterizar, según la visión de madres y padres, un docente socialmente competente. A partir de los datos recopilados, los padres valoran especialmente la dimensión relacional, que debe complementarse con el dominio técnico. Se destaca en los datos recolectados de madres y padres en el primer ciclo que sus hijos no son lo suficientemente maduros para la autoevaluarse y determinar temas a discutir en el aula, a diferencia de los padres en el segundo ciclo, quienes imaginan un escenario ideal con el desarrollo de estas actividades.
Assuntos
Humanos , Pais , Percepção , Habilidades Sociais , Professores Escolares , BrasilRESUMO
The main goal of this mini-review is to provide an updated state-of-the-art of the hybrid organic-inorganic materials focusing mainly on interface phenomena involving ionic and electronic transport properties. First, we review the most relevant preparation techniques and the structural features of hybrid organic-inorganic materials prepared by solution-phase reaction of inorganic/organic precursor into organic/inorganic hosts and vapor-phase infiltration of the inorganic precursor into organic hosts and molecular layer deposition of organic precursor onto the inorganic surface. Particular emphasis is given to the advances in joint experimental and theoretical studies discussing diverse types of computational simulations for hybrid-organic materials and interfaces. We make a specific revision on the separately ionic, and electronic transport properties of these hybrid organic-inorganic materials focusing mostly on interface phenomena. Finally, we deepen into mixed ionic-electronic transport properties and provide our concluding remarks and give some perspectives about this growing field of research.
RESUMO
The accessibility to clean water is essential for humans, yet nearly 250 million people die yearly due to contamination by cholera, dysentery, arsenicosis, hepatitis A, polio, typhoid fever, schistosomiasis, malaria, and lead poisoning, according to the World Health Organization. Therefore, advanced materials and techniques are needed to remove contaminants. Here, we review nanohybrids combining conducting polymers and zinc oxide for the photocatalytic purification of waters, with focus on in situ polymerization, template synthesis, sol-gel method, and mixing of semiconductors. Advantages include less corrosion of zinc oxide, less charge recombination and more visible light absorption, up to 53%.
RESUMO
Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC's advancements, the development of efficient and stable interface materials is essential to achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and nanocarbon-based materials show a suitable work function, tunable optical/electronic properties, stability to the presence of moisture, and facile solution processing, while organic conducting polymers and small molecules have some advantages such as fast and low-cost production, solution process, low energy payback time, light weight, and less adverse environmental impact, making them attractive as hole transporting layers (HTLs) for OSCs. This review looked at the recent progress in metal oxides, metal sulfides, nanocarbon materials, conducting polymers, and small organic molecules as HTLs in OSCs over the past five years. The endeavors in research and technology have optimized the preparation and deposition methods of HTLs. Strategies of doping, composite/hybrid formation, and modifications have also tuned the optical/electrical properties of these materials as HTLs to obtain efficient and stable OSCs. We highlighted the impact of structure, composition, and processing conditions of inorganic and organic materials as HTLs in conventional and inverted OSCs.
RESUMO
Low oxidation stability is the main drawback of biodiesels and biokerosenes that is overcome by using antioxidants, which can be combined due to synergistic effects. This paper demonstrates that 3D-printed electrochemical devices can be applied to biofuel electroanalysis, including the monitoring of oxidation stability by quantifying the antioxidant content in biofuels. Fabrication requires 3D-printed acrylic templates at which a polylactic acid (PLA) filament with conducting carbon-black filling sensors is extruded by a 3D pen. The antioxidants butyl hydroxyanisole (BHA) and tert-butylhydroquinone (TBHQ) are the most employed additives in biodiesel production, and thus, their electrochemical behavior was investigated; 2,6-ditertbutylphenol (2,6-DTBP) was included in this investigation because it is commonly added to biokerosenes. The electrochemical surface treatment of the 3D-printed electrodes improved the current responses of all antioxidants; however, the electrochemical oxidation of TBHQ was clearly more affected by an electrocatalytic action shifting its oxidation towards less positive potentials (~200 mV), which resulted in a better separation of TBHQ and BHA oxidation peaks (+0.4 and +0.6 V vs Ag|AgCl, respectively). The oxidation of 2,6-DTBP occurred at more positive potentials (+1.2 V vs Ag|AgCl). The simultaneous determination of TBHQ and BHA by differential-pulse voltammetry resulted in linear responses in the range 0.5 and 175 µmol L-1 with limits of detection and quantification of 0.15 µmol L-1 and 0.5 µmol L-1, respectively. The presence of Fe3+, Cu2+, Pb2+, Mn2+, Cd2+, and Zn2+, even in high concentrations, did not interfere in the determination of TBHQ and BHA. The determination of 2,6-DTBP in biokerosene was achieved by cyclic voltammetry. All relative standard deviations (RSD) were lower than 6.0 %, indicating adequate precision of the methods. Spiked biofuel samples were analyzed (after dilution in electrolyte) and recovery values between 85 and 120% were obtained, which indicates absence of sample matrix effects.
Assuntos
Antioxidantes/química , Biocombustíveis/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Poliésteres/química , Estrutura Molecular , Impressão Tridimensional , FuligemRESUMO
Organic chemical reactions have been used to functionalize preformed conducting polymers (CPs). The extensive work performed on polyaniline (PANI), polypyrrole (PPy), and polythiophene (PT) is described together with the more limited work on other CPs. Two approaches have been taken for the functionalization: (i) direct reactions on the CP chains and (ii) reaction with substituted CPs bearing reactive groups (e.g., ester). Electrophilic aromatic substitution, SEAr, is directly made on the non-conductive (reduced form) of the CPs. In PANI and PPy, the N-H can be electrophilically substituted. The nitrogen nucleophile could produce nucleophilic substitutions (SN) on alkyl or acyl groups. Another direct reaction is the nucleophilic conjugate addition on the oxidized form of the polymer (PANI, PPy or PT). In the case of PT, the main functionalization method was indirect, and the linking of functional groups via attachment to reactive groups was already present in the monomer. The same is the case for most other conducting polymers, such as poly(fluorene). The target properties which are improved by the functionalization of the different polymers is also discussed.
RESUMO
ABSTRACT Background: We aimed to describe the morphology of the border zone of viable myocardium surrounded by scarring in patients with Chagas heart disease and study their association with clinical events. Methods: Adult patients with Chagas heart disease (n=22; 55% females; 65.5 years, SD 10.1) were included. Patients underwent high-resolution contrast-enhanced cardiac magnetic resonance using myocardial delayed enhancement with postprocessing analysis to identify the core scar area and border zone channels number, mass, and length. The association between border zone channel parameters and the combined end-point (cardiovascular mortality or internal cardiac defibrillator implantation) was tested by multivariable Cox proportional hazard regression analyses. The significance level was set at 0.05. Data are presented as the mean (standard deviation [SD]) or median (interquartile range). Results: A total of 44 border zone channels (1[1-3] per patient) were identified. The border zone channel mass per patient was 1.25 (0.48-4.39) g, and the extension in layers of the border zone channels per patient was 2.4 (1.0-4.25). Most border zone channels were identified in the midwall location. Six patients presented the studied end-point during a mean follow-up of 4.9 years (SD 1.6). Border zone channel extension in layers was associated with the studied end-point independent from left ventricular ejection fraction or fibrosis mass (HR=2.03; 95% CI 1.15-3.60). Conclusions: High-resolution contrast-enhanced cardiac magnetic resonance can identify border zone channels in patients with Chagas heart disease. Moreover, border zone channel extension was independently associated with clinical events.
RESUMO
Novel biobased films consisting of alginate blends with poly (octanoic acid 2-thiophen-3-yl-ethyl ester) (POTE), a conducting polymer, were prepared by solution casting, and their optical, morphological, thermal, and surface properties were studied. Using UV-visible spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM), the effects of tetrahydrofuran solvent vapors on the optical properties and surface morphology of biobased films with different POTE contents were studied. Results indicate that morphological rearrangements of POTE take place during the process of solvent exposure. Specifically, the solvent vapor induced the formation of POTE small crystalline domains, which allows envisioning the potential of tuning UV-visible absorbance and wettability behavior of biobased films. Finally, theoretical electronic calculations (specifically frontier molecular orbitals analysis) provided consistent evidence on POTE's preferential orientation and selectivity toward the THF-vapor medium.